I Stokes data from classical to so - categorical 1) Good formal decomposition X/ smood, D smed (IL, V) meromorphic flat bundle with poles along D M = loc free module of genete type over Gx (*D) ∇ J1 _, J'_×(*D) & J1 glat
G_×(*D) Enc $a \in G_{x}(*D)$, $\mathcal{E}^{a} = (G_{x}(*D), d - da)$ Ex Regular singular (V Ras log poles in local basis) Deligne } Regular singular > ~ Loc (U, C) U = X \ D { "good" Meromorphic } ~, { Stokes filtered local } { flat bundle } { systems } Cejoal explain the bottom line of the above square Def We say that (\mathcal{I}, ∇) has good formal decomposition at $\infty \in D$ if (2) If D = 33, 38 = 04 mear 2, the mon zeros a's in (1) have the form in / 31, 3 R the mon zeros a-b's have the form in / 31, 3 R 31, 3 R , re emit , e emit

Def The a's contributing to (1) are the inequilar values of $(7, \nabla)$ at xEx Good formal decomposition always holds for X curve Ceyood formal decomposition is not automatic in dem > 2 However, we have the following amazing theorem TH (Kedlaya, Mochizuke) $\exists \pi \vee _, \times \text{ composition of blow-up above D such that } \pi^*(\Pi, \nabla)$ has good formal decomposition at every point 2) Stokes filtered local systems To extract Stokes data from a flat bundle with good formal decomposite we need to work in sectors that emanate from points of D The most concernent way to do this is to work on the real blow - up D,, , D, meducible components of D D₂ D, $\widetilde{X}_{,} \longrightarrow X$ real blow-up of X along $D_{,}$ ∂×, 15 a febration in circle over D, $\pi \tilde{X} = \tilde{X}, \times \tilde{X}_{m} \rightarrow X$

 $E_{\mathbf{x}} \times = \mathbb{C}^2, \quad \mathbb{D} = \langle \mathbf{x} \mathbf{y} = \mathbf{0} \rangle$ $\widetilde{X} \simeq \mathbb{R}^2_+ \times S' \times S'$ In general, working on \widetilde{X} amounts to work in polar coordinates $\mathcal{L} = \operatorname{Ker} \nabla |_{\mathcal{U}} \qquad \sim \mathcal{L} = \mathcal{I}_{\mathcal{X}} \mathcal{L} \in \operatorname{Loc} \left(\widetilde{X} \right)$ The topology of \widetilde{X} is such that the germs of L are the sections of L on a product of small sectors Our goal mour is to define a filtration on the germs of L It will be indexed by an ordered set cooked up with the irregular values The order well vory when re varies Assumption (I, V) good at every point & ED Fact The vregular values of (I,V) organize as a subsheaf of finite sets T C Gx (*D)/Gx A subsheaf I as above is a good sheaf of irregular values I ε Sh(x, Set) ~, π'I ε Sh(x, Set) We are going to promote π^{-1} I into a sheaf of posets For $a, b \in (\pi' \mathcal{I})_{\chi}$, write a < b <=> e^{2-b} has moderate growth in a small multi-sector containing the direction x

For $U \subseteq \widetilde{X}$ open and $a, b \in (\pi'\widetilde{I})(U)$, write $a \in b \subset a_{n} \subset b_{n} \quad \forall n \in U$ From the orders ξ_{0} , we get $\pi^{-1} \Upsilon \in Sh(\tilde{X}, Poset)$ We can now define the Stokes filtration For a section a E TT'I, put Lea = ? JEL | e g Ros moderate growth along D y The (L_{ca}) is the Stokes filtration of (J1, V) The Stokes filtration satisfies two strong constrains TH (Mochizuke) (1) Splitting condition $\forall x \in \tilde{X}$, $\exists a decomposition$ $L_{n} = \bigoplus V_{a}$ $a \in I_{\pi(n)}$ by subspaces V_{α} such that $\forall \alpha \in \mathbb{I}_{\pi(\infty)}$, $L_{\xi a, \mathcal{H}} = \bigoplus_{b \in \mathcal{H}} V_{b}$ (2) Induction condition " The Stokes fultration at x determines that at a close enough y" More precesely, for x E D one shows that there is an open contractible meighbourhood U of 2 such that $(\pi'\mathfrak{I}, \boldsymbol{\xi}_{\mathcal{O}}) \xrightarrow{\sim} (\mathfrak{I}_{\pi(\boldsymbol{x})}, \boldsymbol{\xi}_{\boldsymbol{x}})$

For y E U, we thus get a morphism of posets

$$\leftarrow (\mathbf{I}_{\pi(\mathbf{x})}, \boldsymbol{\xi}_{\mathbf{x}}) \longrightarrow (\mathbf{I}_{\pi(\mathbf{y})}, \boldsymbol{\xi}_{\mathbf{y}})$$

Sunce L 15 a local system on X, there is a canonical parallel transport

map

Then $\forall y \in \cup \forall a \in \Upsilon_{\pi(y)}$, we have

$$- \underbrace{ \begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array}}_{\mathbf{x} \in \mathbf{y}} = \underbrace{ \sum_{\mathbf{x} \in \mathbf{x}} }_{\mathbf{x} (\mathbf{x})} \\ \mathbf{x} (\mathbf{b}) \underbrace{ \begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array}}_{\mathbf{x} \in \mathbf{x}} \\ \mathbf{x} \\ \mathbf$$

R

We now turn the adove properties into a definition

• (L_{sa})_a is a filtration indexed by I satisfying the splitting and induction conditions

$$(\mathcal{I},\nabla) \longrightarrow (L,(L_{\leq \alpha})_{\alpha})$$

4) 00 - categorical Stokes data

$$X_{C}$$
 smooth, D smed
 $T \in G_{X}(*D)/G_{X}$ good sheaf of inequilar values
Fact I finite analytic stratification $\tilde{X} \longrightarrow P$ such that
 $\pi' T \in Cors_{p}(\tilde{X}, Poset)$

Since $Poset \subseteq Cat_{\infty}$, a variant of the exodromy theorem for coefficients in Cat_{∞} allows us to review $\overline{\pi}' T$ as a functor

$$\pi^{-1} \widetilde{\bot} \quad \Pi_{\infty}(\widetilde{\times}, \mathcal{P}) \longrightarrow \operatorname{Cat}_{\infty}$$
$$\mathcal{N} \longrightarrow (\pi^{-1} \widetilde{\bot})_{\mathcal{N}} \in \operatorname{Poset}$$

Applying the Egrothendieck construction to this functor gives rise to a cocartesian fibration over $\overline{\Pi_{\infty}}(\tilde{\times}, P)$

 $\exists \Pi_{\mathbf{x}}(\tilde{\mathbf{x}}, \mathbf{P})$

By definition, the fiber of this fibration over $x \in \overline{\Pi}_{\infty}(\tilde{x}, P)$ is the poset $(\pi^{-1}I)_{\chi}$ So in a mutshell, what I does is to organize all the unegular values and their orders in a single category On the other hands, what a Stokes filtration does is to assign a vector space to each inequilar values So for any E E EL, we are going to realize our oo-categorical Stokes data as functors from I to E

To do this, we need to reinterpret Mochizuki's splitting and induction conditions as properties of objects of Eur (9, E)

- (1) Splitting
- $2 \in \Pi_{p_{2}}(\tilde{X}, \tilde{P})$, put $\mathcal{D}_{\chi} = (\pi^{-1}\tilde{I})_{\chi} \in Poset$ let \mathcal{D}_{χ}^{set} be the underlying set of \mathcal{D}_{χ} , reversed as a truch poset Then the identity map is a morphism of posets $i_{\chi} = \mathcal{D}_{\chi}^{set} - \mathcal{D}_{\chi}$

Since E Ras every colimits, the pull - back

 i_{χ}^{*} Eum $(\mathcal{I}_{\chi}, \mathcal{E})$ __, Eum $(\mathcal{I}_{\chi}^{sek}, \mathcal{E})$

admits a left adjoint

$$_{21}$$
 Eum $(\mathcal{D}_{2}^{\text{set}}, \mathcal{E}) \longrightarrow \mathcal{E}_{1}$ Eum $(\mathcal{D}_{2}, \mathcal{E})$

explicitly computed as $V = (V_a)_a \longrightarrow i_{\chi} \cdot (V) \xrightarrow{0}_{\chi} \longrightarrow \varepsilon$

P

Def We say that $F \supset _$, $E \underset{2}{\text{split}} \underset{\alpha}{\text{at } \alpha} , f F|_{\mathcal{G}_{\mathcal{R}}} \supset_{\alpha} \underset{\alpha}{\longrightarrow} E$ lies in the essential image of $i_{\alpha}i$

Remark
$$i_{\alpha}$$
 is not essentially surjective in general
Take $D_{\alpha} = 30 < 12$, then $i_{\alpha} : (V_0, V_1) \in Fim(\Delta', E)$ is
 $V_0 = V_0 \oplus V_1$

Not every morphism in E looks like this !

Eq. Assume that I is the 0-sheaf
From a flat bundle perspective, this means that the flat bundles
we look at only has 0 as unagular values
This means that it is regular singular.
Then, Deligne's consepondence predicts that in this extuation, Stoken
Junctar should give back local systems on X
let us prove it'
We know that the fibers of the fibration
$$\int_{-\infty}^{0} above a point
x are the inegular values at a:
 $T_{0}(\bar{X}, P)$
Here the fibers are singletons (c'f ' So
 $\int_{0}^{0} I_{0}(\bar{X}, P)$
Here a Stokes functor in this case is a functor
 $F = T_{0}(\bar{X}, P) \longrightarrow E$
A fibration indexed by a singleton automatically split of the splitting
conduction is empty in this case.
The induction conductor at $\gamma = x - y$ collapses to the conductor that
 $F(\gamma) = F(x) \longrightarrow F(y)$
is an equivalence. Hence
 $S_{0,E} = F = T_{m}(\bar{X}, P) = S$ sinding every maphisms to equivalences
 $\simeq Eur(T_{0}(\bar{X}, P)[all maphiems^{-1}], E)$$$

is a refinement Then we have in the first lecture that

$$\Pi_{\infty}(\tilde{\times}, P) [all marphisms^{-1}] \simeq \Pi_{00}(\tilde{\times})$$

Furthermore, one shows that

$$\pi_{\infty}(\tilde{x}) \simeq \pi(x)$$

By the Exodromy equivalence, we deduce

$$St_{\mathcal{G},\mathcal{E}} \simeq \operatorname{Eum}(\Pi_{\mathbf{x}}(\mathbf{x}), \mathcal{E}) \simeq \operatorname{Loc}(\mathbf{x}, \mathcal{E})$$

Summary

-