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Introduction

This text gathers notes of a five hours course on D-modules given for the Winter
School on Derived Categories, Weyl Algebras and Hodge Theory organized by D.
Rumynin and T. Stafford on March 16-20 in Warwick. During this week, a course
on Hodge theory and algebraic geometry was given by L. Migliorini and a course
on Derived categories and constructible sheaves was given by G. Williamson. The
primary goal of the school was to explain to which extend topology, Hodge theory and
D-modules interact. The audience was not supposed to be familiar with D-modules.
The following theorem [Kas75] was used as a guideline for this course

Theorem 1. — Let M be a holonomic D-module on a complex manifold X. Then
the de Rham complex DRM of M is a perverse sheaf.

A full proofp1q of the following theorem was given

Theorem 2. — Let X be a complex manifold and let M be a complex of DX-modules
with bounded and holonomic cohomology. Then DRM has bounded and constructible
cohomology.

This theorem is a superb application of the machinery of derived categories and
functorialities: trying to prove it for a single holonomic DX -module sticking to X
does not lead anywhere whereas push-forward allows to argue by induction on the
dimension ofX. Since push-forward is not an exact functor, we are naturally led to use
derived push-forward, thus producing complexes even if the input M is concentrated
in degree 0. Hence, derived category is the right setting for both the statement and
the proof of theorem 2.

Let us explain the content of each section of these notes. The first section introduces
the notion of D-modules on a complex manifold, DR and Sol for D-modules and state

p1qNote that we don’t claim originality in the proofs given in these notes.
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the Riemann-Hilbert correspondence. Section 2 has to do with functorialities for
D-modules. We give a proof of Kashiwara theorem on direct images by a closed
immersion and a proof of the commutativity of DR with push-forward. In section 3,
we explain why the characteristic variety is of fundamental importance in the theory
of D-module and how it can be used. Section 4 gives a full proof of Kashiwara
constructibility theorem, following [LM93]. Section 5 has to do with regularity. For
meromorphic connections, we insist on the necessity of a meromorphic structure in
the analytic setting already to state a definition, and then give some fundamental
theorems leading to the algebraic Riemann-Hilbert correspondence for algebraic flat
connections.

I thank the organizers of the Winter School Derived Categories, Weyl Algebras
and Hodge Theory for giving me the opportunity to teach this course, as well as L.
Migliorini and G. Williamson for advices on what should be and what should not be in
a first course on D-modules, saving the audience from a certain number of unpleasant
computations. I also thank the students who attended the school for providing a very
pleasant and stimulating work atmosphere during the week.
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1. The formalism of D-modules

Let X be a complex manifold and let dX be the dimension of X. We denote by
TX the tangent bundle of X and by T˚X the cotangent bundle of X. We denote by
ΘX (resp. Ω1

X) the sheaf of sections of TX (resp. T˚X) on X. If p : T˚X ÝÑ X
denotes the canonical projection, ΘX is a subsheaf of p˚OT˚X .

Note that ΘX can be viewed as the subsheaf of derivations of EndCpOXq. More
generally Symk ΘX can be viewed as the subsheaf of HomCpb

k
COX ,OXq of symmetric

k-linear forms restricting to derivations on each factor.

1.1. On the filtered sheaf DX . — A holomorphic function f P OX defines an
element of EndCpOXq by multiplication. We say that this element is a differential
operator of order 0 and we still denote it by f .

For n ě 1, we say that P P EndCpOXq is a differential operator of order ď n if for
every f P OX , the commutator rP, f s “ Pf ´ fP is a differential operator of order
ď n´ 1.

Definition 1.1.1. — We denote by DX the subsheaf of EndCpOXq of differential
operators with finite order.

The following filtration

FnDX :“ tdifferential operators of order ď nu

turns DX into a sheaf of filtered algebras. We say that P P DX has order n if P has
order ď n and P has not order ď n´ 1.

In X “ Cn endowed with coordinates px1, . . . , xnq, ΘX is the free OX -module
generated by the tangent vector fields B

Bxi
acting on OX by differentiation. We have

the following

(1.1.2) DCn »
à

αPNn

OCn

ˆ

B

Bx1

˙α1

¨ ¨ ¨

ˆ

B

Bxn

˙αn

So for a general smooth X, DX is an infinite dimensional vector bundle generated by
ΘX as an OX -algebra.
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Definition 1.1.3. — A left (resp. right) DX-module is a sheaf of modules over DX
(resp. Dop

X ).

In the sequel, we denote by DX -mod (resp. Dop
X -mod) the category of left (resp.

right) DX -modules. Right DX -modules are important since nature produces plenty
of them (see 1.2.2) and they are used to define direct image for left DX -modules in a
convenient way.

1.2. A short way to define a D-module. — As a consequence of 1.1.2, a left
DX -module is the same as an OX -module M endowed with an action

ΘX bCX
M ÝÑ M

ξ bm ÝÑ ξ ¨m

satisfying for every f P OX , ξ, η P ΘX , m PM the following identities:
(1) fξ ¨m “ f ¨ pξ ¨mq
(2) ξ ¨ fm “ ξpfqm` fξ ¨m
(3) rξ, ηs ¨m “ ξ ¨ pη ¨mq ´ η ¨ pξ ¨mq

In local coordinates, relation p3q says for example that the actions of B
Bxi

and B
Bxj

commute.

Example 1.2.1. — As a consequence of Schwarz theorem, OX is a left DX -module.

Similarly, a right DX -module is the same as an OX -module N endowed with an
action

N bCX
ΘX ÝÑ N

mb ξ ÝÑ m ¨ ξ

satisfying for every f P OX , ξ, η P ΘX , n P N the following identities:
(1) n ¨ fξ “ fn ¨ ξ
(2) fpn ¨ ξq “ ξpfqn` n ¨ fξ
(3) n ¨ rξ, ηs “ pn ¨ ξq ¨ η ´ pn ¨ ηq ¨ ξ

Example 1.2.2. — For ω P ΩkX and for ξ P ΘX , recall that we have a contraction
operation ιξ : ΩkX ÝÑ Ωk´1

X which associates to ω P ΩkX the k ´ 1 form

ιξω : Λk´1ΘX ÝÑ OX

ξ1 ^ ¨ ¨ ¨ ^ ξk´1 ÝÑ ωpξ, ξ1, . . . , ξk´1q

The Lie derivative is the operator

Lξ : ΩkX ÝÑ ΩkX

ω ÝÑ ιξdω ` dιξω

It satisfies the following identities
(1) Lfξω “ fLξω ` df ^ ιξω
(2) Lrξ1,ξ2sω “ Lξ1Lξ2ω ´ Lξ2Lξ1ω
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For ω P ωX :“ ΩdXX , we have in particular Lξω “ dιξω. Thus, for such ω we have

Lfξω “ dιfξω “ dιξfω “ Lξfω

Since ιξ is skew multiplicative,

ιξpdf ^ ωq “ ξpfqω ´ df ^ ιξω “ 0

So (1) gives

Lfξω “ dιfξω “ dpfιξωq “ df ^ ιξω ` fdιξω “ ξpfqω ` fLξω

So the assignment ω ¨ ξ :“ ´Lξω for every ω P ωX and every ξ P ΘX defines a right
DX -module structure on ωX .

1.3. Left and right. —

1.3.1. From left to right. — Let M (resp. N ) be a left (resp. right) DX -module. We
see that the following formula

pnbmq ¨ ξ “ nξ bm´ nb ξm

endowsNbOX
M with a structure ofDop

X -module. We can thus define theDop
X -module

(1.3.1) Mr :“ ωX bOX
M

1.3.2. From right to left. — Let N ,N 1 be Dop
X -modules. We see that the following

formula
pξ ¨ ϕqpnq “ ϕpn ¨ ξq ´ ϕpnq ¨ ξ

endows HomOX
pN ,N 1q with a structure of DX -module. We can thus define the

DX -module

(1.3.2) N l :“ HomOX
pωX ,N q “ ω´1

X bOX
N

The functors r and l are equivalences of categories inverse to each other.

1.4. Solution and de Rham functors. — Let M P DX -mod. We define the de
Rham complex DRM of M as

M // Ω1
X bOX

M // ¨ ¨ ¨ // ΩdXX bOX
M // 0

where M sits in degree ´dX , and where the differentials are defined in local coordi-
nates px1, . . . , xnq as follows

ω bm ÝÑ dω bm`
ÿ

dxi ^ ω b
B

Bxi
m

We define the solution complex of M as

(1.4.1) SolM :“ RHomDX
pM,OXq

For holonomicp2q DX -modules, DRM and SolM are related by the following

p2qLet us say for now that holonomy is the right condition to put on DX -modules to have good
finiteness properties.
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Theorem 1.4.2. — Let M be a holonomic DX-module. There is a canonical iso-
morphism

SolM » RHompDRM,CXqrdX s

For two different proofs of this theorem, let us mention [Meb79] and [KK81].

Example 1.4.3. — Let us take P P DX and let us "compute" SolpDX{DXP q. Ho-
mological algebra says we can compute it using an injective resolution of OX or a
projective resolution of DX{DXP . The first option is less than tempting, since we
don’t have any favourite injective resolution of OX as a DX -module. However, we
have the following projective resolution

0 // DX
¨P // DX // DX{DXP // 0

Hence SolpDX{DXP q is the complex obtained by applying Homp ¨ ,OXq to

DX
¨P
ÝÑ DX

Since a morphism of DX -modules with source DX is uniquely determined by the image
of 1, SolpDX{DXP q is computed as

OX
P // OX

Hence,
H0 SolpDX{DXP q » tf P OX such that P pfq “ 0u

and
H1 SolpDX{DXP q » OX{P pOXq

This explains why (1.4.1) should be called "the solution complex".

Example 1.4.4. — By holomorphic Poincaré lemma, DROX is quasi-isomorphic to
CX rdX s.

Example 1.4.5. — A flat connection on a complex manifold X is a DX -module
whose underlying sheaf E is locally free of finite rank r. Such a DX -module is usually
denoted by pE,∇q, where ∇ is the first differential in the de Rham complex. Take
X to be a ball B in X endowed with coordinates px1, . . . , xnq. Let e1, . . . , er be a
trivialization of E on B. Then

∇ : E ÝÑ Ω1
B bOB

E

ej ÝÑ

r
ÿ

i“1

γij b ei

where Γ :“ pγijq P ΓpB,MatrpΩ
1
Xqq. Hence, we see that Ker∇ (also called the sheaf

of horizontal sections of E) identifies to the sheaf of r-uples of column vectors f P Or
B

satisfying

(1.4.6)
Bf

Bxi
“ ´pι B

Bxi

Γqf

for every i “ 1, . . . , n. By Cauchy theorem, the spaces of solutions of (1.4.6) de-
fined on B is finite dimensional and evaluation at 0 P B yields an isomorphism
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ΓpB,Ker∇q „ // Cr . Hence, a basis s1, . . . , sr P ΓpB,Ker∇q gives rise to an iso-

morphism of DB-modules Or
B

„ // pE,∇q|B . From 1.4.4, we deduce that DRpE,∇q
is concentrated in degree ´dX and that H´dX DRpE,∇q is a local system.

1.5. The Riemann-Hilbert correspondence. — It can be summarized by the
following diagram

(1.5.1) ConnpXq
H´dX DR

„ //
� _

��

LocCpXq� _

��

RegpXq
DR

„ //
� _

��

PervpXq� _

��

Db
rhpDXq DR

„ // Db
cpX,Cq

In this diagram, „ means "is an equivalence of categories" and
‚ ConnpXq is the category of flat connections 1.4.5 on X.
‚ LocCpXq is the category of local systems of C-vector spaces on X.
‚ RegpXq is the category of regular holonomic DX -modules (see 3.3.1 and 5.2.1).
‚ PervpXq is the category of perverse sheaves [BBD82] on X.
‚ Db

rhpDXq is the derived category of complexes of DX -modules with bounded and
holonomic regular cohomology.
‚ Db

cpX,Cq is the derived category of complexes of sheaves of C-vector spaces with
bounded and constructible cohomology.
An inverse functor to the top horizontal arrow of (1.5.1) is easy to construct. From
L P LocCpXq, one defines E :“ OX bCX

L and

∇ : E ÝÑ Ω1
X bOX

E

f b s ÝÑ df b s

Let us mention that the first equivalence appeared for the first time in [Del70]. It’s
interest lies in the fact that LocCpXq is equivalent to the category of C-representations
of π1pXq, whereas ifX is algebraic, ConnpXq admits a purely algebraic interpretation.
Thus, Deligne’s correspondance provides a bridge between topology and algebraic ge-
ometry.

The general Riemann-Hilbert correspondence was proved by Kashiwara [Kas79]
[Kas84] and Mebkhout [Meb80][Meb84] using two different (but non trivially equiv-
alent) approaches to regularity. Note that in Kashiwara’s approach, the preservation
of regularity by duality is a triviality, but the fully-faithfullness in the Riemann-Hilbert
correspondence is a theorem. Moreover, an explicit inverse functor is constructed.

In Mebkhout’s approach, preservation of regularity by duality is a hard fact, but
the fully faithfulness is almost tautological. This approach also provides a very flex-
ible sheaf-theoretic measure of the failure of regularity, that is the irregularity sheaf
[Meb90].
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The interest of such a correspondence is not to be proved: it led to the discovery
of perverse sheaves which are now ubiquitous in topology and representation theory.
A purely sheaf-theoretic description of a (possibly irregular) D-module that would
enhance the Riemann-Hilbert correspondence to all holonomic DX -modules is a very
active area. For a recent breakthrough, let us mention [dK13].

2. Functorialities

2.1. Inverse image. — Let f : X ÝÑ Y be a morphism of smooth manifolds and
let M P DY -mod. Let us denote by f`M P DX -mod the inverse image of M by f in
the sense of D-modules. By definition, the underlying OX -module of M is

f˚M :“ OX bf´1OY
f´1M

where f´1 is the topological inverse image. The DX -module structure is given by
the following formula. Let x P X and y “ fpxq. Let x “ px1, . . . , xnq (resp. y “
py1, . . . , ypq) be local coordinates on X centred at x (resp. on Y centred at y). Let
f “ pf1, . . . , fpq be the components of f in y, and let g P OX,x and m P My. Then
for every i “ 1, . . . , n, we define

B

Bxi
pg bmq “ p

Bg

Bxi
q bm`

p
ÿ

j“1

g
Bfj
Bxi

b
B

Bxj
m

Thus f` : DY -mod ÝÑ DX -mod is right exact. Let forX : DX -mod ÝÑ OX -mod be
the functor forgetting the action of DX . It is exact and we have

forX f
` “ f˚ forY

Since DY -mod has enough flat objects, the left derived functor

Lf` : D´pDY -modq ÝÑ D´pDX -modq

associated to f` is well defined. Since DX is locally free as a OX -module, it is flat.
Thus, any DX -flat complex is also OX -flat. Hence

Lpf˚ forY q » Lf
˚L forY » Lf

˚ forY

So
forX Lf

` “ Lf˚ forY

Let us define the transfer bimodule for f by DXÑY :“ f`DY . This is a pDX , f´1DY q-
module. Another way to look at f` is to notice that

f`M :“ OX bf´1OY
f´1M

» OX bf´1OY
f´1DY bf´1DY

f´1M
» DXÑY bf´1DY

f´1M

Through this identification, the action of DX on f`M is inherited from the action of
DX on DXÑY . Thus

Lf`M » DXÑY bLf´1DY
f´1M

In the sequel, we write f` for Lf`.
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Example 2.1.1. — Let i : Cp ÝÑ Cn be the canonical inclusion px1, . . . , xpq ÝÑ
px1, . . . , xp, 0, . . . , 0q. From 1.1.2, we see that

i`DCn »
à

αPNJp`1,nK

DCp

ˆ

B

Bxp`1

˙αp`1

¨ ¨ ¨

ˆ

B

Bxn

˙αn

Hence, inverse image for D-modules does not preserve coherence.

2.2. Direct image. — Let f : X ÝÑ Y be a morphism of smooth manifolds.
We define a direct image functor f` for right D-modules and deduce a direct image
functor (also denoted by f`) for left DX -modules by the formula

M // pf`Mrql

Let us recall that DXÑY :“ f`DY is a pDX , f´1DY q-module. Hence, for every right
DX -module N , the sheaf N bDX

DXÑY is a right f´1DY -module. Hence

(2.2.1) f˚pN bDX
f´1DY q

is a right f˚f´1DY -module. Thus, the adjunction morphism DY // f˚f
´1DY

endows (2.2.1) with a structure of right DY -module. We definep3q

f` : D`pDop
X q ÝÑ D`pDop

Y q

N ÝÑ Rf˚pN bLDX
DXÑY q

2.3. The Spencer complex. — Let X be a complex manifold. The Spencer com-
plex Sp‚X is a resolution of OX as a DX -module by locally free DX -modules. Hence,
it is adapted to compute bLDX

OX . We denote by Sp‚X the complex whose term in
degree ´k is DX bOX

ΛkΘX and whose differentials are given byp4q

P b ξ ÝÑ
k
ÿ

i“1

p´1qi´1Pξi b pξ
i
`

ÿ

iăj

p´1qi`jP b rξi, ξjs ^ pξ
i,j

pSp‚X , δXq is a complex of DX -modules. This is the Spencer complex of X. Let us
notice that H0 Sp‚X identifies canonically to OX .

Lemma 2.3.1. — The canonical map

(2.3.2) Sp‚X ÝÑ OX r0s

is a quasi-isomorphism of DX-modules.

p3qNote that some care would be needed here since we derive a left exact and a right exact functor.
p4qwhere ξ stands for ξ1 ^ ¨ ¨ ¨ ^ ξk, pξ

i
stands for ξ1 ^ ¨ ¨ ¨ ^ pξi ^ ¨ ¨ ¨ ^ ξk and

pξ
i,j
“ ξ1 ^ ¨ ¨ ¨ ^ pξi ^ ¨ ¨ ¨ ^ pξj ^ ¨ ¨ ¨ ^ ξk
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Proof. — We have to prove that Sp‚X is acyclic in degree ă 0. Let Fp SpX be the
subcomplex of Sp‚X whose term in degree ´k is

Fp´kDX bOX
ΛkΘX

From 6.3 and since ΘX is flat over OX , the graded complex grF Sp‚X :“ ‘k grFk SpX
identifies to the complex

// Sym ΘX bOX
ΛkΘX

// Sym ΘX bOX
Λk´1ΘX

//

with differential given by

P b ξ ÝÑ
k
ÿ

i“1

p´1qi´1Pξi b pξ
i

We have a canonical identification

grF SpkX » ΛkSym ΘX
pSym ΘX bOX

ΘXq

Let px1, . . . , xnq be local coordinates centred at x P X. Then, ΘX,x is a free OX,x-
module with base given by the germs at x of the B

Bxi
. If we denote by τi the class of

B
Bxi

in pSym1 ΘXqx, the complex pgrF Sp‚Xqx identifies with the complex

// ΛkOX,xrτs
OX,xrτ s

n // Λk´1
OX,xrτs

OX,xrτ s
n //

with differential given by

ei1 ^ ¨ ¨ ¨ ^ eik ÝÑ
k
ÿ

j“1

p´1qj´1τie1 ^ ¨ ¨ ¨ ^ xeij ^ ¨ ¨ ¨ ^ eik

So pgrF Sp‚Xqx is the Koszul complex of OX,xrτ s for the regular sequence τ1, . . . , τn.
We deduce that the projection morphism

grF Sp‚X // grF0 Sp‚X “ OX r0s

is a quasi-isomorphism. Hence, grFp Sp‚X is acyclic for every p ą 0. Since we have
exact sequences of complexes

0 // Fp´1 Sp‚X {F0 Sp‚X // Fp Sp‚X {F0 Sp‚X // grFp Sp‚X // 0

a recursion on p shows that Fp Sp‚X {F0 Sp‚X is acyclic. Since filtered colimits are
exact, Sp‚X {F0 Sp‚X is acyclic, so Sp‚X is acyclic in degree ă 0 and 2.3.1 is proven.

2.4. DR commutes with direct image. — Let X be a manifold and let M be
a DX -module. We denote by DpX,Cq the derived category of sheaves of C-vector
spaces on X. We prove the following

Proposition 2.4.1. — There is a canonical isomorphism in DpX,Cq

DRM „ //Mr bLDX
OX
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Proof. — By 2.3.1, we have in DpX,Cq

Mr bLDX
OX »Mr bDX

Sp‚X

»Mr bOX
Θ´‚X

The differential in degree ´k is given by

ωbmbξ ÝÑ
k
ÿ

i“1

p´1qi´1p´Lξiωbmbpξ
i
´ωbξimbpξ

i
q`

ÿ

iăj

p´1qi`jωbmbrξi, ξjs^pξ
i,j

Moreover we have an isomorphism of OX -modules

ωX bOX
MbOX

ΛkΘX
„
ÝÑ Ωn´kX bOX

M
ω bmb ξ ÝÑ p´1qkpk´1q{2ωpξ ^ ¨q bm

The right hand side is the term of degree ´k of DRM. Let us check that the following
diagram

(2.4.2) ωX bOX
MbOX

ΛkΘX
//

��

Ωn´kX bOX
M

��

ωX bOX
MbOX

Λk`1ΘX
// Ωn´k´1
X bOX

M

commutes. Taking local coordinates px1, . . . , xnq, it is enough to prove the compati-
bility for

ξ “
B

Bxi1
^ ¨ ¨ ¨ ^

B

Bxik
where I Ă J1, nK. For J Ă J1, nK with elements j1 ă ¨ ¨ ¨ ă jm, let us define

dxJ :“ dxj1 ^ ¨ ¨ ¨ ^ dxjm

Let us write ω “ fdxI ^ dxIc and define η :“ ωpξ ^ ¨q. Then, the composite of the
left and down arrows of (2.4.2) gives

(2.4.3) ω bmb ξ ÝÑ p´1qkpk`1q{2
k
ÿ

j“1

p´1qjppLξjωqppξ
j
^ ¨q bm` ωppξ

j
^ ¨q b ξjmq

Since

ωppξ
j
^ ¨q “ p´1qk´jfdxIztiju ^ dxij ^ dxIcp

pξ
j
^ ¨q

“ p´1qk´jfdxij ^ dxIc

“ p´1qk´jdxij ^ η

Thus
k
ÿ

j“1

p´1qjωppξ
j
^ ¨q b ξjm “ p´1qk

ÿ

iPI

dxi ^ η b Bim

“ p´1qk
k
ÿ

i“1

dxi ^ η b Bim



12 J.-B. TEYSSIER

On the other hand

pLξjωqppξ
j
^ ¨q “ pdιξjωqp

pξ
j
^ ¨q

“ p´1qj´1pdf ^ dxIztiju ^ dxIcqp
pξ
j
^ ¨q

“ p´1qj`k´2 Bf

Bxij
pdxIztiju ^ dxij ^ dxIcqp

pξ
j
^ ¨q

“ p´1qj`k
Bf

Bxij
dxij ^ dxIc

Thus
k
ÿ

j“1

p´1qjpLξjωqppξ
j
^ ¨q bm “ p´1qkdη bm

and the commutativity of (2.4.2) is proved.

Corollary 2.4.4. — Let f : X ÝÑ Y be a morphism of complex manifolds, and let
M be a DX-module. There is a canonical isomorphism in DpX,Cq

DR f`M » Rf˚DRM

Proof. — From 2.4.1, we have

DR f`M » Rf˚pMr bLDX
DXÑY q bLDY

OY

» Rf˚pMr bLDX
DXÑY bLf´1DY

f´1OY q

» Rf˚pMr bLDX
OXq

» Rf˚DRM

Note that 2.4.4 is no longer true for Sol. The reason for this is that duality does not
commute with Rf˚. However, it commutes in case f is proper. Thus, Sol commutes
(modulo a shift) with proper direct image.

2.5. Kashiwara’s theorem. — The goal of this section is to prove the following
theorem due to Kashiwara:

Theorem 2.5.1. — Let i : X ÝÑ Y be a closed immersion of complex manifolds.
Then, i` induces an equivalence of categories

tDX ´modu „
ÝÑ tDY ´modules with support included in Xu

Let us remark that this is false for coherentOX -modules. Take the inclusion 0 ãÑ C.
A coherent module on 0 is essentially the data of a positive number. However, for
k, n P N, the Ok

C{x
nOk

C are two by two non isomorphic OC-modules with support 0.
Let us prove 2.5.1. Because DX -mod is equivalent to Dop

X -mod, it is enough to
prove it for right DX -modules, that is that i` induces an equivalence of categories

tDop
X ´modu „

ÝÑ tDop
Y ´module with support included in Xu
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For a Dop
Y -module N with support included in X, we define

(2.5.2) i!N :“ Homi´1DY
pDXÑY , i´1N q

For M P Dop
X -mod, we have

i!i`M “ Homi´1DY
pDXÑY , i´1i˚pMbDX

DXÑY qq

and there is a canonical map

p˚qi : M ÝÑ i!i`M
m ÝÑ pP Ñ mb P q

For a Dop
Y -module N with support included in X, we have

(2.5.3) i`i
!N “ i˚pHomi´1DY

pDXÑY , i´1N q bDX
DXÑY q

We thus have a canonical map

p˚q1i : i`i
!N ÝÑ N

ϕb P ÝÑ ϕpP q

We want to prove that p˚qi and p˚q1i are isomorphisms. This is a local statement, so
one can take local coordinates px1, . . . , xn, t1, . . . , tdq such that X is given by t1 “
¨ ¨ ¨ “ tn “ 0. We thus have a chain of inclusions

X
id
ÝÑ tt1 “ ¨ ¨ ¨ “ td´1 “ 0u

id´1
ÝÑ ¨ ¨ ¨ ÝÑ tt1 “ 0u

i1
ÝÑ Y

and canonical isomorphisms i` » i1` ¨ ¨ ¨ id` and i! » i!d ¨ ¨ ¨ i
!
1. Thus, it is enough to

prove that the p˚qij and p˚qi1j are isomorphisms. Hence, one can suppose that X is a
hypersurface given by the equation t “ 0. We have

DXÑY »
à

kPN

DX
ˆ

B

Bt

˙k

» i´1pDY {tDY q

Hence,

i!N “ Homi´1DY
pi´1pDY {tDY q, i´1N q

» i´1HomDY
pDY {tDY ,N q

» i´1N 7

where N 7 is the subsheaf of N of sections killed by t. Hence,

i!i`M » pMbDX
DXÑY q7

»

˜

à

kPN

M
ˆ

B

Bt

˙k
¸7

Noticing that M7 “ M tautologically, p˚qi identifies M with the term k “ 0 of
i!i`M. On the other hand, if m PM and if k ą 0 is such that m

`

B
Bt

˘k
t “ 0, we have
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km
`

B
Bt

˘k´1
“ 0, so m “ 0. So p˚qi is an isomorphism.

Moreover, p˚q1i is the morphism

à

kPN

i˚

˜

i´1N 7 bDX

ˆ

B

Bt

˙k
¸

ÝÑ N

nb

ˆ

B

Bt

˙k

ÝÑ n ¨

ˆ

B

Bt

˙k

Let us prove that p˚q1i is an isomorphism at the level of the germs at x P X. We prove
the surjectivity. The injectivity is left as an exercise. Let n P Nx. Since the support
of n is included in X, one can choose k ą 0 such that ntk “ 0. If k “ 1, there is
nothing to do. Let us suppose k ą 1 and let us argue by induction on k. Applying B

Bt

to ntk “ 0 gives
ˆ

n
B

Bt
t´ kn

˙

tk´1 “ 0

So the recursion hypothesis applies to

(2.5.4) n1 “ n
B

Bt
t´ kn “ p1´ kqn` nt

B

Bt

It also applies to n2 “ nt. From this and (2.5.4), we deduce that n is in the image of
p˚q1i. Modulo the injectivity of p˚q1i left to the reader, Kashiwara theorem is proved.

3. What is the characteristic variety good for?

3.1. What it is. — The characteristic variety of a coherent DX -module M is a
conic subvariety CharpMq of T˚X attached to M. It is local above X and measures
how far M is from being a flat connection. This is due to the following

Proposition 3.1.1. — M is a flat connection if and only if CharpMq is the zero
section of T˚X.

For a formal definition, we refer to any book on D-modules. The characteristic
variety is a very special type of subvariety of T˚X: it is involutive with respect to
the canonical symplectic structure on T˚X. For an analytic proof of this result, let
us mention [SKK73]. For algebraic inclined readers, let us mention [Gab81]. We
won’t use this result, but the following consequence

Theorem 3.1.2. — The irreducible components of CharpMq have dimension ě dX .

Let us mention three reasons which make the characteristic variety of fundamental
importance in the theory of D-modules.
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3.2. Duality. — The characteristic variety controls the amplitude of the Dop
X -

module HomDX
pM,DXq, where M is a coherent DX -module. This is the following

Theorem 3.2.1. — We have

HiHomDX
pM,DXq » 0

unless codimT˚X CharpMq ´ dX ď i ď 0

For proofs of this theorem, we refer to [Kas76][Bjo93].

3.3. Holonomy. — The characteristic variety allows to single out a special type of
coherent D-modules, that is holonomic modules. This is the right "finiteness" notion
in the context of D-modules.

Definition 3.3.1. — A coherent DX -module M is said to be holonomic if M “ 0
or dim CharM “ dX .

3.4. Non-characteristic restriction. — The characteristic variety gives rise to
the non-characteristic condition for morphisms of complex manifolds f : X ÝÑ Y .
The slogan here is that
Any reasonable notion for coherent D-modules commutes with inverse

image by a non-characteristic morphism
We have for example the following [Kas95]

Theorem 3.4.1. — Let M be a coherent DY -module and suppose that f : X ÝÑ Y
is non-characteristic for M. Then, the canonical comparison morphism

f´1 SolM // Sol f`M

is an isomorphism.

The non-characteristic condition is empty for f smooth. Since f can always be
factorized as

Y
if
//

##

X ˆ Y

p2

��

X

where if is the closed immersion given the graph of f , non-charactericity is essentially
used for closed immersions in practice. For such a morphism i : Y ÝÑ X and for a
coherent DX -module M, we say that i is non-characteristic for M if for every x P Y
and every ϕ P pCharMqx :“ CharM X T˚xX Ă T˚xX such that ϕ|TxY “ 0, we have
ϕ “ 0. This is the same as asking

pCharMqx X pT
˚
YXqx “ t0u

where T˚YX is the conormal bundle of Y in X.
Note finally that the non-characteristic condition is open, in the sense that if it is

satisfied at x for a given X and a given M, then it is satisfied in a neighbourhood of
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xp5q. Along these lines, if Y is non-characteristic for M, any small deformation of Y
will be non-characteristic for M.

The bigger pCharMqx is, the harder it is to find a subvariety passing through x
which is non-characteristic with respect to M. The extreme case is the case where

(3.4.2) pCharMqx “ T˚xX

In that case, a Y passing through x can never be non-characteristic. Hopefully, this
does not happen so often in the holonomic case. Since T˚xX has dimension dX , the set
of points satisfying (3.4.2) is discrete in X if M is holonomic. For the same dimension
reason, the set of points x P X for which pCharMqx has dimension dX´1 is empty or
has dimension at most 1 etc. Finally, the set of points of x P X for which pCharMqx

is the zero space is dense open in X.
This property allows the following standard dévissage: suppose that you want to

prove a statement like
"If M holonomic satisfies (condition C to be inserted), then M satisfies P"

with C and P properties of local nature. Argue by recursion on the dimension and
pick a holonomic DX -module M satisfying C. Holonomy implies that away from
a discrete set of points S Ă X such that T˚SX Ă CharM, one can find for any
x a germ of hypersurface passing through x and non characteristic for M. What
usually happens is that C commutes with non-characteristic restriction. Applying
the recursion hypothesis to all these restrictions will (if one is not to unlucky) lead
to the fact that M satisfies P away from S. One is thus reduced to analyse what
happens around a reluctant point of S. This is a first feature of how nice holonomic
D-modules are.

3.5. Functoriality and holonomy. — Let X be a complex manifold. As conse-
quence of 3.1.1 and the discussion 3.4, we have the following

Proposition 3.5.1. — Let M be a coherent DX-module. If M is holonomic, then
M is a flat connection on a complement of a strict closed subset in X.

From holomorphic Poincaré lemma, we deduce that DRM has constructible coho-
mology on a dense open set in X. This is the starting point of the proof 4.1.1 of the
constructibility of DR for holonomic modules.

We denote by Db
holpDXq the derived category of DX -module with bounded and

holonomic cohomology. Holonomy is preserved by the usual operations on D-modules
(inverse imagep6q, duality, nearby cycles). Of fundamental importance in this notes is
the following [Kas76]

Theorem 3.5.2. — Let f : X ÝÑ Y be a proper morphism between complex mani-
folds. The functor f` sends Db

holpDXq in Db
holpDY q.

p5qTake two sub vector spaces of a vector space whose intersections is t0u and move them a little.
Then there intersection stays t0u.
p6qNote that this cannot be trivial, since from 2.1.1, we know that inverse image does not preserve
D-coherence in general. So holonomic D-modules are very special coherent D-modules.
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Note that an extra assumption on the existence of good filtrations locally above
Y is needed in [Kas76]. Using the existence of canonical lattices for (possibly irreg-
ular) meromorphic connections [Mal96], Malgrange proved [Mal04] that holonomic
modules admit globally defined canonical good filtrations.

4. Kashiwara constructibility theorem

4.1. The statement and a lemma. — Following [LM93] modulo some slight
simplifications, we prove in this section the following

Theorem 4.1.1. — Let X be a complex manifold and let M P Db
holpDXq. Then

DRM P Db
cpX,Cq.

Note that such a statement cannot be trivial, since the modules defining DRM
are quasi-coherent OX -modules. So they are far from being objects of Db

cpX,Cq.
The main D-module ingredient for this is the commutativity of DR with direct

image and the compatibility of holonomy with proper direct image 3.5.2. Note that
these properties are also available for coherent D-modules and not only holonomic D-
modules. Holonomy will be used through the fact 3.5.1 that a holonomic D-module
restricts to a flat connection on a dense open subset. For flat connections, con-
structibility of DR is a consequence of holomorphic Poincaré lemma.

A topological ingredient for the proof of 4.1.1 is the preservation of constructibility
by proper maps. Let us start with the following

Lemma 4.1.2. — Let pE,∇q be a flat connection on a punctured polydisc DN ˆD˚.
Let j : DN ˆD˚ ÝÑ DN`1 be the canonical inclusion. Then pE,∇q extends to a flat
meromorphic connection M on DN`1 with poles along DN ˆ t0u such that DRM
has bounded and constructible cohomology.

Note that the first part of the statement is an instance of the existence of Deligne
extensions. However, we will see that in our particular situation, M can be found
almost by hand using what has been proved so far in these notes.

Proof. — Define p : DNˆD˚ ÝÑ D˚ the canonical projection. We have the following
commutative diagram

(4.1.3) LocCpD
˚q

H0 Sol

��

p´1

// LocCpD
N ˆD˚q

H0 Sol

��

ConnpD˚q
p`

// ConnpDN ˆD˚q

Since p is an equivalence of homotopy, the top horizontal arrow in (4.1.3) is an equiv-
alence of category. From Riemann-Hilbert correspondence for flat connections, the
vertical arrows in (4.1.3) are equivalences of categories. Hence, the bottom arrow
in (4.1.3) is an equivalence of category. Thus, we have pE,∇q “ p`pE1,∇1q for
pE1,∇1q P ConnpD˚q. If we find a M1 for pE1,∇1q as in 4.1.2 (case N “ 0), then
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4.1.2 is proved for pE,∇q. Indeed M :“ p`M1 will be a meromorphic connection
extending pE,∇q, and since p is smooth, it is non-characteristic for M1, so from the
slogan 3.4

(4.1.4) p´1 DRM1 » DR p`M1 “ DRM
And we are done because p´1 preserves constructibility.

Thus, we are left to suppose N “ 0 from now on. Let Γ be the monodromy of the
local system associated to pE,∇q. Choose a matrix C with complex coefficients such
that e2iπC “ Γ. Let us define

pN ,∇q :“ pOn
D˚p˚0q, d` C

dx

x
q

where n is the rank of E. On a small disc not containing 0, the columns of eC log x

form a basis for the space of solutions of pN ,∇q. Thus, the local system associated
to pN ,∇q|D˚ is that associated to pE,∇q. By Riemann-Hilbert for flat connections,
there is an isomorphism of flat connections

pE,∇q » pN ,∇q|D˚
Taking the preimages of the canonical base of On

D˚p˚0q singles out a trivialisation of
E on D˚ in which the matrix of ∇ is Cdx{x. Let us prove that the ODp˚0q-module
M of j˚E generated by this basis meets our requirements.

Notice that pM,∇q is a successive extension of rank 1 meromorphic connections.
One the other hand, if we have an exact sequence of meromorphic connections

0 //M1
//M2

//M3
// 0

we have from the description 2.4.4 of DR a distinguished triangle

(4.1.5) DRM1
// DRM2

// DRM3
`1
//

So the central term of (4.1.5) lies in Db
cpD,Cq if this is the case of the other terms.

Hence, we can suppose that

pM,∇q :“ pOn
D˚p˚0q, d` c

dx

x
q

where c P C. The constructibility in that case is a simple computation.

4.2. Proof of theorem 4.1.1. — We argue by induction on dX “ dimX. An
object in Db

holpDptq is a complex of vector spaces with bounded and finite dimensional
cohomology. In the case, DR is the identity functor, so 4.1.1 is true. Let us suppose
that dX ą 0 and that 4.1.1 is true in dimension ă dX . A recursion on the amplitude
of M allows us to reduce to the case where M is concentrated in degree 0.

From 3.5.1, we know that M is a flat connection away from a hypersurface Z in
X. Let j : XzZ ÝÑ X and i : Z ÝÑ X be the canonical inclusions. From 1.4.5,
j´1 DRM is quasi-isomorphic to a local system. Since constructibility is a local
property, we are thus left to prove 4.1.1 in a neighbourhood of a point of 0 P Z.

We have a distinguished triangle

(4.2.1) j!j
´1 DRM // DRM // i˚i

´1 DRM `1
//
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Since j! preserves constructibility, the left term of (4.2.1) lies in Db
cpX,Cq. To prove

4.1.1, we are thus left to prove that i˚i´1 DRM lies in Db
cpX,Cq. Since i˚ preserves

constructibility, we are left to prove that i´1 DRM lies in Db
cpZ,Cq.

By Weierstrass preparation theorem, one can find a polydisc DdX´1 ˆD centred
at 0 such that the projection p : DdX´1 ˆ D ÝÑ DdX´1 is finite over Z. Define
Y :“ DdX´1. Since

pY ˆDqzZ ãÑ pY ˆ CqzZ

is an equivalence of homotopy, the local system j´1 DRM extends to a local system
L on pY ˆCqzZ. From 4.1.2, the associated connection EL extends to a meromorphic
connection ML on pY ˆ P1

CqzZ. From Riemann-Hilbert correspondence for flat con-
nections, ML glue with M along pY ˆDqzZ and define a DYˆP1

C
-module denoted by

M. Since M andML are holonomicp7q, M is holonomic. To prove the constructibility
of i´1 DRM, we are left to work with M from now on (since nothing has changed in
a neighbourhood of Z !).

We define p : Y ˆ P1
C ÝÑ Y and still denote by j and i the inclusions of

pY ˆ P1
CqzZ ãÑ Y ˆ P1

C and Z ãÑ Y ˆ P1
C. We thus have a distinguished trian-

gle

(4.2.2) j!j
´1 DRM // DRM // i˚i

´1 DRM `1
//

Note that by construction of ML, the complex j´1 DRM has constructible and
bounded cohomology, so this is also the case of the left hand side of (4.2.2). Let
us denote by pZ the restriction of p to Z. Since finite and closed direct images are
exact, we have

HkRp˚i˚i
´1 DRM » Hkp˚i˚i

´1 DRM

» HkpZ˚i
´1 DRM

» pZ˚Hki´1 DRM

From 6.5, we deduce that Hki´1 DRM is constructible (resp. 0) if pZ˚Hki´1 DRM
is constructible (resp. 0). We are thus left to prove that Rp˚i˚i´1 DRM lies in
Db
cpY,Cq. Applying Rp˚ to (4.2.2) gives the distinguished triangle

(4.2.3) Rp˚j!j
´1 DRM // Rp˚DRM // Rp˚i˚i

´1 DRM `1
//

Since DR commutes with direct image 2.4.4, the triangle (4.2.3) is isomorphic to

(4.2.4) Rp˚j!j
´1 DRM // DR p`M // Rp˚i˚i

´1 DRM `1
//

From 3.5.2, we know that p`M P Db
holpDY q. By recursion hypothesis, the middle

term of (4.2.4) lies in Db
cpY,Cq. We are left to prove that Rp˚j!j´1 DRM is in

Db
cpY,Cq, which is a consequence of the properness of p.

Since constructibility is preserved by duality, we deduced from 1.4.2 the following

p7qFor ML, this is a theorem resulting from the b-function lemma.
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Theorem 4.2.5. — Let X be a complex manifold and let M P Db
holpDXq. Then

SolM P Db
cpX,Cq.

5. Regularity

Regularity has at least a dozen non-trivially equivalent incarnations, which make it
a fascinating subject of study. Let us give a (non-exhaustive) list of them and a refer-
ence where they are used as a starting point. Regularity can be defined/characterized

(1) Via logarithmic formsp8q [Del70].
(2) Analytically using growth of solutionsp9q [Del70].
(3) Algebraically I [KK81].
(4) Algebraically II [Ber].
(5) Sheaf-theoretically [Meb90].
(6) Using restriction to curves [Bor87].
(7) Via derived endomorphisms RHom [Tey14].
(8) Via nearby cycles [Tey15].
Note that p8q can be transposed to contexts where a notion of regular objects is
missing but where one has nearby cycles at one’s disposal (arithmetic D-modules,
`-adic sheaves etc). In this notes, we will put the emphasis on p1q and p5q.

5.1. Dimension 1. — In what follows, we define O “ OC,0, pO “ pOC,0 and

D “ DC,0 »
à

kPN

O
ˆ

B

Bx

˙k

Let P P Dzt0u. P acts by usual differentiation on O and on pO. The main slogan here
is the following
The irregularity of the D-module D{DP is a measure of the difference

between the action of P on O and on pO.
Let us give a precise meaning to that. We denote by KerpP,Oq and CokerpP,Oq
(resp. KerpP, pOq and CokerpP, pOq) the kernel and cokernel of the action of P on O
(resp. pO). One can show that these C-vector spaces are finite dimensional. Applying
RHompD{DP, ¨ q to the exact sequence of D-modules

0 // O // pO // pO{O // 0

gives a distinguished triangle

RHompD{DP,Oq // RHompD{DP, pOq // RHompD{DP, pO{Oq `1
//

p8qfor meromorphic connections with poles along a normal crossing divisor.
p9qsame remark as above.
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whose associated long exact sequence reads
(5.1.1)

0 KerpP,Oq KerpP, pOq KerpP, pO{Oq

CokerpP,Oq CokerpP, pOq CokerpP, pO{Oq 0

From [Mal71], we know that CokerpP, pO{Oq » 0. In accordance to the above slogan,
we thus define the irregularity number of D{DP as

irrpD{DP q :“ dimC KerpP, pO{Oq

The computation of this number is quite easy for a given P , this is the following
[Mal71]

Theorem 5.1.2. — Suppose P “
n
ÿ

k“1

ak

ˆ

B

Bx

˙k

with an ‰ 0. Thenp10q

irrpD{DP q “ Supkpk ´ vxpakqq ´ pn´ vxpanqq

For example, Malgrange formula predicts that irrpD{Dpx2 B
Bx ´ 1qq “ 1. On the

other hand, if we define f :“
ÿ

n!xn`1 we see that
ˆ

x2 B

Bx
´ 1

˙

f “ ´x

“ 0 in pO{O

So Kerpx2 B
Bx ´ 1, pO{Oq » Cf .

5.2. General case. — Let X be a complex manifold and let i : Z ÝÑ X be
an analytic subspace of X. Let us define OX|Z :“ i´1OX and let O

zX|Z
be the

formalization of OX along Z. Mimicking the 1-dimensional case, we have the following
exact sequence of DX -modules

0 // OX|Z
// O

zX|Z
// O

zX|Z
{OX|Z

// 0

For M P Db
holpXq, we thus have a distinguished triangle

i´1 SolpMq // RHompM,O
zX|Z
q // RHompM,O

zX|Z
{OX|Zq

`1
//

we define the irregularity sheaf of M along Z as

Irr˚Z M :“ RHompM,O
zX|Z
{OX|Zqr´1s

viewed as a complex on X with support in Z.

p10qIn this formula, vxpfq for f P O denotes the vanishing order of f at 0.
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Definition 5.2.1. — We say that M P Db
holpXq is regular if Irr˚Z M » 0 for every

analytic subspace Z of X.

We denote by RegpXq the category of regular holonomic DX -modules on X. With
this point of view, the abelianity of RegpXq is highly non trivial. Indeed, it amounts
to prove that if we have an exact sequence of holonomic DX -modules

(5.2.2) 0 //M1
//M2

//M3
// 0

then M1 and M3 are regular if M2 is regular. By applying Irr˚Z to (5.2.2) for every
Z, we get

(5.2.3) Irr˚Z M3
// Irr˚Z M2

// Irr˚Z M1
`1
//

The regularity of M2 gives

Irr˚Z M3 » Irr˚Z M1r1s

and one is stuck a priori. However for every analytic subspaces Z1, Z2 in X, there is
for every M P Db

holpXq a distinguished triangle
(5.2.4)

pIrr˚Z1YZ2
Mq|Z12

// pIrr˚Z1
Mq|Z12

‘ pIrr˚Z2
Mq|Z12

// pIrr˚Z12
Mq

`1
//

where Z12 :“ Z1 X Z2. Hence, M is regular if Irr˚Z M » 0 for every Z hypersurface
in X.

Going back to the abelianity of RegpXq, we now have to deduce the vanishing of
Irr˚Z Mi, i “ 1, 3 from that of Irr˚Z M2 for Z hypersurface in X. This would not be
much of an improvement if we had not the following [Meb90]

Theorem 5.2.5. — For every holonomic DX-module M and for every hypersurface
Z in X, the complex Irr˚Z M is perverse.

Hence, for Z hypersurface, the triangle (5.2.3) is not only a distinguished triangle
in Db

cpX,Cq. It is an exact sequence in PervpXq. Thus, the vanishing of the middle-
term implies the vanishing of the other terms.

Let us explain why 5.2.5 cannot be obvious. For an hypersurface i : Z ÝÑ X, the
sheaf Op˚Zq has a canonical DX -module structurep11q. For M P Db

holpXq, we denote
by Mp˚Zq :“ M bOX

Op˚Zq endowed with its usual DX -module structure. Note
that as a consequence of the b-function lemma, Mp˚Zq P Db

holpXq. From [Meb04],
one has the following

Irr˚ZpMq » i˚i
´1 SolpMp˚Zqq

This identityp12q tells us that theorem 5.2.5 cannot be trivial. For M holonomic,
Mp˚Zq is holonomic, so SolpMp˚Zqq is perverse. But in general, the restriction of a
perverse sheaf to a subspace has no reason to stay perverse !

Example 5.2.6. — Flat connections are regular D-modules.

p11qby usual differentiation !
p12qactually it stays true for any Z analytic but one has to be careful with the definition of the
localization functor in that case.
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Note that in Mebkhout’s approach, this is a non trivial statement since when
applied to OX , it implies almost immediately Grothendieck comparison theorem
[Gro66] between algebraic and analytic de Rham cohomology on smooth varieties.
See [Meb04, 5] for more details.

5.3. The case of meromorphic connections. —

Definition 5.3.1. — Let X be a complex manifold and let D be a divisor in X. A
flat meromorphic connection on X with poles along D is a DX -module whose under-
lying sheaf M is a locally free sheaf of finite rank over OXp˚Dq.

A meromorphic connection is usually denoted by pM,∇q, where ∇ is the first
differential in the de Rham complex. Note in particular that M »MbOX

OXp˚Dq,
and that ∇ is a C-linear map

∇ : M ÝÑ Ω1
Xp˚Dq bOX

M

By definition, ξ P ΘX acts through ∇ξ :“ pιξ b idq ˝ ∇. Thus, condition p2q in 1.2
translates into what is called Leibniz rule

∇pfmq “ df bm` f∇m

for every f P OX and every m PM. Condition p3q is the flatness property of ∇, that
is

∇rξ,ξ1s “ ∇ξ1∇ξ ´∇ξ∇ξ1

for every ξ, ξ1 P ΘX .
Let us bridge the gap between Deligne’s approach to regularity for meromorphic

connections [Del70] and Mebkhout’s approach. Let D be a normal crossing divisor.
In a local system of coordinates px1, . . . , xnq centred at x P D such that D is given
by x1 ¨ ¨ ¨xk “ 0 on an open U , define

Ω1
U plogDq “ OU

dx1

x1
‘ ¨ ¨ ¨ ‘OU

dxk
xk

‘OUdxk`1 ‘ ¨ ¨ ¨ ‘OUdxn

As subsheaves of the Ω1
U p˚Dq, the sheaves Ω1

U plogDq do not depend on choices of
coordinates and glue into a sheaf Ω1

XplogDq on X called the sheaf of logarithmic
differential forms on X.

Theorem 5.3.2. — Let pM,∇q be a meromorphic connection on a complex mani-
fold X with poles along a normal crossing divisor D. The following conditions are
equivalents
(1) pM,∇q is regular.
(2) pM,∇q is regular along D, that is

Irr˚DpM,∇q “ SolpM,∇q|D » 0

(3) pM,∇q is generically regular along D, that is there exists a closed subset Z in D
with complement in D dense in D such that Irr˚DpM,∇q|DzZ » 0.
(4) For every x P D, one can find a local trivialization e of M around x such that the
entries of the matrix of ∇ in e lies in Ω1

XplogDq.
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Note that as a consequence of a theorem of Mebkhout [Meb04, 4.3-16], the equiv-
alence between p1q, p2q, p3q holds for an arbitrary divisor D. Description p3q is quite
concrete but regularity is not easy to recognize in this way since one requires that
there exists trivializations such that etc. For a randomly given trivialization, the poles
of the matrix of ∇ may be arbitrary even though the connection is regular.

We denote by MerpX,Dq the category of meromorphic connections with poles along
D and MerregpX,Dq the subcategory of regular objects in MerpX,Dq.

5.4. A warning. — The statement

"The connection pOC˚ , dq is regular at 0"
does not make sense, since 5.3.2 p4q says regularity is a notion attached to a mero-
morphic connection in a neighbourhood of 0 whereas pOC˚ , dq lives on C˚. Talking
about regularity at 0 thus requires to extend OC˚ to a rank one OCp˚0q-bundle around
0. If such an extension pM,∇Mq is given, a trivialization e of M around 0 restricts
to a function fe :“ e|D˚r P OC˚pD˚r q for r small enough, where D˚r is the punctured
disc of radius r. Another trivialization e1 is of the form fe where f is a germ of
meromorphic function at 0. So

fe “ fe1 in pj˚OC˚qˆ0 {OC,0p˚0qˆ

Conversely any class of g in pj˚OC˚qˆ0 {OC,0p˚0qˆ such that g1{g is meromorphic at 0
will give rise to an extension of pOC˚ , dq. Define M :“ OC,0p˚0qg and ∇Mg “ pg1{gqg.
For every f P OC,0p˚0q we have

(5.4.1) ∇Mpfgq “ f 1g ` f∇Mg “ pf 1 `
g1

g
fqg

Thus there are plenty of choices to extend pOC˚ , dq. Such a choice does not affect
the local structure of the OC,0p˚0q-bundle we end up with, but it affects the local
structure of the extended connection ∇M. As formula (5.4.1) shows, the exten-
sion associated with the constant function 1 is regular but the extension associated
with e1{z is not.

5.5. Riemann-Hilbert correspondence (algebraic version). — Let U be a
smooth complex algebraic variety and let ConnpUq be the category of algebraic flat
connections on U . In general, there are more algebraic connections on U than on Uan.
Intuitively, this comes from the fact that for pE1,∇1q, pE2,∇2q P ConnpUq, we have

HomConnpUqppE1,∇1q, pE2,∇2qq » HomppE1,∇1q, pE2,∇2qq
∇

and the same after analytification. That is, a morphism between pE1,∇1q and
pE2,∇2q (resp. pE1,∇1q

an and pE2,∇2q
an) can be interpreted as an algebraic (resp.

analytic) solution of an algebraic linear differential equation. There are more analytic
solutions to this equation than algebraic solutions.

Example 5.5.1. — pOA1
C
, dq and pOA1

C
, d`dxq are non isomorphic as algebraic con-

nections. The exponential function induces an isomorphism between their analytifi-
cations.
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Let pE,∇q P ConnpUq. Let j : U ÝÑ X be a smooth compactification such that
D :“ XzU has normal crossing divisor. Then j˚E is an algebraic OXp˚Dq-module
and by applying j˚ to ∇ : E ÝÑ Ω1

U b E, we obtain a C-linear morphism

j˚∇ : j˚E ÝÑ Ω1
Xp˚Dq b j˚E

satisfying the Leibniz rule. Since pOXp˚Dqq
an “ OXanp˚Danq, the analytification

ppj˚Eq
an, pj˚∇qanq

is a meromorphic connection.

Definition 5.5.2. — We say that pE,∇q is regular if one can find a smooth com-
pactification as above such that ppj˚Eqan, pj˚∇qanq is regular in the sense of 5.3.2.

One can prove that if regularity is achieved for a given compactification, then it is
achieved for every compactification.

The main difference between the algebraic and analytic notions of regularity is the
following. As emphasized in 5.4, regularity of a flat connection at infinity does not
make sense in the analytic setting since we need a meromorphic structure at infinity.
In the algebraic context, such a structure is given by nature.

Example 5.5.3. — pOA1
C
, dq is regular but pOA1

C
, d` dxq is not.

Let ConnregpUq be subcategory of ConnpUq of flat regular connections on U . The
algebraic version of the "connection version" of Riemann-Hilbert correspondence is
the following [Del70]

Theorem 5.5.4. — The functor

ConnregpUq ÝÑ ConnpUanq

pE,∇q ÝÑ pEan,∇anq

is an equivalence of category.

Using GAGA and Hironaka desingularization, the essential surjectivity in theorem
5.5.4 is a consequence of the following

Theorem 5.5.5. — Let X be a complex manifold and let D be a divisor with normal
crossing divisor in X. Then the functor

MerregpX,Dq ÝÑ ConnpXzDq

pM,∇q ÝÑ pM,∇q|XzD
is an equivalence of category.

Essential surjectivity in 5.5.5 is a direct consequence of the following more precise

Theorem 5.5.6. — Let X be a complex manifold and let D be a normal crossing
divisor in X. Define U :“ XzD, j : U ÝÑ X the canonical inclusion and consider
pE,∇q P ConnpUq. Then, for every section τ of C ÝÑ C{Z, there is a unique locally
free sheaf rE of rank rgE in j˚Ep13q such that

p13qNote that since we are in the analytic category, the sheaf j˚E is huge !
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(1) The restriction r∇ of j˚∇ to E as logarithmic poles along D.
(2) The residues of r∇ along the components of D have eigenvalues in τpC{Zq.

An extension as in 5.5.6 is called a Deligne lattice. In particular, the meromorphic
connection along D obtained from p rE, r∇q by tensoring with OXp˚Dq is regular.

Note that without a connection around, the fact that E extends over D is not
granted, even if D is a normal crossing divisor. For example, let D be the divisor
of C2 given by x1x2 “ 0 and define U :“ C2zD. Since C2 is a Stein manifold, the
exponential exact sequence gives

PicpC2q » H2pC2,Zq » 0

For the same reason, we have

PicpUq » H2pU,Zq » H2pS1 ˆ S1,Zq » Z.

So one can find a non trivial line bundle L on U . Such a bundle cannot be extended
to C2. As a by-product of 5.5.6, the sheaf L cannot underlie a flat connection.

6. A few exercises

In the following exercises, the symbol F ‚ will denote the order filtration on DX as
defined in 1.1.

6.1. Let X be a complex manifold. Show that F 1DX “ OX ‘ΘX .

6.2. Let X be a complex manifold. Let M be a DX -module whose underlying sheaf
is OX -coherent. Show that the underlying sheaf of M is a locally free sheaf.

6.3. Prove that for every k ě 0, the morphism

grFk DX ÝÑ HomCpb
k
COX ,OXq

P ÝÑ f1 b ¨ ¨ ¨ b fk ÝÑ r¨ ¨ ¨ rrP, f1s, f2s . . . , sfks

identifies grFk DX with Symk ΘX .

6.4. For c P C, define

pM,∇q :“ pOCp˚0q, d` c
dx

x
q

Provep14q that pSolMq0 » 0 in Dp0,Cq.

6.5. Let p : X ÝÑ Y be a finite map between complex manifolds. Let F be a sheaf
of complex vector spaces on X such that p˚F is constructible. Using proper base
change theorem, prove that F is constructible.

p14qNote that i´1 SolM is the irregularity sheaf of M at 0, so6.4 exactly says that M is regular at
0.
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