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ABSTRACT. Given a coherent sheaf E on a scheme of finite type X over a perfect field,
we introduce a category of complexes of étale sheaves on Xwith logarithmic conductors
bounded by E and study its compatibilities with finite push-forward.
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1. Introduction

The goal of this paper is to use coherent sheaves to bound the wild ramification of
complexes of étale sheaves.

Let X be a normal scheme of finite type over a perfect field k of characteristic p > 0,
let D ⊂ X be an effective Cartier divisor and put U := X−D. Let Λ be a finite local
ring of residue characteristic ` 6= p and let L be a locally constant constructible sheaf of
free Λ-modules of finite type on U. A useful way to bound the wild ramification of L
along D is to look at the Swan conductors of the restrictions of L to curves C passing
through the points of D. Namely, we say following Deligne [EK12] that L has Swan
conductors bounded by D if for every smooth connected curve C over k and every
morphism f : C→ X over kwith f(C) * D, we have for every x ∈ C,

(1.0.1) Swx L|C∩U ≤ mx(f
∗D)

where Swx L|C∩U is the Swan conductor of L|C∩U at x ∈ C in the sense of [Ser68]
and mx(f

∗D) is the multiplicity of f∗D at x. When X is smooth over k and when D
has normal crossings, Abbes and Saito’s ramification theory [AS02] implies that the
poset of effective Cartier divisors supported on D and satisfying (1.0.1) has a minimal
element, called the Swan divisor [Bar16, Hu17].

The interest of this notion comes from the observation that objects with bounded
Swan conductors tend to exhibit behaviors similar to their characteristic zero counter-
parts. For example in the tame case, that is when D = 0, a Lefschetz theorem for the
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tame fundamental group is known [Dri12, EK16]. When k is finite, Hiranouchi proved
without assumption on the singularities of X that there are only a finite number of
étale coverings on X with bounded degree and wild ramification bounded by a given
effective Cartier divisor at infinity [Hir17], which is reminiscent to the finite generation
of the fundamental group of a complex algebraic variety. Also, the Betti numbers of
locally constant constructible sheaves with bounded rank and wild ramification are
bounded [HT25a]. In characteristic zero, this phenomenon was observed for irregular
flat bundles on surfaces in [HT22].

Note however that effective Cartier divisors are not sensitive to the wild ramification
in codimension ≥ 2 displayed by sheaves which are not locally constant. This confines
the characteristic p > 0 side of the above analogies to locally constant sheaves on nor-
mal varieties, while the most natural set-up is sometimes that of arbitrary complexes
of constructible sheaves on arbitrary schemes of finite type. To solve this problem,
we extend the above definition by replacing effective Cartier divisors with arbitrary
coherent sheaves. Namely, given a scheme of finite type X over k, given E ∈ Q[Coh(X)]
and Λ a finite local ring of residue characteristic ` 6= p, we introduce a full subcategory

Dbctf(X, E ,Λ) ⊂ Dbctf(X,Λ)

of tor finite complexes with logarithmic conductors bounded by E . In a nutshell, the
right hand side of (1.0.1) gets replaced by the length of the torsion part of f∗E at x and
the Swan conductor gets replaced by the highest ramification slope from [Ser68]. See
Definition 5.1 for a precise definition. Replacing the Swan conductor by the highest
upper numbering ramification slope, also called the logarithmic conductor is justified by
the Betti estimates obtained in [HT25a], which are linear in the rank. The main result
of this paper is the following compatibility of Dbctf(X, E ,Λ) with finite push-forward :

Theorem 1.1 (Theorem 6.12). Let f : Y → X be a finite morphism between schemes of
finite type over k. Let Σ be a stratification of Y and let E ∈ Coh(Y). Then there exists
E ′ ∈ Coh(X) such that for every Σ-stratified constructible complex K ∈ Dbctf(Y, E ,Λ), we
have f∗K ∈ Dbctf(X, E ′,Λ).

The proof of Theorem 1.1 reduces to the analysis of the compatibility of Abbes
and Saito’s logarithmic conductor [AS02] with finite push-forward. To state its main
output, recall that for a normal scheme of finite type X and for a constructible sheaf
of Λ-modules F of finite tor-dimension on X, we let LCX(F) be the Weil divisor of X
whose multiplicity at Z is the generic logarithmic conductor of F along Z, in the sense
of Abbes and Saito (see Definition 3.1). Then we have the following

Theorem 1.2 (Theorem 6.8,Theorem 6.10). Let f : Y → X be a finite surjective morphism of
normal schemes of finite type over k. Let D be a reduced effective Cartier divisor on X and put
U := X−D. Define E := f−1(D) and put j : V := Y − E ↪→ Y. Let L ∈ Loctf(V ,Λ).

(1) If the restriction f0 : V → U is étale, we have

LCX(f∗j!L) ≤ LCX(f∗j!Λ) + f∗LCY(j!L) .

(2) If the restriction f0 : V → U is radicial, we have

LCX(f∗j!L) ≤ f∗LCY(j!L) .
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Note that Theorem 1.2 also holds for the non logarithmic conductor divisor (see
Theorem 6.8 and Theorem 6.10).

Theorem 1.2 is one of the crucial ingredients to prove the Betti estimates from
[HT25a]. Its proof is local. In a nutshell, it rests upon Hu’s semi-continuity results
[Hu23] for reducing the proof to a local statement for curves treated in the unpublished
note [Tey15]. For a variant of Theorem 1.2-(1) for the Swan conductor obtained by a
global argument via the Grothendieck-Ogg-Shafarevich formula, see [ES21].

Acknowledgement. We thank A. Abbes, T. Saito, Y. Taguchi for their interest. H. H. is
supported by the National Natural Science Foundation of China (Grants No. 12471012)
and the Natural Science Foundation of Jiangsu Province (Grant No. BK20231539).

Notation 1.3. We introduce the following running notations.
• k denotes a perfect field of characteristic p > 0.

• The letter Λwill refer to a finite local ring of residue characteristic ` 6= p.

• For a scheme X of finite type over k, a Weil divisor D of X and an irreducible
component Z of D, we denote bymZ(D) the multiplicity of D along Z and by
m(D) the maximal multiplicity of D.

• For a scheme X of finite type over k, we denote by Dbctf(X,Λ) the derived
category of complexes of Λ-sheaves of finite tor-dimension with bounded and
constructible cohomology sheaves.

• We let Consctf(X,Λ) be the category of constructible sheaves of Λ-modules of
finite tor-dimension over X and Loctf(X,Λ) ⊂ Constf(X,Λ) the full subcategory
spanned by locally constant constructible sheaves. By [Wei94, Lemma 4.4.14],
the germs of any L ∈ Loctf(X,Λ) are automatically free Λ-modules of finite
rank.

• For a finite stratification Σ of X, we let DbΣ,tf(X,Λ) ⊂ Dbtf(X,Λ) be the full
subcategory spanned by Σ-constructible complexes.

2. Conductor and finite direct image: local case

Notation 2.1. Let K be a henselian discrete valuation field over k, OK the ring of integer
of K, mK the maximal ideal of OK, F the residue field of OK, K an algebraic closure of K
and Ksep ⊂ K the separable closure of K in K. Let GK be the Galois group of Ksep over
K. We denote by IK ⊂ GK the inertia subgroup and by PK ⊂ IK the wild ramification
subgroup.

Recollection 2.2. In [AS02], Abbes and Saito defined two decreasing filtrations {GrK}r∈Q>0
and {GrK,log}r∈Q≥0 on GK by closed normal subgroups. They are called respectively the
the ramification filtration and the logarithmic ramification filtration. For r ∈ Q≥0, put

Gr+K =
⋃
s>r

GsK and Gr+K,log =
⋃
s>r

GsK,log.

Proposition 2.3 ([AS02, AS03, Sai08, Sai17]). The following inclusions hold:
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(1) For any 0 < r ≤ 1, we have

GrK = G0K,log = IK and G+1
K = G0+K,log = PK.

(2) For any r ∈ Q≥0, we have

Gr+1K ⊆ GrK,log ⊆ GrK.

If F is perfect, then for any r ∈ Q≥0, we have

GrK,cl = G
r
K,log = Gr+1K .

where GrK,cl is the classical wild ramification subgroup as defined in [Ser68].

LetM be a finitely generated Λ-module with continuous PK-action. The moduleM
has decompositions

(2.3.1) M =
⊕
r≥1

M(r) and M =
⊕
r≥0

M
(r)
log

into PK-stable submodules, where M(1) = M
(0)
log = MPK , and such that for every

r ∈ Q>0,

(M(r+1))G
r+1
K = 0 and (M(r+1))G

(r+1)+
K =M(r+1);

(M
(r)
log)

GrK,log = 0 and (M
(r)
log)

Gr+
K,log =Mr

log.

The decompositions (2.3.1) are called respectively the slope decomposition and the
logarithmic slope decomposition ofM. The values r for whichM(r) 6= 0 (resp. M(r)

log 6= 0)
are the slopes (resp. the logarithmic slopes) of M. We will make repeated use of the
following

Lemma 2.4 ([Kat88, Proposition 1.1,Lemma 1.5]). For every r ∈ Q≥0, the endofunctors of
the category of finitely generated Λ-modules with continuous PK-action defined by

M→M(r) and M→M
(r)
log

are exact. If furthermoreM is free of finite type over Λ, so isM(r)
log.

Lemma 2.5 ([Kat88, Lemma 1.5]). Let Λ → Λ ′ be a morphism between finite local rings
with residue field of characteristic ` 6= p. For every r ∈ Q≥0 and every finitely generated free
Λ-moduleM with continuous PK-action, r is a slope (resp. logarithmic slope) ofM if and only
if r is a slope (resp. logarithmic slope) of Λ ′ ⊗ΛM.

Let M be a finitely generated Λ-module with continuous PK-action. We denote
by cK(M) the largest slope of M and refer to cK(M) as the conductor of M. Similarly,
we denote by lcK(M) the largest logarithmic slope of M and refer to lcK(M) as the
logarithmic conductor of M. We say that M is isoclinic (resp. logarithmic isoclinic) if M
has only one slope (resp. only one logarithmic slope).

The following is an immediate consequence of Proposition 2.3-(2).
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Lemma 2.6. We have
lcK(M) ≤ cK(M) ≤ lcK(M) + 1 .

If the residue field F is perfect, we have

lcK(M) + 1 = cK(M) .

Lemma 2.7. LetM• be a complex of finitely generated Λ-modules with continuous GK-action
and let i ∈ Z. If r ∈ Q≥0 is a logarithmic slope ofHiM•, then r is a logarithmic slope ofMi.

Proof. Let Zi := Ker(Mi →Mi+1) ⊂Mi. By Lemma 2.4, it is enough to show that r is a
logarithmic slope of Zi. By Lemma 2.4 again , the surjective map Zi → HiM• induces
a surjective map

(Zi)
(r)
log → (HiM•)(r)log .

Since the right hand side is non zero, so is the left hand side and the conclusion
follows. �

Lemma 2.8. Let M• be a bounded finite tor-dimension complex of finitely generated Λ-
modules with continuous GK-action. Then, M• is quasi-isomorphic to a bounded complex N•
of free Λ-modules of finite type with continuous GK-action such that r ∈ Q≥0 is a logarithmic
slope of some Ni if and only if it is a logarithmic slope of someHiN•.

Proof. By [SP, 03TT], we can assume thatM• is a bounded complex of free Λ-modules
of finite type with continuous GK-action. We have

M• =
⊕
r∈Q≥0

M
•,(r)
log

where each factor is a bounded complex of freeΛ-modules of finite type by Lemma 2.4.
If r ∈ Q≥0 is not a logarithmic slope of someHiM•, then by Lemma 2.4, we have

Hi(M•,(r)log ) ' (HiM•)(r)log ' 0 .

ThusM•,(r)log is acyclic. Hence, at the cost of removing the direct factorsM•,(r)log fromM•

for all r as above, we can assume that if r ∈ Q≥0 is a logarithmic slope of some Mi,
then it is a logarithmic slope of someHiM•. Since the converse is true by Lemma 2.7,
the proof of Lemma 2.8 is complete. �

Corollary 2.9. Let M• be a bounded finite tor-dimension complex of finitely generated Λ-
modules with continuous GK-action. Let Λ→ Λ ′ be a morphism between finite local rings of
characteristic ` 6= p. If r ∈ Q≥0 is a logarithmic slope of some Hi(M• ⊗LΛ Λ ′), then it is a
logarithmic slope of someHiM•.

Proof. By Lemma 2.8, we can assume thatM• is a bounded complex of free Λ-modules
of finite type with continuous GK-action such that r ∈ Q≥0 is a logarithmic slope of
some Mi if and only if it is a logarithmic slope of some HiM•. Let i ∈ Z and let
r ∈ Q≥0 be a logarithmic slope ofHi(M• ⊗LΛ Λ ′). Since,

M• ⊗LΛ Λ ′ 'M• ⊗Λ Λ ′ ,
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we deduce from Lemma 2.7 that r is a logarithmic slope ofMi ⊗Λ Λ ′. By Lemma 2.5,
we deduce that is r is a logarithmic slope of Mi. By construction, we get that r is a
logarithmic slope of someHjM•. �

2.10. Co-induction and ramification.

Recollection 2.11. Let G be a profinite group and let H ⊂ G be a closed subgroup.
Following [Ser73, §2.5], the scalar restriction from Λ-modules with continuous G-
action to Λ-modules with continuous H-action admits a right adjoint, the co-induction
described as

CoIndHG(M) := {f : G→M continuous commuting with the left action of H}

where M is endowed with the discrete topology. By construction g ∈ G acts on
CoIndHG(M) by

(g · f)(x) = f(xg) .

Lemma 2.12. Let H ′′ ⊂ H ′ ⊂ H be closed subgroups such that H ′ and H ′′ are normal in G.
Then, the following holds:

(1) CoIndHG(M)H
′
= {f ∈ CoIndHG(M) such that f(G) ⊂MH ′}.

(2) If furthermore H is open in G, we have

CoIndHG(M)H
′′
= CoIndHG(M)H

′
if and only ifMH ′′ =MH ′ .

Proof. We prove (1). Let f ∈ CoIndHG(M)H
′
. For h ∈ H ′ and g ∈ G, we have g−1hg ∈

H ′. Thus
(g−1hg · f)(g) = f(g) = f(gg−1hg) = h · f(g)

Hence, f(G) ⊂MH ′ . The reverse inclusion is proved similarly. We now prove (2) and
assume that H is open in G. The converse implication is tautological due to (1). Let us
prove the direct implication. Since H ′′ ⊂ H ′, we haveMH ′ ⊂MH ′′ . Let x ∈MH ′′ and
consider a set of representatives g1, . . . ,gn for H\G. Let f : G → M be the function
defined by

f(hgi) = h · x
for every h ∈ H and i = 1, . . . ,n. Since H ⊂ G is open, the continuity of f can be
checked on each Hgi. On the other hand, the restriction of f to Hgi decomposes as

Hgi H M
·g−1i ·x

which is indeed continuous as a composition of continuous maps. Thus, f ∈ CoIndHG(M).
Since H ′′ is normal in H and x ∈MH ′′ , we have f(G) ⊂MH ′′ . By (1), we deduce that f
lies in CoIndHG(M)H

′′
= CoIndHG(M)H

′
. By (1) again, we deduce f(g1) = x ∈MH ′ . This

concludes the proof of Lemma 2.12. �

Lemma 2.13. In the setting of Recollection 2.2, let K ′/K be a finite separable extension in
Ksep. Let r ∈ Q>0. Then, the following are equivalent:

(1) GrK,log ⊂ GK ′ .
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(2) GrK,log acts trivially on CoIndGK ′GK
(Λ).

(3) r > lcK(CoIndGK ′GK
(Λ)).

Proof. The equivalence between (2) and (3) is obvious. Suppose that (2) holds. Since
GK ′ is open in GK, we have

CoIndGK ′GK
(Λ) ' Fun(GK ′\GK,Λ) .

Let g ∈ GK acting trivially on CoIndGK ′GK
(Λ). Let f : GK ′\GK → Λ sending GK ′ to 1

and sending a class distinct from GK ′ to 0. Then, g · f = f yields g ∈ GK ′ . Thus, (1)
is true. Suppose that (1) holds and let us prove (2). It is enough to prove that GrK,log
acts trivially on GK ′\GK, which follows immediately from (1) and the fact that GrK,log is
normal in G.

�

Definition 2.14. In the setting of Recollection 2.2, let L/K be a finite extension in K
and let K ′/K be the separable closure of K in L. We define

lcL/K := lcK(CoIndGK ′GK
(Λ)) ∈ Q≥0 .

Lemma 2.15. In the setting of Recollection 2.2, assume that the residue field F is perfect. Let
K ′/K be a finite extension in Ksep. Then for every r > lcK ′/K, we have

GrK,log = G
ψK ′/K(r)
K ′,log

in GK ′ , where ψK ′/K : R≥0 → R≥0 is Herbrand’s function [Ser68, IV §3].

Proof. The argument below is extracted from the unpublished note [Tey15]. Let L/K
be a finite Galois extension in Ksep containing K ′. In particular, the extension L/K ′ is
finite Galois. Put G = Gal(L/K) and H = Gal(L/K ′) ⊂ G. Since r > lcK ′/K, we have
GrK ⊂ GK ′ . Hence, Gr ⊂ H. Thus,

Gr = H∩Gr = H∩GψL/K(r)
= HψL/K(r)

= HϕL/K ′◦ψL/K(r)

where the third equality comes from the compatibility of the lower-numbering ramifi-
cation filtration with subgroups [Ser68, IV Proposition 2]. From [Ser68, IV Remark 2],
we have ψL/K = ψL/K ′ ◦ψK ′/K. Hence,

ϕL/K ′ ◦ψL/K = ψK ′/K .

Thus,

(2.15.1) Gal(L/K)r = Gal(L/K ′)ψK ′/K(r) .

Let P be the poset of finite Galois extensions L/K in Ksep containing K ′, ordered by
the inclusion. Then, P is cofinal both in the poset of finite Galois extensions of K in
Ksep and in the poset of finite Galois extensions of K ′ in Ksep. Lemma 2.15 thus follows
from (2.15.1) by passing to the limit over Pop. �
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Lemma 2.16 ([Tey15, Kat18]). In the setting of Recollection 2.2, assume that the residue field
F is perfect. Let L/K be a finite purely inseparable extension in K and let Lsep the separable
extensions of L in K. Then, the isomorphism ι : GL

∼−→ GK induced by restriction from Lsep to
Ksep is compatible with the logarithmic ramification filtration, that is

ι(GrL,log) = G
r
K,log

for every r ∈ Q≥0.
Corollary 2.17. In the setting of Recollection 2.2, assume that the residue field F is perfect.
Let L/K be a finite extension in K and let K ′/K be the separable closure of K in L. Then for
every r > lcL/K, we have

GrK,log = ι(G
ψK ′/K(r)
L,log )

where ι : GL
∼−→ GK is the isomorphism induced by restriction from Lsep to Ksep in K.

Proof. Since r > lcL/K = lcK ′/K, we have

GrK,log = G
ψK ′/K(r)
K ′,log = ι(G

ψK ′/K(r)
L,log )

where the first equality follows from Lemma 2.15 and the second one from Lemma 2.16.
�

Proposition 2.18. In the setting of Recollection 2.2, assume that the residue field F is perfect.
Let L/K be a finite extension in K and let K ′/K be the separable closure of K in L. Let M be
a finitely generated Λ-module with continuous GL-action. For r > lcL/K, the following are
equivalent :

(1) r is a logarithmic slope of CoIndGLGK(M).

(2) ψK ′/K(r) is a logarithmic slope ofM.

Proof. Note that L/K ′ is purely inseparable. In the above statement, the coinduction
is made along the morphism GL

∼−→ GK ′ ⊂ GK. Since r > lcL/K = lcK ′/K, we have
GrK,log ⊂ GK ′ in virtue of Lemma 2.13 and the groups

Gr+K,log ⊂ G
r
K,log ⊂ GK ′

satisfy the assumptions of Lemma 2.12 with G = GK and H = GK ′ open in GK. Thus,

r is not a logarithmic slope of CoIndGLGK(M)

⇐⇒CoIndGLGK(M)
GrK,log = CoIndGLGK(M)

Gr+
K,log

⇐⇒MGrK,log =M
Gr+
K,log Lemma 2.12

⇐⇒MG
ψ
K ′/K(r)

L,log =M
G
ψ
K ′/K(r)+

L,log Corollary 2.17⇐⇒ψK ′/K(r) is not a logarithmic slope ofM.

�

The following lemma is proved in [Ser68, IV Proposition 12] for finite Galois exten-
sions. We however needs the case of an arbitrary finite separable extension.
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Lemma 2.19. In the setting of Recollection 2.2, assume that the residue field F is perfect. Let
K ′/K be a finite separable extension in Ksep. Then, the following hold :

(1) The function ϕK ′/K is strictly increasing, piecewise linear and concave.

(2) For every r ≥ 0, we have ϕK ′/K(r) ≤ r.

Proof. Let L/K be the Galois closure of K ′ in Ksep. Put G := Gal(L/K) and H :=
Gal(L/K ′) ⊂ G. By definition, we have

ϕK ′/K = ϕL/K ◦ψL/K ′ .

Hence, ϕK ′/K is strictly increasing and piecewise linear as composition of strictly
increasing and piecewise linear functions. To prove that ϕK ′/K is concave, it is thus
enough to prove that the restriction of ϕK ′/K to its affine locus has decreasing deriva-
tive. For r ≥ 0 sufficiently generic, we have

ϕ ′K ′/K(r) = ψ
′
L/K ′(r)ϕ

′
L/K(ψL/K ′(r))

=
|H0|

|HψL/K ′ (r)
|

|GψL/K ′ (r)
|

|G0|
[Ser68, IV Proposition 12]

=
|H0|

|G0|
| Im(GψL/K ′ (r)

→ G/H)|

where the last equality follows from Hu = H∩Gu for every u ≥ 0. Since the ramifica-
tion filtration is decreasing, we deduce that so is ϕ ′K ′/K. This proves (1). We now prove
(2). By loc. cit., we have ψL/K ′(0) = ϕL/K(0) = 0, so that ϕK ′/K(0) = 0. Since ϕK ′/K
is piecewise linear and concave, we are thus left to show that the right derivative
ϕ ′K ′/K,d(0) of ϕK ′/K at 0 is smaller than 1. By the above computation, we have

ϕ ′K ′/K,d(0) =
|H0|

|G0|

|G1|

|H1|
=

|H0|/|H1|
|G0|/|G1|

.

On the other hand, the relation H0 ∩G1 = H1 implies that the induced map

H0/H1 → G0/G1

is injective. Thus ϕ ′K ′/K,d(0) ≤ 1. This concludes the proof of Lemma 2.19. �

Corollary 2.20. In the setting of Recollection 2.2, assume that the residue field F is perfect.
Let L/K be a finite extension in K. LetM be a finitely generated Λ-module with continuous
GL-action. Then,

lcK(CoIndGLGK(M)) ≤ max(lcL/K, lcL(M)) .

Proof. Put r = lcK(CoIndGLGK(M)). If r > lcL/K, Proposition 2.18 implies that ψK ′/K(r) is
a logarithmic slope ofM. In particular ψK ′/K(r) ≤ lcL(M). Thus,

r ≤ ϕK ′/K(lcL(M)) ≤ lcL(M)

where the second inequality follows from Lemma 2.19-(2). �
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3. Conductor divisors

Let X be a normal scheme of finite type over k. Let Z be an integral Weil divisor and
let η ∈ Z be its generic point. Let K be the fraction field of ÔX,η and fix a separable
closure Ksep of K. For F ∈ Constf(X,Λ), the pull-back F |SpecK is a Λ-module of finite
type with continuous GK-action. Using the notations from Notation 2.1, we put

cZ(F) := cK(F |SpecK) and lcZ(F) := lcK(F |SpecK) .

Definition 3.1. Let X be a normal scheme of finite type over k and letF ∈ Constf(X,Λ).
We define the conductor divisor of F as the Weil divisor with rational coefficients given
by

CX(F) :=
∑
Z

cZ(F) · Z

and the logarithmic conductor divisor of F as the Weil divisor with rational coefficients
given by

LCX(F) :=
∑
Z

lcZ(F) · Z

where the sums run over the set of integral Weil divisors of X.

Remark 3.2. When there is no ambiguity, we will drop the subscript X in CX(F) and
LCX(F).

Remark 3.3. Lemma 2.6 implies

LCX(F) ≤ CX(F) ≤ LCX(F) +D .

where D is the support of CX(F).

Definition 3.4. In the setting of Section 3, we define the generic conductor and the
generic (logarithmic) conductor of F along a divisor D respectively by

cD(F) := max
Z
cZ(F) and lcD(F) := max

Z
lcZ(F)

where Z runs over the set of irreducible components of D.

The conductor and log conductor divisors enjoy the following semi-continuity
property :

Theorem 3.5 ([Hu23, Theorem 1.4,1.5]). Let f : Y → X be a morphism of smooth schemes
of finite type over k. Let D be an effective Cartier divisor on X and put U := X−D. Assume
that E := Y ×X D is an effective Cartier divisor on Y and that Λ is a finite field. For every
L ∈ Loctf(U,Λ), we have

CY((j!L)|Y) ≤ f∗CX(j!L) .

If furthermore D has normal crossings, we have

LCY((j!L)|Y) ≤ f∗LCX(j!L) .

The conductor divisor can be detected by curves, due to the following :
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Proposition 3.6 ([Sai17, Corollary 3.9]). Let X be a smooth scheme over k of pure dimension
n. Let D be an effective Cartier divisor on X and put j : U := X −D ↪→ X. Let L ∈
Loctf(U,Λ). Then, there is a closed conical subset SS ⊂ T∗X of pure dimension n and a dense
open subsetΩ ⊂ D such that for every immersion i : S ↪→ X over k where S is a smooth curve
satisfying

(1) S meets D transversely at a single smooth point x ∈ Ω,

(2) every non zeroω ∈ SSx does not vanish on TxS ⊂ TxX,
we have CS((j!L)|S) = i∗CX(j!L).
Theorem 3.7 ([Hu23, Theorem 1.5]). Let X be a smooth scheme over k. Let D be a smooth
irreducible divisor on X and put j : U := X−D ↪→ X. For every L ∈ Loctf(U,Λ), we have

lcD(j!L) = sup
I(X,D)

lcx(j!L)
mx(f∗D)

where I(X,D) is the set of triples (C, f : S→ X, x) where f : C→ X is an immersion from a
smooth curve over k to X such that x = C∩D is a closed point of X.

Proposition 3.8 ([HT25b, Corollary 5.8]). Let f : X → S be a smooth morphism between
smooth schemes of finite type over k. Let D ⊂ X be an effective Cartier divisor relative to S
such that f|D : D→ S is smooth. Put j : U := X−D ↪→ X. Then for every L ∈ Loctf(U,Λ)
and every algebraic geometric point s→ S, we have

C((j!L)|Xs) ≤ i
∗
sC(j!L) and LC((j!L)|Xs) ≤ i

∗
sLC(j!L)

where is : Xs → X is the canonical morphism.

Remark 3.9. Theorem 3.5,Proposition 3.6, Theorem 3.7 and Proposition 3.8 are proved
for a finite field Λ of characteristic ` 6= p in [Sai17, Hu23, HT25b]. They hold for Λ a
finite local ring of residue characteristic ` 6= p as a consequence of Lemma 2.5.

4. Torsion divisors of coherent sheaves

Construction 4.1. Let X be a normal noetherian scheme and let E ∈ Coh(X). If X1 ⊂ X
denotes the set of codimension 1 points of X, we define a Weil divisor on X by the
formula

T(E) :=
∑
η∈X1

lengthOX,η
(E |tors

Xη
) · {η}

where Xη = SpecOX,η and where E |tors
Xη

is the torsion part of E |Xη . We refer to T(E) as
the torsion divisor of E .

We denote by Q[Coh(X)] the free Q-vector space on the set of isomorphism classes
of coherent sheaves on X. If Weil(X)Q is the space of Q-Weil divisors on X, the map
T : Coh(X)→Weil(X)Q induces a map of Q-vector spaces

T : Q[Coh(X)]→Weil(X)Q .

Example 4.2. If D is an effective Cartier divisor of X, then T(OD) = D.

Lemma 4.3. Let X be a normal scheme and let Z,Z ′ ⊂ X be effective Cartier divisors. Then

T(OZ+Z ′) = T(OZ) + T(OZ ′) .
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Proof. By definition, we have IZ+Z ′ = IZ · IZ ′ . The conclusion thus follows by localiz-
ing at a codimension 1 point of X. �

Lemma 4.4. Let X be a normal noetherian scheme and let

0→ E ′ → E → E ′′ → 0

be an exact sequence in Coh(X). Then, we have

T(E) ≤ T(E ′) + T(E ′′) .

Proof. Obvious from the fact that localization is exact and that the torsion functor is
left-exact. �

Recollection 4.5. Let us recall that a morphism f : X → S between schemes of finite
type over k is normal if it is flat with geometrically normal fibres. By [GD67, Proposition
11.3.13], the source of a normal morphism is normal if the target is normal. By [GD65,
Proposition 2.3.4], a generic point of X is sent to a generic point of S. In particular, if X
is irreducible the pull-back of X along any dense open immersion V ↪→ S is irreducible
as well.

Construction 4.6. Let f : X→ S be a normal morphism between schemes of finite type
over k. For E ∈ Coh(X), we define a function χE : S→N by

χE : S→N, s 7→ m(T(E |Xs)),
where s→ S is an algebraic geometric point above s ∈ S. We put

µf(E) := supχE (S) ∈N∪ {∞} .

The goal of what follows is to prove the following

Proposition 4.7. Let f : X→ S be a normal morphism between schemes of finite type over k.
For every E ∈ Coh(X), there is constructible function ψE : S→N with χE ≤ ψE .

Proposition 4.7 admits the following immediate

Corollary 4.8. Let f : X → S be a normal morphism between schemes of finite type over k.
For every E ∈ Coh(X), the quantity µf(E) is finite.

Proof of Proposition 4.7. Let E ∈ Coh(X). We run the following dévissage :
(i) Since S is noetherian, it is enough to show that there exists a dense open subset
V ⊂ S and an integer n such that χE (s) ≤ n for every s ∈ V .

(ii) At the cost of replacing S by Sred we may assume that S is reduced.

(iii) By (i) and (ii), we are reduced to the case where S = Spec(A) is affine, connected
and smooth over k.

(iv) Let {Ui}1≤i≤m be a finite Zariski open cover of X. Observe that

χE = max
1≤i≤m

χE |Ui
.

Hence, we are left to show that each χE |Ui is bounded on some dense open
subset Vi ⊂ S. Since X is noetherian, we can thus assume that X is affine. By
Recollection 4.5, we deduce that X is normal affine. By [SP, 0357], the scheme X
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is a finite disjoint union of normal affine integral schemes. Hence, at the cost
of replacing X by its irreducible components, we can assume that X is integral
normal affine. By Recollection 4.5, its pullback stays so after replacing S by an
affine dense open subset.

(v) By [SP, 00L0], the sheaf E admits a finite filtration by coherent subsheaves

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E

such that for every i = 0, . . . ,n− 1, we have Ei+1/Ei ' OZi for some closed
irreducible subscheme Zi ⊂ X. By generic flatness theorem [GD65, Théorème
6.9.1], we may assume each Zi is flat over S. Then, for every algebraic geometric
point s→ S, the chain

0 = E0|Xs ⊂ E1|Xs ⊂ · · · ⊂ En−1|Xs ⊂ En|Xs = E |Xs
is a filtration of E |Xs . By Lemma 4.4, we deduce that

χE ≤
∑
1≤i≤n

χOZi
.

Hence, we can assume that E = OZ where Z ⊂ X is a closed irreducible
subscheme flat over S.

(vi) By [Vak25, Proposition 11.4.1] applied to f : X → S and Z → S, at the cost
of shrinking S, we can suppose that for every s ∈ S, the fibre Xs has pure
dimension dimX− dimS and Zs has pure dimension dimZ− dimS. Hence,
for every s ∈ Swe have

dimZs = dimZ− dimS = dimXs + dimZ− dimX .

If dimZ < dimX− 1, we have

dimZs < dimXs − 1

where Xs and Zs have pure dimension. Hence χOZ = 0 in this case. If dimZ =
dimX, we have X = Z so that OZ = 0 and χOZ = 0. We are thus left to
prove Proposition 4.7 for E = OZ where Z ⊂ X is a closed subscheme of pure
codimension 1 flat over Swith S irreducible and smooth over k.

(vii) Let U ⊂ X be a smooth neighbourhood of the generic points of Z. Then U∩ Z
is an effective Cartier divisor of U relative to S and U contains the generic
points of the generic fibre of Z over S. By [SP, 0573] applied to the open subset
Z ∩U ⊂ Z, there is a dense open subset V ⊂ S such that for every s ∈ V , the
open set Zs ∩Us is dense in Zs. In particular, Us contains all the generic points
of Zs ⊂ Xs. We deduce

χOZ(s) = χOZ∩U(s)

for every s ∈ V . We are thus left to prove Proposition 4.7 in the case where E =
OZ where Z ⊂ X is an effective Cartier divisor relative to Swith S irreducible
and smooth over k.
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(viii) By [SP, 0550] applied to f|Z : Z→ S, there is a commutative square

Z ′ Z

S ′ S

f|Z

g

where g : S ′ → S is open quasi-finite with S ′ integral affine, where Z ′red is flat
over S ′ with geometrically reduced generic fibre. Observe that

χOZ ′ (s
′) = χOZ(g(s

′))

for every s ′ ∈ S ′. At the cost of replacing S by a dense open subset of S ′, we
can assume that Z ⊂ X is an effective Cartier divisor relative to S, that Zred is
flat over Swith geometrically reduced generic fibre over Swith S irreducible
and smooth over k. By [GD66, Theorem 9.7.7] at the cost of shrinking S, we can
further assume that Zred has geometrically reduced fibres over S. By shrinking
X as in step (vii), we can also assume that Zred is an effective Cartier divisor
relative to S. Let Z1, . . . ,Zn be the irreducible components of Zred and write

Z = e1 · Z1 + · · ·+ en · Zn .

For every s ∈ S,Lemma 4.3 gives

T(OZs) = e1 · T(OZ1,s) + · · ·+ en · T(OZn,s) .

Since the Zi,s are reduced effective Cartier divisors of Xs, the multiplicities of the
T(OZi,s) are equal to 1. Thus,

χOZ(s) ≤ e1 + · · ·+ en .

�

Definition 4.9. Let f : Y → X be a morphism between normal noetherian schemes. We
say thatD ∈Weil(X)Q pull-backs along f : Y → X if for every integral closed subscheme
Z ⊂ X contributing to D, the pull-back Y ×X Z has pure codimension 1 in Y.

For every D ∈ Weil(X)Q which pull-backs along f : Y → X, there is a well defined
pull-back f∗D ∈Weil(Y)Q. If every D ∈Weil(X)Q pull-backs along f : Y → X, there is
a well-defined Q-linear map

f∗ : Weil(X)Q →Weil(Y)Q .

We describe two cases of interest.

Example 4.10. Let X be a noetherian geometrically normal scheme over a field k and
let K/k be a field extension. Then, every D ∈Weil(X)Q pull-backs along XK → X.

Example 4.11. Let f : Y → X be a dominant morphism between regular noetherian
schemes. Then, every Weil divisor on X is Cartier and similarly with Y. On the other
hand, Cartier divisors on X pull-back to Y since f : Y → X is dominant. Hence, every
D ∈Weil(X)Q pull-backs along f : Y → X.
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Lemma 4.12. Let f : Y → X be a morphism between normal noetherian schemes and let
E ∈ Coh(X) such that T(E) pull-backs along f : Y → X. Let ξ ∈ Y be a codimension 1 point
such that η = f(ξ) ∈ X is a codimension 1 point. Then, the multiplicities of f∗T(E) and
T(f∗E) at ξ are the same.

Proof. Let π be a uniformizer of OX,η and write

E |Xη ' OrXη ⊕OXη/(π)n1 ⊕ · · · ⊕ OXη/(π)nk .

Then, the multiplicity of T(E) at η is n1 + · · ·+nk. If e is the valuation of f∗π at ξ, the
multiplicity f∗T(E) at ξ is thus (n1 + · · ·+ nk) · e. If π ′ is a uniformizer of OY,ξ we
have

(f∗E)|Yξ ' O
r
Yξ
⊕OYξ/(π′)e·n1 ⊕ · · · ⊕ OYξ/(π′)e·nk .

Hence, the multiplicity T(f∗E) at ξ is (n1 + · · ·+nk) · e. �

Observe that in the next lemma, no finiteness assumption is required.

Lemma 4.13. Let f : Y → X be a flat morphism between normal noetherian schemes and let
E ∈ Coh(X) such that T(E) pull-backs along f : Y → X. Then,

f∗T(E) = T(f∗E) .

Proof. We first show that f∗T(E) ≤ T(f∗E). By Lemma 4.12, it is enough to show that
for every codimension 1 point ξ ∈ Y contributing to f∗T(E), the image η = f(ξ) is a
codimension 1 point of X. Assume that ξ contributes to f∗T(E). Then, ξ is a generic
point of f∗T(E). Since f∗T(E)→ T(E) is flat, we deduce by [GD65, Proposition 2.3.4]
that η is a generic point of T(E), and thus a codimension 1 point of X.

To conclude, it is enough to show that for every codimension 1 point ξ ∈ Y con-
tributing to T(f∗E), the image η = f(ξ) is a codimension 1 point of X. Assume that ξ
contributes to T(f∗E). The question is Zariski local around ξ and η, so we can suppose
that X is affine. By [SP, Tag 00L0], the sheaf E admits a finite filtration by coherent
subsheaves

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E
such that for every i = 0, . . . ,n− 1, we have Ei+1/Ei ' OZi for some closed irreducible
subscheme Zi ⊂ X. Put Ti := Y ×X Zi for i = 0, . . . ,n− 1. Since f : Y → X is flat, the
chain

0 = f∗E0 ⊂ f∗E1 ⊂ · · · ⊂ f∗En−1 ⊂ f∗En = f∗E
is a finite filtration of f∗E such that for every i = 0, . . . ,n− 1, we have f∗Ei+1/f∗Ei '
OTi . Let M be the maximal ideal of OYξ . Observe that the ideal sheaves of the Yξ×Y Ti
are of the form 0,OYξ or Mn for some n ≥ 1. If 0,OYξ are the only ideal sheaves
that occur, then f∗E is locally free in a neighbourhood of ξ, which contradicts the
assumption that ξ contributes to T(f∗E). Hence, there is i ∈ {0, . . . ,n− 1} such that the
ideal sheaf of Yξ×Y Ti is Mn for some n ≥ 1. Then, at the cost of shrinking Y around ξ,
we can suppose that T red

i = {ξ}. In particular, Ti has codimension 1 and ξ is a generic
point of Ti. Since Ti → Zi is flat, we deduce that η is the generic point of Zi. We are
thus left to prove that Zi has codimension 1 in X. To do this, we adapt the proof of
[GD65, Corollaire 6.1.4]. By [GD65, Proposition 5.1.2], we have to show that

dimOX,η = 1 .
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Let fξ : Spec(OY,ξ)→ Spec(OX,η) be the induced morphism. Since ξ is maximal in Ti,
we have {ξ} = f−1ξ (η). Hence, dim f−1ξ (η) = 0. Since OY,ξ is a flat OX,η-module, [GD65,
Corollaire 6.1.3] gives

dimOX,η = dimOY,ξ = 1

and the conclusion follows. �

Corollary 4.14. Let X be a geometrically normal scheme of finite type over k and let E ∈
Q[Coh(X)]. Then, T(E)k = T(Ek) where the subscript refers to the pullback along Xk → X.

Proof. The statement of Corollary 4.14 makes sense by Example 4.10. We can suppose
that E ∈ Coh(X). Since X is normal, we can choose a dense open subset U ⊂ X
smooth over k such that Z := X−U has codimension ≥ 2 in X. In particular, Zk has
codimension ≥ 2 in Xk. Hence, it is enough to prove that the restriction of T(E)k and
T(Ek) to Uk are equal. Thus, at the cost of replacing X by U, we can assume that X is
smooth over k. In that case, T(E) is automatically an effective Cartier divisor. Then,
Corollary 4.14 follows from Lemma 4.13. �

Corollary 4.15. Let f : Y → X be a flat morphism between regular schemes. For every
E ∈ Q[Coh(X)], we have

f∗T(E) = T(f∗E) .

Proof. The statement of Corollary 4.15 makes sense by Example 4.11. We can reduce to
the case where E ∈ Coh(X). This cases follows from Lemma 4.13. �

5. Bounding log conductors with coherent sheaves

Definition 5.1. Let X be a scheme of finite type over k. Let K ∈ Dbctf(X,Λ) and
E ∈ Q[Coh(X)]. We say that K has log conductors bounded by E if for every morphism
f : C→ X over kwhere C is a smooth curve over k, we have

LC(HiK|C) ≤ T(f∗E)

for every i ∈ Z. We denote byDbctf(X, E ,Λ) the full subcategory ofDbctf(X,Λ) spanned
by objects having log conductors bounded by E .

Remark 5.2. If Z ⊂ X is closed subscheme, we will note Dbctf(X,Z,Λ) instead of
Dbctf(X,OZ,Λ) and say that K has log conductors bounded by Z when K lies in
Dbctf(X,Z,Λ).

Lemma 5.3. Let X be a scheme of finite type over k, let E ∈ Q[Coh(X)] and let Λ→ Λ ′ be a
morphism between finite local rings of characteristic ` 6= p. For every K ∈ Dbctf(X, E ,Λ), we
have K⊗LΛ Λ ′ ∈ Dbctf(X, E ,Λ ′).

Proof. By [SP, 03TT] every K ∈ Dbctf(X,Λ) can be represented by a bounded complex
of constructible sheaves of flat Λ-modules. In particular, the germ of K at any point
can be represented by a bounded finite tor-dimension complex of finitely generated
Λ-modules. Then, Lemma 5.3 follows from Corollary 2.9. �
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Recollection 5.4. Let X be a scheme of finite type over k. Then, for every K ∈
Dbc (X, Q`), there is a finite extension L/Q` and an integral representativeK• = (Km)m≥0
for K. If we put Λm := OL/mmL , the sheaf Km is an object of Dbctf(X,Λm) such that
Λm ⊗LΛm+1

Km+1 ' Km.

The following definition upgrades Definition 5.1 to Q`-coefficients.

Definition 5.5. Let X be a scheme of finite type over k. Let K ∈ Dbc (X, Q`) and
E ∈ Q[Coh(X)]. We say that K has log conductors bounded by E if there is a finite
extension L/Q` and an integral representative K• = (Km)m≥0 for K such that for
every m ≥ 0, we have Km ∈ Dbcft(X, E ,Λm). We denote by Dbc (X, E , Q`) the full
subcategory of Dbc (X, Q`) spanned by objects having log conductors bounded by E .

Lemma 5.6. Let X be a scheme of finite type over k. Let E ∈ Q[Coh(X)] andK ∈ Dbctf(X,Λ).

(1) Assume that K ∈ Dbctf(X, E ,Λ) and let f : Y → X be a morphism of schemes of finite
type over k . Then f∗K ∈ Dbctf(Y, f∗E ,Λ).

(2) Assume that K ∈ Dbctf(X, E ,Λ). Then for every E ′ ∈ Coh(X), we have K ∈
Dbctf(X, E ⊕ E ′,Λ).

(3) Let (fi : Ui → X)i∈I be an étale cover X. Then K ∈ Dbctf(X, E ,Λ) if and only if for
every i ∈ I, we have K|Ui ∈ Dbctf(Ui, f∗i E ,Λ).

(4) Consider a distinguished triangle

K1 → K2 → K3 →
in Dbctf(X,Λ). If 2 out of the 3 above complexes lie in Dbctf(X, E ,Λ), so does the third.

(5) If the above triangle is an exact sequence of constructible sheaves, then K2 lies in
Dbctf(X, E ,Λ) if and only if so do K1 and K3.

(6) If K1,K2 ∈ Dbctf(X,Λ) are isomorphic away from a finite set of closed points of X, then
K1 has log conductors bounded by E if and only if so does K2.

(7) Let (Ui)i∈I be a finite Zariski cover of X and let Ei ∈ Coh(Ui), i ∈ I. Then, there
exists E ′ ∈ Coh(X) depending only on the Ei such that

K|Ui ∈ D
b
ctf(Ui, Ei,Λ) for every i ∈ I⇒ K ∈ Dbctf(X, E ′,Λ) .

(8) Let red : Xred → X be the reduction morphism. Then, K lies in Dbctf(X, E ,Λ) if and
only if red∗K lies in Dbctf(X, red∗E ,Λ).

(9) For every closed immersion i : X ↪→ Y, we have K ∈ Dbctf(X, E ,Λ) if and only if
i∗K ∈ Dbctf(Y, i∗E ,Λ).

(10) Let j : U ↪→ X be an open subset and i : Z ↪→ X its complement. Assume that
E ∈ Coh(X), that j!(K|U) ∈ Dbctf(X, E ,Λ) and K|Z ∈ Dbctf(Z, EZ,Λ) for some
EZ ∈ Coh(Z). Then,

K ∈ Dbctf(X, E ⊕ i∗EZ,Λ) .
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Proof. Items (1)(2)(3)(6) are obvious. Items (4)(5) follow from Lemma 2.4. For (7), we
know by [SP, 0G41] that each Ei extends to a coherent sheaf E ′i on X. Then, the direct
sum of the E ′i does the job in virtue of (2),(3). Item (8) follows from (1) and the fact
that a smooth curve mapping to X canonically factors through Xred. The converse
implication in (9) follows from (1) and the isomorphism i∗i∗E ' E . For the direct
implication, consider the cartesian square of schemes of finite type over k

XC X

C Y

f ′

i ′ i

f

where C is a smooth connected curve over k. We have

(i∗F)|C ' i ′∗(F |XC) .

If XC has dimension 0, the sheaf (i∗F)|C is generically 0 and there is nothing to prove.
Otherwise, the composition Xred

C → XC → C is an isomorphism, and the conclusion
follows. Item (11) follows immediately by (2),(4),(9) via the localization triangle. �

The following is our main supply of sheaf with explicit bound on the log conductors.

Proposition 5.7. Let X be a normal scheme of finite type over k. Let D be an effective Cartier
divisor of X and put j : U := X−D ↪→ X. Let L ∈ Loctf(U,Λ) and E ∈ Q[Coh(X)].

(1) If j!L ∈ Dbctf(X, E ,Λ), then LC(j!L) ≤ T(E).
(2) If X is smooth, j!L has log conductors bounded by C(j!L).
(3) If X is smooth and if D has simple normal crossings, j!L has log conductors bounded

by LC(j!L).

Proof. Item (1) is a local question around the generic points of D. Hence, we can
suppose that X and D are smooth connected. We argue for E ∈ Coh(X), the general
case being similar by linear combinations. At the cost of shrinking X further, we can
suppose that E is of the form

OrX ⊕OX/In1D ⊕ · · · ⊕ OX/InkD
where ni ∈ N∗. In particular T(E) = (n1 + · · · + nk) · D. Let f : C → X be an
immersion over kwhere C is a smooth connected curve over k such that the generic
point of C is sent in U and that f−1(C) is a single point x. Then,

f∗E ' OrC ⊕OC/Imx(f
∗D)·n1

x ⊕ · · · ⊕ OC/Imx(f
∗D)·nk

x .

In particular,
lcx((j!L)|C) ≤ mx(f

∗D) ·mD(T(E)) .
Then (1) follows from Theorem 3.7. Item (2) follows from Theorem 3.5 and Remark 3.3.
Item (3) follows from Theorem 3.5. �

Proposition 5.8. Let X be a scheme of finite type over k. For every K ∈ Dbctf(X,Λ), there
exists E ∈ Coh(X) such that K has log conductors bounded by E .
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Proof. If X has dimension 0, there is nothing to do. Let n ≥ 1, and assume that
Proposition 5.8 holds in dimension ≤ n− 1. Let X be a scheme of finite type over k of
dimension ≤ n and let K ∈ Dbctf(X,Λ). To show that Proposition 5.8 holds for K, we
can suppose by Lemma 5.6-4 that K is concentrated in degree 0. By using a finite affine
cover of X, we can assume by Lemma 5.6-7 that X is affine. By Noether normalization,
there is a finite morphism f : X → Amk where m ≤ n. In particular, the counit map
f∗f∗K → K is surjective. By Lemma 5.6-5, we are thus left to prove Proposition 5.8
for f∗f∗K. By Lemma 5.6-1, we are left to prove Proposition 5.8 for f∗K. Hence, we
can suppose that X is smooth of dimension ≤ n. Let Z ⊂ X be an effective Cartier
divisor containing the singular locus of F and put j : U := X−Z ↪→ X. By recursion
assumption, K|Z ∈ Dbctf(Z, EZ,Λ) for some EZ ∈ Coh(Z). By Lemma 5.6-10, we can
thus further suppose that K = j!L where L ∈ Loctf(U,Λ). In that case, j!L has log
conductors bounded by C(j!L) in virtue of Proposition 5.7. �

Proposition 5.9. Let f : X → S be a morphism between schemes of finite type over k. Let
E ∈ Q[Coh(X)] and K ∈ Dbctf(X, E ,Λ). For every algebraic geometric point s → S, the
complexK|Xs has log conductors bounded by i∗sE where is : Xs → X is the canonical morphism.

Proof. We can suppose that K is concentrated in degree 0. Let s ∈ S be the point over
which s is localized and let S ′ be a smooth connected open subset of {s} ⊂ S. Consider
the commutative diagram with cartesian squares

Xs

��

i ′s
// X ′

f ′
��

h
// X

f
��

s // S ′ // S .

By Lemma 5.6-1, the sheaf K|X ′ has log conductors bounded by h∗E . Hence, at the
cost of replacing f : X → S by f ′ : X ′ → S ′ and K by K|X ′ , we can suppose that S is
smooth connected and that s is localized at the generic point of S. Let C be a smooth
curve over s and let h : C→ Xs be a morphism over s. We want to show that

LC(K|C) ≤ T(h∗i∗sE) .

By writing s as a filtered limit of smooth connected varieties over k quasi-finite flat
over S, there is a spreading out

C C

Xs XT X

s T S

ιs

h
α

with cartesian squares where T → S is quasi-finite flat with T smooth connected over
k, and where C → T is a smooth relative curve. Since K|C has log conductors bounded
by α∗E , it is enough to show that if f : X→ S is a smooth relative curve with S smooth
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connected over k and if s→ S is localized at the generic point of S, we have

LC(K|Xs) ≤ T(i
∗
sE) .

Observe that X is smooth over k. Choose a reduced effective Cartier divisor D ⊂ X
containing the singular locus of K. At the cost of shrinking S, we can suppose that D
is flat over S. Put U := X−D and let j : U ↪→ X be the inclusion. Note that (j!(K|U))|Xs
and K|Xs are isomorphic away from a finite number of points of the smooth curve Xs.
Hence, at the cost of replacing K by j!(K|U), we can suppose that K is of the form j!L
where L ∈ Loctf(U,Λ). By [SP, 0550] there is a commutative diagram with cartesian
squares

Xs XT X

s T S

where T → S is quasi-finite flat with T smooth connected over k and where the generic
fibre of (T ×S D)red → T is geometrically reduced. At the cost of pulling back the
situation to T and replacingD by (T ×SD)red, we can assume thatDs is reduced. Since
Ds is a finite set of points over s, we deduce that Ds is étale over s. At the cost of
shrinking S we can thus suppose that the induced map D → S is étale. Hence, we
deduce

LC((j!L)|Xs) ≤ i
∗
sLC(j!L) ≤ i∗sT(E) = T(i∗sE)

where the first inequality follows from Proposition 3.8 and the second inequality
follows from Proposition 5.7. Since s is localized at the generic point of S, the map
is : Xs → X is flat. On the other hand, X and Xs are regular. Thus the last equality
follows from Corollary 4.15. �

6. Conductor and finite direct image: global case

Lemma 6.1. Let f : Y → X be a finite surjective morphism between smooth curves over k. Let
D be a divisor on X and let x ∈ D. Put E = f−1(D) and j : V := Y − E ↪→ Y. Then, for every
L ∈ Loctf(V ,Λ), we have

lcx(f∗j!L) ≤ max{lcx(f∗j!Λ), lcy(j!L),y ∈ f−1(x)} .

Proof. This is a geometric rephrasing of Corollary 2.20. �

Definition 6.2. Let f : Y → X be a finite surjective morphism of normal schemes
of finite type over k. Let D be an irreducible divisor on X with generic point η
and E an irreducible component of (D×X Y)red with generic point ξ. We denote by
f(E/D) the degree of k(ξ)/k(η), by e(E/D) the ramification index of the extension of
discrete valuation rings OY,ξ/OX,η, by f(E/D)s the separable degree of k(ξ)/k(η) and
by f(E/D)ins its purely inseparable degree.

Lemma 6.3. Let f : Y → X be a finite surjective morphism of smooth schemes over k. Let
D be a smooth irreducible effective Cartier divisor on X and put U := X−D. Assume that
E := (D×X Y)red is smooth irreducible and put V := Y − E. Let ι : C→ X be an immersion
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from a smooth connected curve over k meeting D at a unique closed point x. Let ι ′ : C ′ → Y
be the normalization of C×X Y. Then, for every closed point x ′ ∈ C ′ lying over x, we have

mx ′(ι
′∗E) ≤ (D,C)x · f(E/D) .

Proof. At the cost of throwing away the components of Y not containing E, we can
suppose that Y is connected. Let η be the generic point of D and let ξ be the generic
point of E. By Zariski’s main theorem, the normalization of OX,η in K(Y) is OY,ξ. In
particular, [Ser68, Proposition I.10] gives

[K(Y) : K(X)] = f(E/D) · e(E/D) .

Let S ⊂ C ′ be the irreducible component containing x ′. Then,

e(x ′/x) ≤ [K(S) : K(C)] ≤ [K(Y) : K(X)]

where the first inequality comes from [Ser68, Proposition I.10] and the second from
the fact that V → U is finite flat as finite surjective morphism with smooth base and
target. Consider the following commutative diagram

E

��

// Y

f
��

C ′

fC
��

ι ′
oo

D // X C .
ι

oo

Then,

mx ′(ι
′∗E) =

1

e(E/D)
·mx ′

(
ι ′∗f∗D

)
=

1

e(E/D)
·mx ′ (f

∗
Cι
∗D) =

(D,C)x
e(E/D)

·mx ′ (f
∗
Cx)

= (D,C)x ·
e(x ′/x)
e(E/D)

≤ (D,C)x ·
[K(Y) : K(X)]

e(E/D)
= (D,C)x · f(E/D).

�

Lemma 6.4. Let f : Y → X be a finite surjective morphism of smooth schemes over k. Let
D be a smooth effective Cartier irreducible divisor on X. Assume that E := (D×X Y)red is
smooth irreducible. Put U := X−D and j : V := Y − E ↪→ Y. Assume that the restriction
f0 : V → U is étale. For L ∈ Loctf(V ,Λ), we have

lcD(f∗j!L) ≤ max{lcD(f∗j!Λ), f(E/D) · lcE(j!L)}.

Proof. Let ι : C → X be an immersion from a smooth curve over k meeting D at
only one point x. Put C0 := C− {x} and let C ′ be the normalization of C×X Y. Put
C ′0 := C

′ − (x×C C ′). We have the following commutative diagrams

E

fD
��

// Y

f
��

C ′

fC
��

ι ′
oo V

f0
��

C ′0
fC0
��

ι ′0
oo

D // X C
ι

oo U C0ι0
oo
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Since f0 : V → U is étale and since smoothness descends along étale morphisms, the
scheme V ×U C0 is smooth over k. Hence, the right square above is cartesian. By
proper base change, we deduce

ι∗0f0∗(L) ' fC0∗ι
′∗
0 (L) .

Hence, we deduce that
ι∗f∗(j!L) ' fC∗ι ′∗(j!L) .

On the other hand,

lcx(fC∗ι ′∗(j!L)) ≤ max
{

lcx(fC∗ι ′∗(j!Λ)), lcx ′(ι
′∗j!L), x ′ ∈ f−1C (x)

}
Lemma 6.1

≤ max
{
lcx(fC∗ι

′∗(j!Λ)),mx ′(ι
′∗E) · lcE(j!L), x ′ ∈ f−1C (x)

}
Theorem 3.5

≤ max {lcx(ι∗f∗(j!Λ)), (D,C)x · f(E/D) · lcE(j!L)} Lemma 6.3

Thus,

lcx(ι∗f∗(j!L))
(D,C)x

≤ max
{

lcx(ι∗f∗(j!Λ))
(D,C)x

, f(E/D) · lcE(j!L)
}

≤ max {lcD(f∗(j!Λ)), f(E/D) · lcE(j!L)} Theorem 3.5

Applying Theorem 3.7 concludes the proof of Lemma 6.4. �

Lemma 6.5. Let f : Y → X be a finite surjective morphism of smooth schemes over k. Let
D be a smooth irreducible effective Cartier divisor on X and put U := X−D. Assume that
E := (D×X Y)red is smooth irreducible and put j : V := Y − E ↪→ Y. Assume that the
restriction f0 : V → U is étale. For every L ∈ Loctf(V ,Λ), we have

cD(f∗j!L) ≤ max{cD(f∗j!Λ), f(E/D) · cE(j!L)} .

Proof. By Proposition 3.6 applied to f∗j!L and f∗j!Λ, there is an immersion ι : C ↪→ X
from a smooth curve over k and a point x ∈ C∩D such that

cD(f∗j!L) = cx(ι∗f∗j!L) and cD(f∗j!Λ) = cx(ι∗f∗j!Λ) .

Let C ′ be the normalization of C×X Y. We have the following commutative diagrams

E

fD
��

// Y

f
��

C ′

fC
��

ι ′
oo

D // X C
ι

oo

As in the proof of Lemma 6.4, we have

ι∗f∗(j!L) ' fC∗ι ′∗(j!L) .

Hence, we deduce

cD(f∗j!L) = cx(fC∗ι ′∗(j!L)) and cD(f∗j!Λ) = cx(fC∗ι ′∗(j!Λ)) .
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On the other hands, we have

cx(fC∗ι
′∗(j!L)) = lcx(fC∗ι ′∗(j!L)) + 1 Lemma 2.6

≤ max
{

lcx(fC∗ι ′∗(j!Λ)), lcx ′(ι
′∗(j!L)), x ′ ∈ f−1C (x)

}
+ 1 Lemma 6.1

≤ max
{
cx(fC∗ι

′∗(j!Λ)), cx ′(ι
′∗(j!L)), x ′ ∈ f−1C (x)

}
Lemma 2.6

≤ max
{
cx(fC∗ι

′∗(j!Λ)),mx ′(ι
′∗E) · cE(j!L), x ′ ∈ f−1C (x)

}
Theorem 3.5

≤ max
{
cx(fC∗ι

′∗(j!Λ)), f(E/D) · cE(j!L)
}

Lemma 6.3

Lemma 6.5 thus follows.
�

Proposition 6.6. Let f : Y → X be a finite surjective morphism of normal schemes of finite
type over k. LetD be an irreducible effective Cartier divisor on X and put U := X−D. Define
E := (D×X Y)red and put j : V := Y − E ↪→ Y. Let {Ei}1≤i≤m be the irreducible components
of E. Assume that the restriction f0 : V → U is étale. For every L ∈ Loctf(V ,Λ), we have

cD(f∗j!L) ≤ max
1≤i≤m

{cD(f∗j!Λ), f(Ei/D)ins · cEi(j!L)}

and
lcD(f∗j!L) ≤ max

1≤i≤m
{lcD(f∗j!Λ), f(Ei/D)ins · lcEi(j!L)}.

Proof. To lighten the notations, we will omit the lower shrieks in what follows. Let η
be the generic point of D and η→ X an algebraic geometric point above η. Let ξi be
the generic point of Ei (1 ≤ i ≤ m), and ξi → Y an algebraic geometric point above ξi
such that the composition ξi → ξi → η factors through η→ η. By pulling-back above
the strict henselianization of X at η and then spreading out, there exists a commutative
diagram

Ṽ =
∐

1≤i≤m

∐
f(Ei/D)s

Ṽi //

$$
f̃0

��

Ỹ =
∐

1≤i≤m

∐
f(Ei/D)s

Ỹi

f̃

��

$$

Ẽ =
∐

1≤i≤m

∐
f(Ei/D)s

Ẽi

$$

��

oo

V //

f0

��

Y

f

��

E

��

oo

Ũ //

&&

X̃

&&

D̃

&&

oo

U // X Doo

where every square but the right front and back squares are cartesian, and where X̃ is
an affine smooth connected étale neighborhood of η → X such that D̃ is irreducible
and smooth, Ỹi are affine smooth connected étale neighborhood of ξi → Y with
Ẽi = Ỹi ×Y Ei irreducible and smooth and Ẽi → D̃ finite, surjective and radiciel of
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degree f(Ei/D)ins for 1 ≤ i ≤ m. Since X̃→ X is étale, the proper base change yields

cD(f∗Λ) = cD̃(f̃∗Λ) = max
1≤i≤m

{c
D̃
(f̃i∗Λ)};

cD(f∗L) = cD̃(f̃∗(L|Ṽ)) = max
1≤i≤m

{c
D̃
(f̃,i∗(L|Ṽi))};

cEi(L) = cẼi(L|Ṽi);

and similarly with the logarithmic conductors, where f̃i : Ỹi → X̃ is induced by
f : Y → X. Hence, it is enough to prove

c
D̃
(f̃i∗(L|Ṽi)) ≤ max{c

D̃
(f̃i∗Λ), f(Ẽi/D̃) · c

Ẽi
(L|

Ṽi
)}

and similarly with the logarithmic conductors. Thus, we are left to prove Proposi-
tion 6.6 in the case where D ⊂ X and E = (D×X Y)red ⊂ Y are irreducible and smooth.
This case follows from Lemma 6.4 and Lemma 6.5.

�

Corollary 6.7. In the situation from Proposition 6.6, we have

cD(f∗j!L) ≤ cD(f∗j!Λ) + d · cE(j!L)
and

lcD(f∗j!L) ≤ lcD(f∗j!Λ) + d · lcE(j!L)
where d is the degree of f : X→ Y. Notice that d, cD(f∗j!Λ) and lcD(f∗j!Λ) only depend on
f : X→ Y.

Theorem 6.8. Let f : Y → X be a finite surjective morphism of normal schemes of finite
type over k. Let D be a reduced effective Cartier divisor on X and put U := X−D. Define
E := (D×X Y)red and put j : V := Y − E ↪→ Y. Assume that the restriction f0 : V → U is
étale. For L ∈ Loctf(V ,Λ), we have

C(f∗j!L) ≤ C(f∗j!Λ) + f∗C(j!L)
and

LC(f∗j!L) ≤ LC(f∗j!Λ) + f∗LC(j!L) .

Proof. We argue for the non logarithmic conductor divisor as the proof is the same for
the logarithmic conductor divisor. The question is local on X. Hence, we may assume
that D is irreducible. We denote by Ei’s (1 ≤ i ≤ m) the irreducible components of E.
By Proposition 6.6, we have

cD(f∗j!L) ≤ max
1≤i≤m

{cD(f∗j!Λ), f(Ei/D)ins · cEi(j!L)}

≤ cD(f∗j!Λ) + max
1≤i≤m

{f(Ei/D)ins · cEi(j!L)}

≤ cD(f∗j!Λ) + max
1≤i≤m

{f(Ei/D) · cEi(j!L)}

≤ cD(f∗j!Λ) +
∑

1≤i≤m
f(Ei/D) · cEi(j!L).

Theorem 6.8 thus follows. �
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Corollary 6.9. In the situation from Theorem 6.8, assume that X is smooth. Let E ∈
Q[Coh(X)]. Then, for every L ∈ Loctf(V , E ,Λ), the direct image f∗(j!L) has log conductor
bounded by

C(f∗j!Λ) + f∗(T(E) + E) .
If furthermore D has normal crossings, f∗(j!L) has logarithmic ramification bounded by

LC(f∗j!Λ) + f∗T(E) .

Proof. Since X is smooth, f∗(j!L) has log conductor bounded by C(f∗(j!L)) in virtue of
Proposition 5.7-(2). By Theorem 6.8, we have

C(f∗j!L) ≤ C(f∗j!Λ) + f∗C(j!L) .

By Remark 3.3 and Proposition 5.7-(1), we have

C(j!L) ≤ LC(j!L) + E ≤ T(E) + E .

This proves the first claim. The second claim follows similarly via Proposition 5.7-
(3). �

Theorem 6.10. Let f : Y → X be a finite surjective morphism between normal schemes of finite
type over k. Let D be a reduced effective Cartier divisor on X and put U : = X−D. Define
E : = (D×X Y)red and put j : V := Y − E ↪→ Y. Assume that the restriction f0 : V → U is
radicial. Then, for L ∈ Loctf(V ,Λ), we have

C(f∗j!L) ≤ f∗C(j!L)
and

LC(f∗j!L) ≤ f∗LC(j!L) .

Proof. This is a local question in a neighbourhood of the generic points of D. Hence
we can assume that X is smooth over k and that D is integral. Let η be the generic
point of D. Since f : Y → X is finite, for every y ∈ Y, we have f({y}) = {f(y)}, so that
dim {y} = dim {f(y)}. Hence, f−1(η) is the set of generic points of E. Since Y is normal,
we have f−1(η)∩ Ysing = ∅. After replacing X by X− f(Ysing), we can further assume
that Y is also smooth over k. In this case, f : Y → X is flat.

Let ξ1, . . . , ξm be the generic points of E. Let R be the henselization of X at η, let K
be the fraction field of R, let Si be the henselization of Y at ξi (1 ≤ i ≤ m) and let Li be
the fraction field of Si. Note that R and the Si’s are henselian discrete valuation rings.
Since f : X→ Y is finite and flat, we have

Spec(R)×X Y ∼=
∐

1≤i≤m
Spec(Si),

and R→ Si are finite and flat (1 ≤ i ≤ m). Hence, we have

Spec(K)×X Y = Spec(K)×U V =
∐

1≤i≤m
Spec(Li).

Since f0 : V → U is radicial, we get m = 1. Hence, E has only one irreducible
component with generic point ξ. Let S be the henselization of Y at ξ and let L be the
fraction field of S. Since Spec(K)×X Y = Spec(L), we have [K(Y) : K(X)] = [L : K] and
L/K is purely inseparable. Let κK and κL be the residue fields of R and S respectively.
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Since κK is separably closed, the extension κL/κK is purely inseparable. Let d be its
degree and let e be the ramification index of L/K. By [Ser68, Proposition I.10] we have

[L : K] = d · e .

Let K be an algebraic closure of K containing L. Since L/K is purely inseparable,
the canonical inclusion γ : GL → GK is a bijection. Let M be the Λ-module with
continuous GL-action associated to L|Spec(L) and N the Λ-module with continuous
GK-action associated to (f∗j!L)|Spec(K). By [Hu21, Theorem 1.1], we have

GdrK ⊆ γ(GrL) for r ≥ 1 ,

GdrK,log ⊆ γ(GrL,log) for r ≥ 0 .

Thus, we have

cK(N) ≤ d · cL(M) and lcK(N) ≤ d · lcL(M) .

Thus we deduce

C(f∗j!L) = cK(N) ·D ≤ d · cL(M) ·D = cL(M) · f∗E = f∗C(j!L)
and

LC(f∗j!L) = lcK(N) ·D ≤ d · lcL(M) ·D = clL(M) · f∗E = f∗LCY(j!L) .

�

Lemma 6.11. Let f : Y → X be a finite surjective morphism between integral schemes of finite
type over k. Then, f : Y → X factors through a finite surjective map g : Y → T where T is a
normal scheme over k followed by a finite surjective map h : T → X such that there is a dense
open subset U ⊂ X satisfying :

(1) the induced map h0 : h−1(U)→ U is étale.

(2) the induced map g0 : f−1(U)→ h−1(U) is radicial.

Proof. Let ξ be the generic point of Y and let η be the generic point of X. Since f : Y → X

is finite surjective, we have f−1(η) = ξ. Consider the finite field extension k(Y)/k(X).
There exists a unique intermediate extension

k(X) ⊂ k(Y)sep ⊂ k(Y)
such that k(Y)sep/k(X) is separable and k(Y)/k(Y)sep is purely inseparable. Let T be
the normalization of X in k(Y)sep. Then, f : Y → X factors through a finite surjective
map g : Y → T with k(Y)/k(T) purely inseparable followed by a finite surjective map
h : T → Xwith k(T)/k(X) separable. By affine base change, the coherent sheaf h∗ΩT/X
thus vanishes at η. Hence, it vanishes on a dense open neighbourhood U ⊂ X. Since
the formation of ΩT/X commutes with pull-back, we deduce that ΩT/X vanishes on
h−1(U). That is the pull-back h0 : h−1(U)→ U is unramified. At the cost of shrinking
U, we can suppose that h0 : h−1(U)→ U is étale. By [GD66, Théorème 8.10.5], there is
a dense open subset V ⊂ h−1(U) such that the induced map g−1(V) → V is radicial.
Observe that E := h−1(U)−V is a strict closed subset of h−1(U). Since h0 : h−1(U)→ U

is finite, h(E) is a strict closed subset of U. Furthermore h−1(U− h(E)) ⊂ V . Hence,
the open subset U− h(E) satisfies (1)(2). �
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Theorem 6.12. Let f : Y → X be a finite morphism between schemes of finite type over k. Let
Σ be a stratification of Y and let E ∈ Coh(Y). Then there exists E ′ ∈ Coh(X) such that for
every K ∈ DbΣ,tf(Y, E ,Λ), we have f∗K ∈ Dbctf(X, E ′,Λ).

Proof. We endow the closed subset p(Y) ⊂ X with its canonical reduced structure.
Consider the factorization Y → p(Y) ↪→ Xwhere the first map is finite and where the
second map is a closed immersion. By Lemma 5.6-9, it is enough to prove Theorem 6.12
for Y → p(Y). Hence, we can assume that f : Y → X is finite surjective.

We argue by recursion on the dimension n of Y. If n = 0, there is nothing to do.
Assume that n > 0 and that Theorem 6.12 holds in dimension < n. Since the étale
topos is insensitive to nilpotents, we can by Lemma 5.6-8 assume that X, Y are reduced.
By Lemma 5.6-7, we can suppose that X, Y are affine. Let K ∈ DbΣ,tf(Y, E ,Λ). Since
finite direct images are exact, we can suppose that K is concentrated in degree 0. Let
ν : Yν → Y be the normalization map. Since the unit map K → ν∗ν∗K is injective, the
induced map

f∗K → f∗ν∗ν
∗K

is an injective map of constructible sheaves. By Lemma 5.6-5, at the cost of replacing
Y by Yν and f by f ◦ ν, we can suppose that X, Y are affine and that Y is normal. By
Noether normalization lemma, there is a finite morphism π : X→Ad

k . Observe that
the counit map

π∗π∗f∗K → f∗K
is surjective. By Lemma 5.6-5, at the cost of replacing X by Ad

k and f by π ◦ f, we can
thus suppose that X is affine smooth over k and Y is affine normal. Since a normal
scheme is a disjoint union of its irreducible components, we can further suppose that
X, Y are irreducible.

Let Z ⊂ Y be a strict closed subset containing the strata of Σ of dimension < dim Y.
By Lemma 6.11, f : Y → X factors through a finite surjective map g : Y → T of normal
schemes over k followed by a finite surjective map h : T → X such that there is a dense
open subset U ⊂ X with h0 : h−1(U) → U étale and g0 : f−1(U) → h−1(U) radicial.
Since Z ⊂ Y is a strict closed subset, f(Z) ⊂ X is a strict closed subset of X. At the
cost of shrinking U, we can by smoothness of X assume that D := X−U is a reduced
effective Cartier divisor containing f(Z). Put E := (Y ×XD)red. Consider the following
commutative diagram

V Y E Z

U X D .

j

f0 f

i

fD

By proper base change and recursion applied to the finite morphism fD : E → D,
to ΣE := Σ ∩ E and i∗E ∈ Coh(E), there is ED ∈ Coh(D) such that for every K ∈
ConsΣ,tf(Y, E ,Λ), we have

(f∗K)|D ' fD∗(K|E) ∈ Constf(D, ED,Λ) .

By Lemma 5.6-10, we can thus suppose that K = j!L where L ∈ Loctf(V ,Λ).
Note that h∗D is a well-defined effective Cartier divisor of T . By Theorem 6.10
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applied to the morphism of normal schemes g : Y → T and to h∗D ⊂ T , we know that

C(g∗j!L) ≤ g∗C(j!L) .

By Theorem 6.8 applied to the morphism of normal schemes h : T → X and to D ⊂ X,
we know that

C(h∗g∗j!L) ≤ C(f∗j!Λ) + h∗C(g∗j!L)
Putting everything together gives

C(f∗j!L) ≤ C(f∗j!Λ) + f∗C(j!L) .

By Remark 3.3 and Proposition 5.7, we have

C(j!L) ≤ LC(j!L) + E ≤ T(E) + E .

Hence, we deduce

C(f∗j!L) ≤ C(f∗j!Λ) + f∗T(E) + f∗E := C(f, E) .

By Proposition 5.7, the sheaf f∗j!L has log conductors bounded by C(f, E) and the
conclusion follows. �
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