
HOMOTOPY THEORY OF STOKES DATA

MAURO PORTA AND JEAN-BAPTISTE TEYSSIER

ABSTRACT. In this paper we lay the foundations of an ∞-categorical theory of Stokes
data.
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1. INTRODUCTION

Given an algebraic flat bundle (E,∇) on C \ {P1, . . . ,Pn}, several algebraic structures
arising from its flat sections can be defined. The most basic one is the monodromy represen-
tation, obtained by analytic continuation of the flat sections along loops in C \ {P1, . . . ,Pn}.
A more sophisticated algebraic structure governing the asymptotic behaviours of the
flat sections near the Pi was discovered by Stokes [24] and formalized by Deligne and
Malgrange [8, 2] by means of Stokes filtered local systems. See also [23, 5] for alternative
viewpoints in dimension 1. In a punctured neighbourhood of Pi, a Stokes filtered local
system consists in a local system Lwhose germs are filtered by an ordered set varying in
a constructible way. In a nutshell, L encodes the flat sections of (E,∇) and the filtrations
pertain to their growth order when approaching Pi. Stokes filtered local systems were
discovered by Mochizuki in any dimension [17].

During the quest for derived moduli for higher dimensional Stokes filtered local
systems [21], we realized that they could be viewed as particular functors that we called
Stokes functors and that we describe now in more detail. Let X be a complex manifold
admitting a smooth compactification. Let D be a normal crossing divisor in X and put
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U := X \D. Let π : X̃→ X be the real-blow up along D and j : U→ X̃ the inclusion. Let
I ⊂ OX(∗D)/OX be a good sheaf of irregular values in the sense of [17]. A point x ∈ X̃
with π(x) ∈ D can be thought of as a line passing through π(x) and a section of π∗I near
x as a meromorphic function defined on some small multi-sector emanating from π(x).
For two such sections a and b, the relation

a ≤x b if and only if ea−b has moderate growth at x

defines an order on the germs of π∗I at x. This collection of orders upgrades π∗I
into a sheaf of posets that turns out to be constructible for a suitable choice of finite
subanalytic stratification P of X̃. Then, the topological exodromy equivalence from [15, 20,
25, 12] converts π∗I into a functor Π∞(X̃,P)→ Poset from the∞-category of Exit Paths
Π∞(X̃,P) attached to (X̃,P). By design, the objects of Π∞(X̃,P) are the points of X̃ and
the morphisms between two points x and y can be thought of as continuous paths
γ : [0, 1] → X̃ such that γ((0, 1]) lies in the same stratum as y. Via the Grothendieck
construction, the functor Π∞(X̃,P) → Poset corresponds to a cocartesian fibration in
posets I → Π∞(X̃,P). In this language, Stokes filtered local systems are special functors
F : I → E where E is the category of C-vector spaces. A substantial part of the present
work is devoted to the ∞-categorical analysis of the two conditions that make these
functors special.

Splitting condition. This condition is punctual. For x ∈ X̃, let Ix ∈ Poset be the fibre of
I → Π∞(X̃,P) above x and consider the restricted functor Fx : Ix → E . Let iIx : Iset

x → Ix
be the underlying set of Ix. Let iIx,! : Fun(Iset

x , E)→ Fun(Ix, E) be the left Kan extension
of i∗Ix : Fun(Ix, E) → Fun(Iset

x , E). Then Fx is requested to lie in the essential image of
iIx,!. Unravelling the definition, this means that there is V : Iset

x → E such that for every
a ∈ Ix, we have

Fx(a) '
⊕

b≤a in Ix
V(b) .

Induction condition. If γ : x→ y is an exit path for (X̃,P), it pertains to a prescription
of Fy by Fx via γ referred as induction in [18]. If γ : Ix → Iy is the morphism of posets
induced by γ : x → y and if γ! : Fun(Ix, E) → Fun(Iy, E) is the left Kan extension of
the pull-back γ∗ : Fun(Iy, E) → Fun(Ix, E), Mochizuki’s condition translates purely
categorically into the requirement that the natural map γ!(Fx)→ Fy is an equivalence.

The splitting and induction conditions have purely categorical formulations. This
motivates the following

Definition 1.1. Let X be an∞-category. Let I → X be a cocartesian fibration in posets.
Let E be a presentable∞-category. A Stokes functor is a functor F : I → E satisfying the
splitting and induction conditions. We denote by StI ,E ⊂ Fun(I , E) the full subcategory
spanned by Stokes functors.

Working in a purely abstract∞-categorical context rather than just with the cocartesian
fibration I → Π∞(X̃,P) is a necessity rather than a luxury. Indeed, most arguments
needed to construct the derived moduli of Stokes filtered local systems in [21] take place
outside the initial framework of (X,D, I). One thus needs a robust theory encompassing
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all geometric situations encountered in [21], which leads naturally to Definition 1.1.
From this respect, the present work is the minimal requirement for the proofs of [21] to
make sense.

One major obstacle to work∞-categorically is to make sense of the induction condition
in a sufficiently synthetic way to minimize the amount of∞-categorical data required for
its check. This is achieved through the specialization formalism developed in a first part
of the paper. The gains with this purely∞-categorical approach are streamlined proofs
of crucial properties for Stokes functors: preservation under cartesian pull-back and
induction over a fixed base (Corollary 5.3.4), invariance under localization of the base
(Proposition 5.3.5), preservation under graduation (Proposition 6.4.9), explicit descrip-
tion when X has an initial object (Proposition 5.2.5), spreading out (Corollary 4.8.10),
compatibility with tensor product in PrL (Proposition 5.6.5), categorical actions of local
systems (Corollary 5.8.5), Van Kampen (Proposition 5.5.1) and existence of t-structures
(Proposition 5.7.11).

Beside these structural results, let us highlight two theorems playing a crucial role in
[21]. Assume that X ⊂ Cn is a polydisc with coordinates (z,y) = (z1, . . . , zl,y1, . . . ,yn−l).
Let D be the divisor defined by z1 · · · zl = 0. Let I ⊂ OX(∗D)/OX be a good sheaf of
irregular values. A classical dévissage in the theory of Stokes data is by means of the
levels of I ⊂ OX(∗D)/OX, that is the pole orders of the differences between the sections
of I. By design of a good sheaf of irregular values, there is a sequence

(1.0.1) m(0) < m(1) < · · · < m(d) = 0

in Zl such that for every k = 0, . . . ,d− 1, the vectorsm(k) andm(k+ 1) differ only by 1
at exactly one coordinate and every ord(a− b) for a,b ∈ I(X) distinct appears in this
sequence (such a sequence is referred to as an auxiliary sequence in [18, §2.1.2]). Fix
k = 0, . . . ,d and put

Ik := Im(I→ OX(∗D)/zm(k)OX) .

Then, the chain of constructible sheaves on (X,D)

I = Id → Id−1 → · · ·→ I0 = ∗

induces a chain of P-constructible sheaves in finite posets over X̃

π∗I = π∗Id → π∗Id−1 → · · ·→ π∗I0 = ∗

which in turn induces a chain of cocartesian fibrations in finite posets on Π∞(X̃,P)

(1.0.2) I = Id → Id−1 → · · ·→ I0 = ∗ .

The following definition is an axiomatization of the features of this chain :

Definition 1.2. Let X be an∞-category and let p : I → J be a morphism of cocartesian
fibrations in posets over X . We say that p : I → J is a level morphism if it is essentially
surjective and for every x ∈ X and every a,b ∈ Ix, we have

p(a) < p(b) in Jx ⇒ a < b in Ix .
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If we consider the fibre product π : Ip := J set ×J I → J set, the classical level dévis-
sage is traditionally used to reduce the study of I → X to that of J → X and Ip → X .
This is effective since the level morphisms from (1.0.2) are so that J has less objects than
I while Ip comes with extra favorable properties. In this work, we provide a purely
categorical explanation for the level dévissage :

Theorem 1.3 (Theorem 7.2.1). LetX be an∞-category and let p : I → J be a level graduation
morphism of cocartesian fibrations in posets over X . Let E be a presentable stable∞-category.
Then, there is a pullback square

StI ,E StJ ,E

StIp,E StJ set,E

in CAT∞.

Theorem 1.3 is our main tool in [21] to reduce statements on Stokes filtered local
systems to plain local systems.

One of the key result of [21] is the presentability of StI ,E for E presentable stable in
the situation coming from flat bundles. By Ragimov-Schlank’s∞-categorical reflection
theorem [22], presentability is a consequence of the fact that StI ,E is stable under limits
and colimits in Fun(I , E). This may seem miraculous since both the splitting and induc-
tion conditions are not stable under limits and colimits already over a point. To leverage
Ragimov-Schlank’s theorem using the level induction dévissage from Theorem 1.3,
a prerequisite is to show that the graduation and induction functors from Section 2
and Section 6 commute with limits. This is not granted since both functors are left
adjoints and have in general no reason to be right adjoints as well. By Proposition A.2.3,
this is nonetheless true when the total space I of the cocartesian fibration in posets
I → Π∞(X̃,P) is compact. To check compactness, we prove the following

Theorem 1.4 (Theorem A.1.2). Let X be an ∞-category and let A → X be a cocartesian
fibration. Assume that X is compact and that for every x ∈ X , the fiber Ax is compact in Cat∞.
Then A is compact in Cat∞ as well.

In the situation coming from flat bundles, the fibres of I → Π∞(X̃,P) are finite posets,
which are automatically compact. On the other hand, the compactness of Π∞(X̃,P)
follows from a result obtained by the authors in collaboration with P. Haine in [12,
Theorems 0.4.2 & 0.4.3]. It can be seen as a stratified generalization of theorems of
Lefschetz–Whitehead, Łojasiewicz and Hironaka on the finiteness of the underlying
homotopy types of compact subanalytic spaces and real algebraic varieties.

Linear overview. In Section 2, we start by recalling the exponential construction as
an ∞-functor. In Section 3, we refine our analysis of the exponential construction
via the specialization equivalence. In Section 4 and Section 5, we separately study the
property of being cocartesian and punctually split. This leads to the basic functorialities
of the∞-categories of Stokes functors (see Corollary 5.3.4) and to their fundamental
properties such the invariance by localization (see Proposition 5.3.5), Van Kampen (see
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Proposition 5.5.1) and the existence of t-structures (see Proposition 5.7.11). In Section 6
and Section 7, we develop the theory of graduation and the notion of level structure.
We study the compatibility of the graduation procedure with Stokes functors and the
interaction with their basic functorialities. Theorem 7.2.1 is in many ways the crucial
result of this section, establishing the categorical basis of the level induction technique
used in [21].

The remaining part is essentially intended as an appendix. It turns out that the
language of the specialization equivalence is a powerful categorical tool that allows
to prove structural results on cocartesian fibrations. In Theorem A.1.2, we establish a
local-to-global principle for compactness of the total space of a cocartesian fibration. In
Theorem B.2.1, we give a new and model-independent proof of Hinich’s theorem [13].
Finally, we introduce in Section C and Section D the notion of finite étale (cocartesian)
fibration. This notion plays a crucial role in the proof of the retraction lemma (see
Corollary 5.8.6) that allows to treat ramified Stokes structures in [21].

Acknowledgments. We are grateful to Enrico Lampetti, Guglielmo Nocera, Tony Pantev,
Marco Robalo and Marco Volpe for useful conversations about this paper. We especially
thank Peter J. Haine for fruitful collaborations on the exodromy theorems. We thank
the Oberwolfach MFO institute that hosted the Research in Pairs “2027r: The geometry
of the Riemann-Hilbert correspondence”. We also thank the CNRS for delegations and
PEPS “Jeunes Chercheurs Jeunes Chercheuses” fundings, as well as the ANR CatAG
from which both authors benefited during the writing of this paper.

2. COCARTESIAN FIBRATIONS AND THE EXPONENTIAL CONSTRUCTION

We first review some∞-category theory that has been developed in the companion
paper [19]. We need this technology for two reasons: (i) to provide a streamlined
definition of the category of Stokes stratified spaces, and (ii) to show that we can functorially
attach to every Stokes stratified space a constructible sheaf of∞-categories, whose global
sections is exactly the associated∞-category of Stokes structures.

2.1. Dual fibrations. Following the companion paper [19] we introduce the∞-category
CoCart. We start from the cartesian fibration

t : Cat[1]∞ := Fun(∆1, Cat∞)→ Cat∞
sending a functor A→ X to its target∞-category. We then pass to the dual cocartesian
fibration, in the following sense:

Definition 2.1.1. Let p : A→ X be a cartesian fibration and let ΥA : X op → Cat∞ be its
straightening. The dual cocartesian fibration p? : A? → X op is the cocartesian fibration
classified by ΥA.

Recollection 2.1.2. In the setting of the above definition, recall from [4] that objects of
A? coincide with the objects of A, while 1-morphisms a→ b in A? are given by spans

a c b
u v

where u is p-cocartesian and p(v) is equivalent to the identity of p(b).
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We let
B : Cat[1]?∞ → Catop∞

be the cocartesian fibration dual to t. Specializing Recollection 2.1.2 to this setting, we
see that objects of Cat[1]?∞ are functors A→ X , and morphisms f = (f,u, v) from B → Y
to A→ X are commutative diagrams in Cat∞ of the form

(2.1.3)
B BX A

Y X

vu

f

where the square is a pullback. With respect to this description, B sends A→ X to its
target (or base) X , and a diagram as above defines a B-cocartesian morphism if and only
if v is an equivalence.

We define CoCart to be the (non-full) subcategory of Cat[1]?∞ whose objects are cocarte-
sian fibrations, and whose 1-morphisms are commutative diagrams as above where v
is required to preserve cocartesian edges. In this way, CoCart becomes a cocartesian
fibration over Catop∞ such that CoCart→ Cat[1]?∞ preserves cocartesian edges. Notice that
the fiber at X ∈ Catop∞ coincides with the∞-category CoCart/X . We will also need a
couple of variants of this construction:

Variant 2.1.4. We let PosFib ⊂ CoCart be the full subcategory spanned by those cocarte-
sian fibrations A→ X whose fibers are posets.

Variant 2.1.5. Let CAT∞ be the ∞-category of large ∞-categories and consider the
following fiber product:

C := Fun(∆1, CAT∞)×CAT∞ Cat∞ ,

where we used the target morphism t : Fun(∆1, CAT∞)→ CAT∞. In other words, objects
in C are morphisms p : A → X where X is a small∞-category and the fibers of p are
not necessarily small∞-categories. The induced morphism t : C → Cat∞ is a cartesian
fibration. Inside the dual cocartesian fibration C?, we define COCART as the subcategory
spanned by cocartesian fibrations and whose 1-morphisms are diagrams (2.1.3) where v
preserves cocartesian edges.

Variant 2.1.6. We let PrFibL ⊂ COCART be the subcategory spanned by cocartesian
fibrations with presentable fibres and whose 1-morphisms are diagrams (2.1.3) that are
morphisms in COCART such that for every x ∈ X , the induced functor vx : Bf(x) → Ax is
a morphism in PrL, i.e. is cocontinuous. PrFibL is the∞-category of presentable cocartesian
fibrations [19, §3.4].

Recollection 2.1.7. Both CoCart and PrFibL can be promoted to Catop∞ -families of sym-
metric monoidal∞-categories CoCart⊗ and PrFibL,⊗, in the sense of [19, Definition A.1].
Concretely, this provides for every X ∈ Catop∞ a symmetric monoidal structure on the
fiber CoCartX and PrFibL

X of B : CoCart→ Catop∞ and B : PrFibL → Catop∞ . Invoking the
straightening equivalence [14, Theorem 3.2.0.1], we find canonical identifications

(2.1.8) CoCartX ' Fun(X , Cat∞) and PrFibL
X ' Fun(X , PrL) .
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Under these equivalences, the above symmetric monoidal structures correspond to those
induced respectively by the cartesian product on Cat∞ and the tensor product on PrL as
defined in [15, §4.8.1].

2.2. Exponential construction. Fix a presentable∞-category E .

Construction 2.2.1. Let p : A→ X be a cocartesian fibration. Let ΥA : X → Cat∞ be its
straightening and consider the functor

Fun!(ΥA(−), E) : X → PrL ,

where Fun! denotes the functoriality given by left Kan extensions. We write

expE (A/X )→ X
for the presentable cocartesian fibration classifying Fun!(ΥA(−), E). We refer to expE (A/X )
as the exponential fibration with coefficients in E associated to p : A→ X .

Example 2.2.2. Assume thatX = ∗ is the category with one object and one (identity) mor-
phism. Then CoCartX ' Cat∞ and PrFibL

X ' PrL. In this case, expE (A) ' Fun(A, E).

Example 2.2.3. Assume that X = ∆1, so that we can represent ΦA as a single functor
f : A0 → A1. In this case, the functor Fun!(ΥA(−), E) : ∆1 → PrL is identified with the
functor

f! : Fun(A0, E)→ Fun(A1, E) ,

where f! denotes the left Kan extension along f. Therefore we can understand expE (A/∆1)
as the presentable cocartesian fibration over∆1 whose objects are pairs (F, i) where i ∈ ∆1
and F : Ai → E is a functor. Besides, using [14, Proposition 2.4.4.2], we deduce that

MapexpE (A/∆1)((F, i), (G, j)) =


MapFun(A0,E)(F,G) if i = j = 0 ,
MapFun(A1,E)(f!(F),G) if i = 0 and j = 1 ,
MapFun(A1,E)(F,G) if i = j = 1 ,
∅ if i = 1 and j = 0 .

Finally, a morphism (F, 0) → (G, 1) in expE (A/∆1) is cocartesian if and only if the
induced morphism f!(F)→ G is an equivalence.

Example 2.2.4. Combining the previous two points with the general properties of the
straightening equivalence, we deduce that for any morphism γ : x→ y in X the fibers
of expE (A/X ) at x and y are canonically identified with Fun(Ax, E) and Fun(Ay, E),
and a morphism α : F→ G in expE (A/X ) lying over γ is cocartesian if and only if for
any choice of a cocartesian straightening fγ : Ax → Ay of γ, α exhibits G as left Kan
extension of F along fγ.

It follows from [19, Variant 3.20 & Remark 3.21] that Construction 2.2.1 can be canoni-
cally promoted to an∞-functor

expE : CoCart→ PrFibL .
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Let us spell out the functoriality of expE in more concrete terms. With respect to mor-
phisms in CoCart as in (2.1.3), we will use the following notation:
(2.2.5)

B BX A

Y X

vu

f

expE7−→ expE (B/Y) expE (BX/X ) expE (A/X )

Y X

Eu Ev!

f

We refer to the functor Ev! as the exponential induction functor.

Proposition 2.2.6. With respect to (2.2.5), we have:
(1) the functor Eu : expE (BX/X )→ expE (B/Y) makes the the right square a pullback;

(2) the functor Ev! preserves cocartesian edges.

In particular, expE takes B-cocartesian edges in CoCart to B-cocartesian edges in PrFibL.

Proof. Statement (1) simply follows unraveling the definitions, as in [19, Lemma 3.8].
Statement (2) is automatic from the definition of morphisms in PrFibL, but the reader
should observe that for fixed X ∈ Catop∞ , the induced functor expE ,X : CoCartX →
PrFibL

X is precisely given by Construction 2.2.1. In other words, Ev! is the unstraightening
of the natural transformation

Fun!(ΥBX (−), E)→ Fun!(ΥA(−), E)

induced by left Kan extension along the natural transformation Υv : ΥBX → ΥA. There-
fore, Ev! preserves cocartesian edges by construction. �

Corollary 2.2.7. Consider a commutative diagram in CoCart

BY AY

Y B A

X

vY

uAuB

v

whose diagonal squares are pullback. Then, the squares of the commutative diagram

expE (BY/Y) expE (AY/Y)

Y expE (B/X ) expE (A/X )

X

EvY!

EuAEuB

Ev!

are pullback.
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Via the identifications of the fibres of the exponential fibration supplied by Exam-
ple 2.2.2, Corollary 2.2.7 specializes to

Corollary 2.2.8. In the situation from Corollary 2.2.7 where Y is an object x ∈ X , the squares
of the commutative diagram

Fun(Bx, E) Fun(Ax, E)

∗ expE (B/X ) expE (A/X )

X

vx,!

x

Ev!

are pullback, where vx,! is the left Kan extension along vx : Ax → Bx.
Recollection 2.2.9. Assume that E has an additional symmetric monoidal structure E⊗.
Then [19, Example 3.22] shows that expE admits a natural extension

expE : CoCart⊗ → PrFibL,⊗

to a Catop∞ -lax symmetric monoidal functors, in the sense of Definition A.3 in loc. cit.

2.3. Section functors. Given a cocartesian fibration A→ X we can associate to it two
different∞-categories:

ΣX (A/X ) := Fun/X (X ,A) and Σcocart
X (A/X ) := Funcocart

/X (X ,A) .

These are respectively the∞-categories of sections and of cocartesian sections. It follows
from [19, Corollary 3.23 & Variant 3.24] that these constructions promote to global
functors

Σ, Σcocart : CoCart→ Cat∞ ×Catop∞ and Σ, Σcocart : PrFibL → PrL ×Catop∞ .

The same considerations of loc. cit. shows that the same holds for COCART in place of
CoCart.

Remark 2.3.1. The functorΣcocart
X : PrFibL → PrL admits a monoidal left adjoint TrivX : PrL →

PrFibL informally given by E → (E × X )/X . In particular, given an object A → X of
PrFibL and E , E ′ ∈ PrL, we have

expE (A/X )⊗X TrivX (E ′) ' expE⊗E ′(A/X ) .

Notation 2.3.2. Often we will also write Σ and Σcocart for the induced functors PrFibL →
PrL and its variants obtained composing the above functors with the canonical projection
PrL ×Catop∞ → PrL.

The subtlety here is in the great amount of functoriality encoded in Σ and Σcocart.
To fix ideas, let us discuss the case of PrFibL and the functor Σcocart, although similar
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considerations will apply to both CoCart and COCART in place of PrFibL and Σ in place
of Σcocart. Morphisms in PrL are commutative diagrams of the form

B BX A

Y X

vu

f

where the square is a pullback and v preserves cocartesian edges. Applying Σcocart, this
diagram is sent to the composition

Funcocart
/Y (Y ,B) Funcocart

/X (X ,BX ) Funcocart
/X (X ,A) .u∗ v◦−

Concretely, u∗ takes a cocartesian section s : Y → B, considers the composition s ◦ f
and applies the universal property of pullbacks to produce a section u∗(s) : X → BX of
BX → X . An immediate check reveals that this is again a cocartesian section, so that u∗

is in fact well defined. On the other hand, v ◦− takes a cocartesian section t : X → BX to
the composite cocartesian section v ◦ t : X → A. That these operations can be performed∞-functorially in PrFibL is precisely the content of [19, Corollary 3.23].

We will often be interested in taking sections of exponential constructions. The
following result is essentially a consequence of the theory of lax limits developed in [10]:

Proposition 2.3.3 (See [19, Proposition 4.1]). Let E be a presentable ∞-category and let
A→ X be a cocartesian fibration. There are canonical equivalences

Fun(A, E) ' ΣX (expE (A/X )) ' Fun/X (X , expE (A/X )) .

Warning 2.3.4. If instead of applying ΣX we use Σcocart
X , we obtain a full subcategory

Funcocart(A, E) of Fun(A, E). We refer to objects in Funcocart(A, E) as cocartesian functors.
We will provide a in Proposition 4.2.3 a characterization intrinsic to Fun(A, E) of what it
means for a functor F : A→ E to be cocartesian.

3. THE SPECIALIZATION EQUIVALENCE

3.1. Global functoriality statements. Fix a cocartesian fibration p : A→ X as well as a
presentable∞-category E . Write

pE : expE (A/X )→ X
for the structural map of the exponential construction of p. Recall from Proposition 2.3.3
that there is a canonical equivalence

(3.1.1) spEX ,p : Fun(A, E) ' Fun/X (X , expE (A/X )) ,

which we refer to as the specialization equivalence. When X and E are clear out of the
context, we will use the notation spA (or even just sp) instead of spEX ,p.
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The right hand side of (3.1.1) is functorial in p : A→ X with respect to the morphisms
in CoCart. Explicitly, this means that to every morphism (2.1.3)

B BX A

Y X

vu

f

one can first apply expE : CoCart→ PrFibL to obtain the morphism

expE (B/Y) expE (BX/X ) expE (A/X )

Y X

Eu Ev!

f

and then apply the section functor Σ : PrFibL → PrL to obtain the composition

Fun/Y (Y , expE (B/Y)) Fun/X (X , expE (BX/X )) Fun/X (X , expE (A/X )) .
Σ(Eu) Σ(Ev! )

We defer to [19] for the justification that these operations can be performed in an∞-
functorial way. The goal of this section is to explain how this functoriality interacts
with the specialization equivalence. More precisely, observe that applying (3.1.1) to
every term in the above composition, we obtain respectively Fun(B, E), Fun(BX , E) and
Fun(A, E). The following is the main result of this section:

Proposition 3.1.2.
(1) There exists a canonically commutative square

(3.1.3)

Fun/Y (Y , expE (B/Y)) Fun/X (X , expE (BX/X ))

Fun(B, E) Fun(BX , E) ,

Σ(Eu)

spB spBX

u∗

providing a canonical identification Σ(Eu) ' u∗.
(2) There exists a canonically commutative square

(3.1.4)

Fun/X (X , expE (BX/X )) Fun/X (X , expE (A/X ))

Fun(BX , E) Fun(A, E) ,

Σ(Ev! )

spBX spA

v!

providing a canonical identification Σ(Ev! ) ' v!.

Before starting the proof, let us record a couple of handy consequences. First, recall
from Corollary 2.2.8 that the fiber of expE (A/X ) at x ∈ X is canonically identified
with Fun(Ax, E). In particular, this means that for a functor F : A→ E , the value of its
specialization sp F at an object x ∈ X is a functor

(sp F)x : Ax → E .
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We have:

Corollary 3.1.5. Let jx : Ax → A be the natural inclusion. Then there is a canonical identifica-
tion

(sp F)x ' j∗x(F) .
In particular, for every a ∈ A we have a canonical identification

(sp F)p(a)(a) ' F(a) ∈ E .

Proof. The pullback square

A Ax

X ∗

p

x

defines a morphism from A → X to Ax → ∗ in CoCart. It is then enough to apply
Proposition 3.1.2-(1) to this morphism. �

Corollary 3.1.6. Consider a commutative diagram in CoCart

BY AY

Y B A

X

vY

uAuB

v

whose diagonal squares are pullback. Let E be a presentable∞-category. Then, the squares

Fun(BY , E) Fun(AY , E)

Fun(B, E) Fun(A, E)

v∗Y

u∗B

v∗

u∗A and

Fun(BY , E) Fun(B, E)

Fun(AY , E) Fun(A, E)

u∗B

v∗Y

u∗A

v∗

are respectively horizontally left and right adjointable.

Proof. It is enough to prove the left adjointability statement, which follows by applying
the section functor to the commutative diagram

expE (BY/Y) expE (AY/Y)

Y expE (B/X ) expE (A/X )

X

EvY!

EuAEuB

Ev!

supplied by Corollary 2.2.7 and then invoke Proposition 3.1.2. �
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3.2. Some categorical calculus. As a preliminary for Proposition 3.1.2, we revisit and
extend part of the content of [11].

Recollection 3.2.1. Let f : X → Y be a functor of∞-categories. The pullback

f∗ := X ×Y −: Cat∞/Y → Cat∞/X

preserves (co)cartesian fibrations and therefore it gives rise to functors

f∗ : CartY → CartX and f∗ : CoCartY → CoCartX .

Under the straightening equivalences, we see these functors admit both a left and a right
adjoint, denoted respectively

fc
! , f

c
∗ : CartX → CartY and fcc

! , fcc
∗ : CoCartX → CoCartY .

Recall the following standard notation in category theory:

Notation 3.2.2. Let X be an∞-category. We write Tw(X ) for the associated∞-category
of twisting arrows, see [15, §5.2.1] and λ : Tw(X ) → X × X op for the right fibration
constructed in [15, Proposition 5.2.1.11]. Given a functor

F : X ×X op → Cat∞ ,

we respectively write ∫X
F and

∫
X
F

for the coend and the end of F, i.e. for the colimit and the limit of the composite

Tw(X ) X ×X op Cat∞ .λ F

Notation 3.2.3. Write πX : X ×X op → X and πX op : X ×X op → X op for the canonical
projections. Given two functors

F : X → Cat∞ and G : X op → Cat∞ ,

we write F�G for the functor

F�G := π∗X (F)× π∗X op(G) .

When A→ X is a cocartesian fibration and B → X is a cartesian fibration, we write∫X
A� B :=

∫X
ΥA �ΥB and

∫
X
A� B :=

∫
X
ΥA �ΥB .

To state the first fundamental result, we need to introduce one final notation:

Notation 3.2.4. Let X and E be two∞-categories. ForA→ X a cartesian fibration, write
ΥA : X op → Cat∞ for its straightening and EAcc for the cocartesian fibration classifying the
functor

Fun(ΥA, E) : X → Cat∞ .
Similarly, for a cocartesian fibration B → A, write ΥB : X → Cat∞ for its straightening
and EBc for the cartesian fibration classifying the functor

Fun(ΥB , E) : X op → Cat∞ .
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Notice that given a functor f : Y → X , there are canonical equivalences

(3.2.5) f∗EAcc ' E
f∗(A)
cc and f∗EBc ' E

f∗(B)
c .

Lemma 3.2.6. Let f : X → Y be a functor of∞-categories.
(1) For B → X a cartesian fibration and A→ Y a cocartesian fibration, there is a canonical

equivalence ∫Y
A� fc

! (B) '
∫X
f∗(A)� B .

(2) For B → X a cocartesian fibration and A→ Y a cartesian fibration, there is a canonical
equivalence ∫Y

A� fcc
! (B) '

∫X
f∗(A)� B .

Proof. To prove (1), it suffices to fix E ∈ Cat∞ and observe that there is the following
chain of natural equivalences:

MapCat∞
( ∫Y

A� fc
! (B), E

)
'
∫
Y

MapCat∞(ΥA �Υfc!(B), E)

'
∫
Y

MapCat∞(Υfc!(B), Fun(ΥA, E))

' MapCartY
(fc

! (B), EAc ) By [11, Prop. 6.9]

' MapCartX
(B, f∗EAc )

' MapCartX
(B, E f

∗(A)
c ) By eq. (3.2.5)

'
∫
X

MapCat∞(ΥB , Fun(Υf∗(A), E))

' MapCat∞
( ∫X

f∗(A)� B, E
)

,

so the conclusion follows from the Yoneda lemma. As for (2), it follows by the same
argument, using EAcc instead of EAc and working in CoCartY instead of in CartY . �

Next, recall the following:

Theorem 3.2.7 ([11, Theorem 4.5]). Let X be an∞-category. The forgetful functor

UX : CartX → Cat∞/X

admits a left adjoint FX .

Remark 3.2.8. Given a functor f : Y → X , we refer to FX (f) as the free cartesian fibration
over X generated by f. It follows from the explicit description provided in [11, Definition
4.1 & Remark 4.4], that FX satisfies the following two conditions:

(1) when f = idX , FX (idX ) = X [1], and the structural map is ev1 : X [1] → X . In other
words, FX (idX ) classifies the functor

X−/ : X op → Cat∞ .
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(2) For a general f : Y → X , one has the following commutative diagram

FX (f) X [1] X

Y X ,

ev1

ev0

f

where the left square is a pullback and where the top horizontal composition is
the structural map of the cartesian fibration FX (f).

Lemma 3.2.9. Let f : X → Y be a functor of∞-categories. Then there is a canonical equivalence

fc
! (FX (idX )) ' FY (f)

in CartY .

Proof. Indeed, for every cartesian fibration B → Y , we have:

MapCartY
(f!(FX (idX )),B) ' MapCartX

(FX (idX ), f∗(B))
' Map/X (X , f∗(B))
' Map/Y (X ,B)
' MapCartY

(FY (f),B) ,

so the conclusion follows from the Yoneda lemma. �

Finally, observe that [11, Proposition 7.1] can be rewritten as follows:

Corollary 3.2.10. Let X be an∞-category and let A → X be a cocartesian fibration. Then
there is a canonical equivalence

A '
∫X
A� FX (idX )

in Cat∞.

3.3. Exponential pullback vs. global pullback. Before proving Proposition 3.1.2-(1),
let us revisit the proof of the equivalence (3.1.1) in terms of the categorical calculus we
just introduced.

Recollection 3.3.1 ([19, Proposition 4.1]). Fix a cocartesian fibration p : A → X and
a presentable ∞-category E . Using the equivalence PrL ' (PrR)op, we see that the
presentable fibration expE (A/X )→ X is at the same time a cocartesian and a cartesian
fibration. Seen as a cartesian fibration, it classifies the functor

Fun(ΥA, E) : X op → PrR .
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We use this second description to compute the sections of expE ,X (A). Then the special-
ization equivalence spA is identified with the following composition of equivalences:

Fun/X (X , expE (A/X )) ' Funcart
/X (FX (idX ), expE (A/X ))

'
∫
X

Fun(X−/, Fun(ΥA, E)) By [11, Prop. 6.9] & Rem. 3.2.8

' Fun
( ∫X

A� FX (idX ), E
)

' Fun(A, E) By Cor. 3.2.10.

We are now ready for:

Proof of Proposition 3.1.2-(1). Fix a pullback square

(3.3.2)
B A

X Y

u

f

where the vertical functors are cocartesian fibrations. Recall from Proposition 2.2.6-(1)
the canonical equivalence

f∗(expE (A/Y)) ' expE (B/X )

We therefore obtain a canonical equivalence

ΣX (expE (B/X )) = Fun/X (X , expE (B/X ))

' Fun/Y (X , expE (A/Y))
' Funcart

/Y (FY (f), expE (A/Y)) .

Similarly,
ΣY (expE (A/Y)) ' Funcart

/Y (FY (idY ), expE (A/Y)) .

Since idY is the final object in Cat∞/Y , we find a canonical map

αf : FY (f)→ FY (idY )

in CartY between free cartesian fibrations, and unwinding the definitions we find that
the sections of the exponential pullback Σ(Eu) are canonically identified with the functor

α∗f : Funcart
/Y (FY (idY ), expE (A/Y))→ Funcart

/Y (FY (f), expE (A/Y)) .

Applying the same chain of equivalences of Recollection 3.3.1, we find a canonical
identification of α∗f with the map

Fun
( ∫Y

A� FY (idY ), E
)→ Fun

( ∫Y
A� FY (f), E

)
induced by pullback along the canonical map

βf : A '
∫Y
A� FY (idY )→ ∫Y A� FY (f)
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constructed out of αf. Recall now from Lemma 3.2.9 that there is a canonical equivalence

FY (f) ' fc
! (FX (idX )) ,

so that Lemma 3.2.6 and Corollary 3.2.10 supply a canonical identification∫Y
A� FY (f) '

∫Y
A� fc

! (FX (idX )) '
∫X
f∗(A)� FX (idX ) ' B .

Unwinding the definitions, we see that βf is identified with u, whence the conclusion.
�

3.4. Exponential induction vs. global induction. We now deal with Proposition 3.1.2-
(2). Fix an∞-category X and consider a morphism

B A

X

v

in CoCartX . Applying expE (−/X ), we find the morphism

expE (B/X ) expE (A/X )

X

Ev!

in PrFibL
X .

Lemma 3.4.1. The functor Ev! admits a right adjoint

Ev,∗ : expE (A/X )→ expE (B/X )

relative to X .

Proof. Since both expE (A/X ) and expE (B/X ) are cocartesian fibrations and Ev! pre-
serves cocartesian edges, applying [15, Proposition 7.3.2.6] shows that it is enough to
prove that for every x ∈ X , the induced functor on the fibers at x

Ev!,x : expE (A/X )x → expE (B/X )x

admits a right adjoint. However, Corollary 2.2.8 identifies this functor with the left Kan
extension

vx,! : Fun(Ax, E)→ Fun(Bx, E) ,
which is tautologically left adjoint to the restriction v∗x. The conclusion follows. �

At this point, Proposition 3.1.2 immediately follows from the following more precise
statement:

Proposition 3.4.2. Keeping the same notations as above, both diagrams

Fun/X (X , expE (A/X )) Fun/X (X , expE (B/X ))

Fun(A, E) Fun(B, E)

ΣX (Ev! )

spA spB

v!
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and

Fun/X (X , expE (B/X )) Fun/X (X , expE (A/X ))

Fun(B, E) Fun(A, E)

ΣX (Ev,∗)

spA spB

v∗

are canonically commutative.

Proof. Since Ev! is left adjoint to Ev,∗ by Lemma 3.4.1, it follows that ΣX (Ev! ) is left
adjoint to ΣX (Ev,∗). Since spA and spB are equivalences, it is then enough to prove the
commutativity of the second diagram. Notice that since v preserves cocartesian arrows,
it induces a natural transformation

αv : ΥA ×X−/ → ΥB ×X−/

of functors X ×X op → Cat∞. Following the construction of the specialization equiva-
lence (see Recollection 3.3.1), we reduce to check that the map

A '
∫X
A� FX (idX )→ ∫X B � FX (idX ) ' B

induced by αv is canonically identified with v. This follows from Corollary 3.2.10 and
the Yoneda lemma. �

3.5. Change of coefficients. It follows from [19, Variant 3.20 & Remark 3.21-(1)] and
the functoriality of the tensor product of presentable∞-categories that the exponential
construction expE depends functorially on E . In other words, we have a bifunctor

exp : CoCart× PrL → PrFibL ,

that sends a pair (p : A→ X , E) to the presentable fibration p : expE (A/X )→ X .

Let f : E → E ′ be a morphism in PrL and fix a cocartesian fibration p : A → X . The
functor f induces morphisms

fA/X : expE (A/X )→ expE ′(A/X ) and f : Fun(A, E)→ Fun(A, E ′) ,

in PrFibL and in PrL, respectively. Here we wrote f in place of the more accurate f ◦ (−),
to keep the notations light. These two operations are related by the following relation:

Proposition 3.5.1. Keeping the above notations, the diagram

Fun/X (X , expE (A/X )) Fun/X (X , expE ′(A/X ))

Fun(A, E) Fun(A, E ′)

ΣX (f
A/X )

spEA spE
′
A

f

commutes.

Proof. This simply follows unraveling the chain of equivalences in Recollection 3.3.1 and
observing that they are natural in E . �

Finally, let us observe that fA/X is natural in A→ X :
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Proposition 3.5.2. Let
B BX A

Y X

vu

f

be a morphism in CoCart and let f : E → D be a morphism in PrL. Then the diagram

expE (B/Y) expE (BX/X ) expE (A/X )

expD(B/Y) expD(BX/X ) expD(A/X )

fB/Y

Eu Ev!

fBX /X fA/X

Du Dv!

commutes and the left square is a pullback. In particular, the diagram

Fun(B, E) Fun(BX , E) Fun(A, E)

Fun(B,D) Fun(BX ,D) Fun(A, E)

f

u∗

f

v!

f

u∗ v!

commutes.

Proof. The first half simply follows from the bifunctoriality of exp : CoCart× PrL →
PrFibL. The second half follows applying Σ and combining Propositions 3.1.2 and 3.5.1.
Alternatively, the second half can be proven directly observing that, since f commutes
with colimits, it also commutes with the formation of arbitrary left Kan extensions. �

4. COCARTESIAN FUNCTORS

4.1. The space of specialization morphisms. Fix a cocartesian fibration p : A → X as
well as a presentable∞-category E . Write

pE : expE (A/X )→ X
for the structural morphism of the exponential construction of p. Recall from Proposi-
tion 2.3.3 that there is a canonical equivalence

spEX ,p : Fun(A, E) ' Fun/X (X , expE (A/X )) ,

which we refer to as the specialization equivalence. When X , p and E are clear out of the
context, we drop the decorations and write sp instead of spEX ,p.

Remark 4.1.1. Recall from Example 2.2.2-(1) that the fiber of expE (A/X ) at x ∈ X is
canonically identified with Fun(Ax, E). In particular, for F : A→ E , the value (sp F)x of
the section sp F on x is a functor (sp F)x : Ax → E . Denoting by jx : Ax → A the natural
inclusion, Corollary 3.1.5 supplies a canonical identification (sp F)x ' j∗x(F).

Definition 4.1.2. Let F ∈ Fun(A, E) be a functor and let γ : x→ y be a morphism in X .
The space of specialization morphisms for F relative to γ is the space SPγ(F)

(sp F)x G (sp F)y
β α
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where β is a pE -cocartesian lift of γ in expE (A/X ). In this case, we say that α is a
specialization morphism for F relative to γ.

Remark 4.1.3. Since expE (A/X ) is also a cartesian fibration, there is a dual notion of
cospecialization morphism, that are obtained choosing pE -cartesian lifts of γ.

We immediately discuss a fundamental example.

Notation 4.1.4. Let p : A → X be a cocartesian fibration. For σ : ∆n → X , write
Aσ := ∆n ×X A and pσ : Aσ → ∆n for the induced cocartesian fibration. Notice that
Proposition 2.2.6 provides a canonical and functorial identification

expE (A/X )σ ' expE (Aσ/∆n) .

Example 4.1.5. Let p : A→ X be a cocartesian fibration and let γ : x→ y be a morphism
in X . Choose a straightening

f : Ax → Ay
for pγ : Aγ → ∆1. The functor f fits in the following triangle

Ax Ay

A

fγ

jx jy

where jx and jy denote the canonical inclusions of the fibers of p inside A. This triangle
is not commutative but we can choose a natural transformation

s : jx → jy ◦ fγ
in Fun(Ax, E) with the property that for every a ∈ Ax the morphism sγ(a) : jx(a) →
jy(fγ(a)) is p-cocartesian in A. Applying the contravariant functor Fun(−, E) we obtain
a natural transformation

s∗ : j∗x → f∗γ ◦ j∗y
of functors from Fun(A, E)→ Fun(Ax, E). There is therefore an induced Beck-Chevalley
morphism

(4.1.6) αf,s : fγ,! ◦ j∗x → j∗y .

Unraveling the definition of expE (A/X ) we see that for every F : A → E , the induced
morphism

αf,s(F) : fγ,!j
∗
x(F)→ j∗y(F)

is a specialization morphism for F relative to γ.

Remark 4.1.7. Let p : A → X be a cocartesian fibration and let F : A → E be a fixed
functor. Since pE : expE (A/X ) → X is a cocartesian fibration, it immediately follows
that the space SPγ(F) is contractible. Observe that, in the setting of Example 4.1.5, neither
f nor s are uniquely determined in a strict sense (although the spaces of choices for
the pair (f, s) is contractible). Every such choice gives rise to an element SPγ(F), whose
underlying specialization morphism is αf,s(F). The contractibility of SPγ(F) shows that
the actual choices for f and s are immaterial as they give rise to equivalent specialization
morphisms, and this in a homotopy unambiguous way.
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Example 4.1.8. We maintain the notation introduced in Example 4.1.5. It is worth
unpacking the specialization equivalence when X = ∆1. Write ∆1 = {γ : x → y} and
fix a cocartesian fibration p : A→ ∆1 together with a straightening fγ : Ax → Ay and a
natural transformation s : jx → jy ◦ fγ as in Example 4.1.5. Notice that Tw(∆1) can be
represented as

x

x y y

x y,

γ
γ

γ

where the vertical arrows are the objects of Tw(∆1). In other words, Tw(∆1) is equivalent
to Span = {∗← ∗→ ∗}. It follows that the chain of equivalences of Recollection 3.3.1 in
this case simply asserts that the square

Fun(A, E) Fun(Ay, E)

Fun(∆1, Fun(Ax, E)) Fun(Ax, E).

j∗y

f∗γ

ev1

is a pullback. Unraveling the definitions, we see that the left vertical map sends F : A→ E
to s∗ : j∗x(F)→ f∗γ(j

∗
y(F)). Vice-versa, given

Fx : Ax → E , Fy : Ay → E
and a natural transformation

α : Fx → f∗γ(Fy) ,
we can produce a functor F : A→ E together with the following data:

(1) equivalences βx : Fx ' j∗x(F) and βy : Fy ' j∗y(F);
(2) whenever φ : a→ fγ(a) is a p-cocartesian morphism in A, an equivalence

βa : F(φ) ' α(a)
in MapE (Fx(a), Fy(fγ(a))).

The above analysis allows to obtain an improvement on Corollary 3.1.5. To state it,
we need to first introduce the following:

Notation 4.1.9. Let γ : x → y be a morphism in X . Let F ∈ Fun(Ax, E) and G ∈
Fun(Ay, E) and let α : F→ G be a morphism in expE (A/X ) lying over γ. We can factor
α as

F G ′ G ,
α0 α1

where α1 is pE -cartesian. Unraveling the definitions, we see that for every p-cocartesian
lift φ : a → b of γ, α1 induces a canonical equivalence α1(φ) : G ′(a) ' G(b), and in
particular we obtain a well defined morphism

α(φ) := α1(φ) ◦ α0(a) : F(a)→ G(b)
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in E .

Corollary 4.1.10. Let F : A → E be a functor and let φ : a→ b be a p-cocartesian morphism
in A. Then there is a canonical identification

F(φ) ' (sp F)p(φ)(φ)

of morphisms in E .

Proof. Using Proposition 3.1.2-(1) we can assume without loss of generality that X = ∆1.
Choose a straightening fγ : Ax → Ay together with a morphism s : jx → jy ◦ fγ as in
Example 4.1.5. Using Corollary 3.1.5 we see that (sp F)γ can be factored as

j∗x(F) f∗γ(j
∗
y(F)) j∗y(F) ,s∗

where the second morphism is pE -cartesian. With these choices, the notation introduced
in Notation 4.1.9 collapses to (sp F)p(φ)(a) ' s∗(a), so the conclusion follows from the
analysis of the specialization equivalence over ∆1 carried out in Example 4.1.8. �

4.2. Cocartesian functors. We fix as usual a cocartesian fibration p : A → X and a
presentable∞-category E . We let pE : expE (A/X )→ X be the canonical projection.

Definition 4.2.1. Let F : A → E be a functor and let γ : x→ y be a morphism in X . We
say that F is cocartesian at γ if every specialization morphism for F relative to γ is an
equivalence in Fun(Ay, E).

We say that F is cocartesian if it is cocartesian at every morphism γ of X . We write
Funcocart(A, E) for the full subcategory of Fun(A, E) spanned by cocartesian functors.

Remark 4.2.2. Recall from Remark 4.1.7 that SPγ(F) is a contractible space. In particular,
in order to check that F is cocartesian at γ, it is enough to check that there exists one
specialization morphism α that is an equivalence.

We now collect a couple of elementary facts concerning these objects. We keep the
cocartesian fibration p : A → X and the presentable ∞-category E fixed in all the
following statements:

Proposition 4.2.3. Let F : A → E be a functor and let γ : x → y be a morphism in X . The
following statements are equivalent:

(1) F is cocartesian at γ;

(2) the specialization sp F : X → expE (A/X ) takes γ to a pE -cocartesian edge;

(3) let fγ : Ax → Ay be any straightening for pγ : Aγ → ∆1. Then the canonical Beck-
Chevalley transformation (4.1.6)

fγ,!j
∗
x(F)→ j∗y(F)

is an equivalence.
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Proof. Any element of SPγ(F) corresponds to a factorization

(sp F)x G

(sp F)y

β

(sp F)γ
α

inside expE (A/X ), where β is pE -cocartesian and α is the associated specialization
morphism. It follows that (sp F)γ is pE -cocartesian if and only if α is an equivalence.
This shows that (1)⇔ (2). The equivalence (2)⇔ (3) follows now from Example 4.1.5. �

Corollary 4.2.4. Denoting ΥA : X → Cat∞ the straightening of the cocartesian fibration
A→ X , there are canonical equivalences

Funcocart(A, E) ' Σcocart
X (expE (A/X )) ' lim

X
Fun!(ΥA, E)

In particular:
(1) Funcocart(A, E) is presentable;

(2) if E is stable, Funcocart(A, E) is stable.

Proof. Combining the specialization equivalence (3.1.1) and the equivalence (1)⇔ (2)
of Proposition 4.2.3, we see that Funcocart(A, E) coincides with the full subcategory of
Fun/X (X , expE (A/X )) spanned by cocartesian sections This proves the first equiva-
lence, and the second follows directly from [14, Proposition 3.3.3.1]. For point (1) it is
now sufficient to observe that the functor Fun!(ΥA, E) : X → Cat∞ takes values in PrL,
so the conclusion follows from [14, Propositon 5.5.3.13]. Similarly, point (2) follows from
[15, Theorem 1.1.4.4]. �

Warning 4.2.5. There is another natural condition that we can impose on a functor
F : A→ E : namely, we can ask that F takes p-cocartesian arrows in A to equivalences in
E . This condition cuts a full subcategory Fun ′(A, E) of Fun(A, E), that however does
not coincide with Funcocart(A, E). Indeed, [14, Corollary 3.3.4.3] yields an identification

Fun ′(A, E) ' Fun
(

colim
X

ΥA, E
)
' lim
X op

Fun∗(ΥA, E) ' Σcart
X (expE (A/X )) ,

where Σcart
X denotes the functor of cartesian sections.

Corollary 4.2.6. A functor F : A→ E is cocartesian at every equivalence of X .

Proof. Immediate from the equivalence (1)⇔ (2) of Proposition 4.2.3 and [14, 2.4.1.5]. �

Corollary 4.2.7. Let
y

x z.

γ1γ0

γ2

be a commutative triangle in X . Let F : A→ E be a functor, and assume that it is cocartesian at
γ0. Then F is cocartesian at γ1 if and only if it is cocartesian at γ2.

Proof. Immediate from the equivalence (1) ⇔ (2) of Proposition 4.2.3 and from [14,
2.4.1.7]. �
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Corollary 4.2.8. Let p : A→ X be a cocartesian fibration. Let γ : x→ y be a morphism in X .
Let E be a presentable∞-category. Then, the full subcategory of Fun(A, E) spanned by functors
cocartesian at γ is stable under colimits.

Proof. This follows from the equivalence (1)⇔ (3) in Proposition 4.2.3 and the fact that
the functors fγ,!, j∗x and j∗y commute with colimits. �

Proposition 4.2.9. Let p : A → X be a cocartesian fibration and let E be a presentable ∞-
category. Then Funcocart(A, E) is stable under colimits Fun(A, E). In particular, Funcocart(A, E)
is a coreflective subcategory of Fun(A, E), that is the inclusion

(4.2.10) Funcocart(A, E) ↪→ Fun(A, E)

admits a right adjoint.

Proof. We know from Corollary 4.2.4 that Funcocart(A, E) is presentable. It is thus enough
to check that Funcocart(A, E) is stable under colimits in Fun(A, E), which follows from
Corollary 4.2.8. �

Definition 4.2.11. Let p : A → X be a cocartesian fibration and let E be a presentable∞-category. We denote by

(−)cocart : Fun(A, E)→ Funcocart(A, E)

the right adjoint of the inclusion (4.2.15), and refer to (−)cocart as the cocartesianization
functor.

Remark 4.2.12. The functor (−)cocart can be explicitly computed in some specific situa-
tions. See Corollary 4.6.12.

Under extra stability and fiberwise compactness conditions, Corollary 4.2.8 and
Proposition 4.2.9 have the following counterparts for limits :

Lemma 4.2.13. Let p : A→ X be a cocartesian fibration and let γ : x→ y be a morphism in
X such that Ax is compact and Ay is proper (see Definition A.1.1). Let E be a presentable stable∞-category. Then, the full subcategory of Fun(A, E) spanned by functors cocartesian at γ is
closed under limits.

Proof. This follows from the equivalence (1)⇔ (3) in Proposition 4.2.3 and the fact that
the functors fγ,!, j∗x and j∗y commute with limits in virtue of Proposition A.2.3. �

Proposition 4.2.14. Let p : A→ X be a cocartesian fibration with compact and proper fibers.
Let E be a presentable stable∞-category. Then Funcocart(A, E) is stable under limits Fun(A, E).
In particular Funcocart(A, E) is a reflective subcategory of Fun(A, E), that is the inclusion

(4.2.15) Funcocart(A, E) ↪→ Fun(A, E)

admits a left adjoint.

Proof. We know from Corollary 4.2.4 that Funcocart(A, E) is presentable. It is thus enough
to check that Funcocart(A, E) is stable under limits in Fun(A, E), which follows from
Lemma 4.2.13. �
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4.3. Functoriality of cocartesian functors. We fix as usual a cocartesian fibration p : A→
X and a presentable∞-category E . We saw in Corollary 4.2.4 that there is a canonical
equivalence

Funcocart(A, E) ' Σcocart(expE (A/X )) .

Therefore, it follows from [19, Corollary 3.23] that this construction depends functorially
on the cocartesian fibration A → X seen as an element of CoCart. We now make this
explicit in terms of the lax functoriality of Fun(A, E) ' Σ(expE (A/X )) in A→ X .

Proposition 4.3.1. Let

B BX A

Y X

vu

f

be a morphism in CoCart. Then:

(1) if F : B → E is a cocartesian functor, the same goes for u∗(F) : BX → E ;

(2) if G : BX → E is a cocartesian functor, then the same goes for v!(G) : A→ E .

In particular the functors

u∗ : Fun(B, E)→ Fun(BX , E) and v! : Fun(BX , E)→ Fun(A, E)

restrict to well-defined functors

u∗ : Funcocart(B, E)→ Funcocart(BX , E) and v! : Funcocart(BX , E)→ Funcocart(A, E) .

This proposition results of the following two more precise lemmas:

Lemma 4.3.2. Let

A B

X Y

u

f

be a pullback square in Cat∞, where the vertical morphisms are cocartesian fibrations. Fix a
morphism γ in X and a functor F : B → E . Then u∗(F) is cocartesian at γ if and only if F is
cocartesian at f(γ).

Proof. Under the specialization equivalence (3.1.1) and Proposition 3.1.2-(1), the state-
ment follows from Proposition 4.2.3 and from [14, Proposition 2.4.1.3-(2)] applied to the
square

expE (A/X ) expE (B/Y)

X Y ,

Eu

f

which is a pullback thanks to Proposition 2.2.6-(1). �
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Lemma 4.3.3. Let X be an∞-category and consider a morphism

A B

X

v

in CoCartX . Let γ be a morphism in X and let F : A→ E be a functor. If F is cocartesian at γ,
then the same goes for v!(F).

Proof. In virtue of Proposition 4.2.3, we have to prove that the section

sp(v!(F)) : X → expE (B/X )

takes γ to a cocartesian edge in expE (B/X ). Using Proposition 3.1.2-(2), we find a
canonical identification

sp(v!(F)) ' Ev! ◦ sp(F) ,

where Ev! : expE (A/X )→ expE (B/X ) is the exponential induction functor. The conclu-
sion now follows from Proposition 2.2.6-(2), that guarantees that Ev! preserves cocartesian
edges. �

We conclude with a handy consequence:

Corollary 4.3.4. In the setting of Lemma 4.3.2, the composition

ucocart
∗ := (−)cocart ◦ u∗ : Funcocart(B, E)→ Funcocart(A, E)

is right adjoint to the pull-back functor u∗ : Funcocart(A, E)→ Funcocart(B, E).

Proof. The functors at play are well-defined from Proposition 4.3.1-(1) and Defini-
tion 4.2.11. Corollary 4.3.4 is then a routine computation. �

Lemma 4.3.5. Let
B BX A

Y X

vu

f

be a morphism in CoCart. Assume that A→ X and B → X have compact and proper fibers,
and that E is presentable stable. Then, the functors

u∗ : Funcocart(B, E)→ Funcocart(BX , E) and v! : Funcocart(BX, E)→ Funcocart(A, E)
commute with limits and colimits.

Proof. From Proposition 4.2.9 and Proposition 4.2.14, Funcocart(B, E) and Funcocart(BX , E)
are stable under limits and colimits in Fun(B, E) and Fun(BX , E) respectively. Hence, it
is enough to show that the functors

u∗ : Fun(B, E)→ Fun(BX , E) and v! : Fun(BX , E)→ Fun(A, E)
commute with limits and colimits. For the former, this is obvious. For the latter, this
follows from Proposition A.2.3. �
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4.4. Van Kampen for cocartesian functors. Consider the following general fact:

Lemma 4.4.1 (Van Kampen for filtered functors). Let X• : I → Cat∞ be a diagram with
colimit X . Let p : A→ X be a cocartesian fibration and set

A• := X• ×X A : I→ Cat∞ .

Then the canonical morphism
colim
i∈I
Ai → A

is an equivalence. In particular, for every presentable∞-category E the canonical morphism

(4.4.2) Fun(A, E)→ lim
i∈Iop

Fun∗(Ai, E)

is an equivalence.

Proof. Since p : A → X is a cocartesian fibration, it is in particular an exponentiable
fibration thanks to [1, Lemma 2.15]. In particular, the functor

p∗ : (Cat∞)/X → (Cat∞)/A

is a left adjoint. It follows in particular that it preserves all colimits. Now the conclusion
follows from the fact that for every∞-category C, the forgetful functor

(Cat∞)/C → Cat∞
is conservative and preserves all colimits. �

To prove a Van Kampen result for cocartesian functors, we need a couple of categorical
preliminaries. Recall the following definitions:

Definition 4.4.3. The maximal spine of the standard n-simplex ∆n is the sub-simplicial
set formed by the consecutive 1-simplexes ∆n

{0,1},∆
n
{1,2}, . . . ,∆

n
{n−1,n}.

Remark 4.4.4. Notice that the maximal spine of ∆2 coincides with Λ21. On the other
hand, for n > 3 every horn Λni cointains the maximal spine of ∆n.

Definition 4.4.5. Let C be a quasi-category and let S ⊂ C be a collection of 1-simplexes.
We say that S is closed under identities if whenever f : x→ y belongs to S, then idx and idy
belong to S as well.

Construction 4.4.6. Let C be a quasicategory and let S ⊂ C be a collection of 1-simplexes.
Define CS as the full sub-simplicial set of C defined by the following condition: an
n-simplex σ : ∆n → C belongs to CS if and only if the restriction of σ to the maximal
spine of ∆n factors through S.

Lemma 4.4.7. Let C be a quasi-category and let S ⊂ C be a collection of 1-simplexes. If S is
closed under identities, then CS is the smallest full sub-quasicategory of C containing C.

Proof. Let C ′ be the smallest full sub-quasicategory of C containing C. It immediately
follows from Remark 4.4.4 that CS is a quasi-category, and therefore that C ′ ⊆ CS.
Vice-versa, iteratively applying the lifting condition against inner horns we deduce
that any sub-quasicategory containing S must contain CS. Thus, C ′ = CS as full sub-
quasicategories of C. �
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Notation 4.4.8. Let f : Y → X be a morphism of quasicategories. We denote by Sf the
collection of 1-simplexes of X that lie in the essential image of f.

Lemma 4.4.9. Let X• : I → Cat∞ be a diagram with colimit X . Let fi : Xi → X be the
structural morphisms and define

S :=
⋃
i∈I
Sfi .

Then S is closed under identities and the inclusion XS ⊆ X is an equivalence in Cat∞.

Proof. That S is closed under identities simply follows from the definitions. Notice
that XS is itself an∞-category and that the inclusion i : XS ↪→ X is fully faithful. By
definition, every fi factors as

fi : Xi → XS .

Therefore, the universal property of the colimit provides a canonical map p : X → XS
together with an equivalence i ◦ p ' idX . This implies that i is essentially surjective.
Being already fully faithful, it follows that it is an equivalence. �

We are now ready for:

Proposition 4.4.10 (Van Kampen for cocartesian functors). LetX• : I→ Cat∞ be a diagram
with colimit X . Let p : A→ X be a cocartesian fibration and set

A• := X• ×X A : I→ Cat∞ .

Let E be a presentable∞-category. Then the equivalence of Lemma 4.4.1 restricts to an equiva-
lence

Funcocart(A, E) ' lim
i∈I

Funcocart(Ai, E) .

Proof. Using Proposition 4.3.1-(1), we see that the canonical map (4.4.2) induces a well
defined map between cocartesian functors making the diagram

Fun(A, E) lim
i∈I

Fun(Ai, E)

Funcocart(A, E) lim
i∈I

Funcocart(Ai, E) .

Since the top horizontal arrow is an equivalence and the vertical ones are fully faithful, it
follows that the bottom horizontal functor is fully faithful as well. To conclude the proof,
it is enough to show that a functor F : A→ E is cocartesian if and only if for every i ∈ I
its image in Fun(Ai, E) is cocartesian. The “only if” follows from Proposition 4.3.1-(1).
For the converse, observe first that combining Corollary 4.2.7 and Lemma 4.4.9 we
deduce that F is cocartesian if and only if it is cocartesian at every morphism in the
essential image of the structural map fi : Xi → X . At this point, the conclusion follows
from Lemma 4.3.2. �
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4.5. Change of coefficients for cocartesian functors. Fix a cocartesian fibration p : A→
X and let f : E → E ′ be a morphism in PrL. Recall from Section 3.5 that this induces a
transformation

fA/X : expE (A/X )→ expE ′(A/X )

in PrFibL. In particular:

Proposition 4.5.1. The transformation fA/X preserves cocartesian edges. Therefore, the induced
functor

f : Fun(A, E)→ Fun(A, E ′)
preserves cocartesian functors and induces a well defined morphism

f : Funcocart(A, E)→ Funcocart(A, E ′) .

Proof. Since fA/X is a morphism in PrFibL, it automatically preserves cocartesian edges.
The second half follows then from the identification f ' ΣX (fA/X ) supplied by Proposi-
tion 3.5.1. �

We now study the change of coefficients via the tensor product in PrL. Recall that for
every pair of presentable∞-categories E and E ′ and for every∞-category A, there is a
canonical equivalence

Fun(A, E)⊗ E ′ ' Fun(A, E ⊗ E ′) .

Under suitable finiteness assumptions, we are going to see that this equivalence pre-
serves cocartesian functors.

Definition 4.5.2. Define PrL,R as the (non full) subcategory of PrL whose objects are pre-
sentable∞-categories and morphisms are functors that are both left and right adjoints.

Definition 4.5.3. Let PrFibL,R be the full subcategory of PrFibL corresponding to Fun(X , PrL,R)
under the straightening equivalence (2.1.8).

Example 4.5.4. Let p : A→ X be a cocartesian fibration with compact and proper fibers
(see Definition A.1.1). Let E be a stable presentable∞-category. Then the exponential
fibration pE : expE (A/X )→ X defines an object in PrFibL,R: indeed, we have to check
that for every morphism γ : x→ y in X and any choice of a straightening fγ : Ax → Ay,
the induced functor

fγ,! : Fun(Ax, E)→ Fun(Ay, E)
commutes with limits and colimits, and this follows from Proposition A.2.3.

Our main use of PrL,R will be through the following lemma from [12, 2.7.9].

Lemma 4.5.5. LetA be a small∞-category and let C• : A→ PrL,R be a diagram of∞-categories.
Then,

(1) The limits of C• when computed in PrR, PrL, or CAT∞ all agree.

(2) For any presentable∞-category E , the natural morphism

lim
α∈A
E ⊗ Cα → E ⊗ lim

α∈A
Cα

in PrL is an equivalence. (Here, both limits are computed in PrL).
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Lemma 4.5.6. Let X be an∞-category and let E be a presentable∞-category. Then commuta-
tive diagram

PrL PrFibL

PrL PrFibL

(−)⊗E

TrivX

(−)⊗X TrivX (E)

TrivX

is horizontally right adjointable on objects of PrFibL,R. That is, for every object p : A → X of
PrFibL,R, the Beck-Chevalley transformation

Σcocart
X (A/X )⊗ E → Σcocart

X (A⊗X TrivX (E))

is an equivalence.

Proof. Let ΥA : X → PrL be the straightening of A → X . From [14, 3.3.3.2], the Beck-
Chevalley transformation reads as the following natural morphism in PrL(

lim
x∈X
Ax
)
⊗ E → lim

x∈X
(Ax ⊗ E) .

Then, Lemma 4.5.6 follows from Lemma 4.5.5. �

Corollary 4.5.7. Let p : A → X be an object of CoCart with proper and compact fibers. Let
E , E ′ be presentable∞-categories such that E is stable. Then, the canonical transformation

Funcocart(A, E)⊗ E ′ → Funcocart(A, E ⊗ E ′)

is an equivalence.

Proof. Recall from Remark 2.3.1 that there is a canonical equivalence

expE (A/X )⊗X TrivX (E) ' expE⊗E ′(A/X ) .

By Example 4.5.4 the exponential fibration expE (A/X ) belongs to PrFibL,R. Thus, the
conclusion follows applying Σcocart

X to the above equivalence and using Lemma 4.5.6. �

4.6. Cocartesian functors in presence of an initial object. We saw in Proposition 4.2.9
that the inclusion of cocartesian functors inside all functors always admits a right adjoint
(−)cocart. The goal of this section is to provide an explicit description of this functor in
the special case where the base X admits an initial object. We start with the following
construction:

Construction 4.6.1. Fix a cocartesian fibration p : A → X and let γ : x → y be a mor-
phism in X . Define

γ! := j
∗
y ◦ jx,! : Fun(Ax, E)→ Fun(Ay, E) .

Write εx for the counit of the adjunction jx,! a j∗x. It induces a natural transformation

αγ := εxj
∗
x : γ! ◦ j∗x → j∗y .

Fix now a straightening
f : Ax → Ay
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for pγ : Aγ → ∆1 together with a natural transformation s : jx → jy ◦ f as in Example 4.1.5.
Write ηx for the unit of jx,! a j∗x and consider the transformation

βf,s : f! f! ◦ j∗x ◦ jx! j∗y ◦ jx! = γ!.
f!(ηx) αf,s(jx!)

Proposition 4.6.2. In the setting of Construction 4.6.1, the diagram

f! ◦ j∗x j∗y ◦ jx,! ◦ j∗x

j∗y

βf,s(j
∗
x)

αf,s
j∗y(εx)

is canonically commutative. If in addition x is an initial object of X , then the natural transfor-
mation βf,s : f! → γ! is an equivalence. In this case, for every F ∈ Fun(A, E), the morphism

j∗y(εx) : j
∗
yjx,!j

∗
x(F)→ j∗y(F)

is a specialization morphism for F relative to γ.

Proof. For what concerns the commutativity, a standard diagram chase reduces it to the
triangular identities for j0,! a j∗0 . We leave the details to the reader. We check that βf,s
is an equivalence under the assumption that x is an initial object of X . Unraveling the
definitions, we reduce ourselves to check that for every a ∈ Ay, the canonical functor
induced by the pair (f, s)

(4.6.3) Ax ×Ay (Ay)/a → Ax ×A A/jy(a)

is cofinal. We are going to show that it is an equivalence. To do this, [14, 2.2.3.3] ensures
that it is enough to show that (4.6.3) is a pointwise equivalence over Ax. The restriction
of (4.6.3) above b ∈ Ax reads as

(4.6.4) MapAy(f(b),a)→MapA(jx(b), jy(a)) .

Since x is an initial object in X , MapX (x,y) is contractible. Thus, every morphism
jx(b)→ jy(a) lies over γ : x→ y. Since s : jx(b)→ jy(f(b)) is a p-cocartesian lift of γ, [14,
2.4.4.2] implies that (4.6.4) is an equivalence.

�

For a general morphism γ : x → y in X , we can always replace p : A → X by
pγ : Aγ → ∆1 in order to ensure that the hypothesis of Proposition 4.6.2 is satisfied. This
yields:

Definition 4.6.5. Let p : A → X be a cocartesian fibration. Let F ∈ Fun(A, E) be a
functor and let γ : ∆1 → X be a morphism in X . Let jγ : Aγ → A, jγ,x : Ax → Aγ and
jγ,y : Ay → Aγ be the natural functors. Observe that jγ ◦ jγ,y ' jy, and similarly for x.
The strict induction functor relative to γ is the functor

γA,! := j
∗
γ,y ◦ jγ,x,! : Fun(Ax, E)→ Fun(Ay, E).

The strict specialization morphism for F relative γ is the natural transformation

spA,γ(F) := j
∗
γ,y(εxj

∗
γ) : γA,!(j

∗
xF)→ j∗y(F),
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where εx denotes the counit of the adjunction jγ,x,! a j∗γ,x.
When A is clear from the context, we write γ! and spγ(F) instead of γA! and spA,γ.

Remark 4.6.6. The terminology is due to the fact that neither γA,! nor spA,γ(F) depend
on the choice of a straightening of p : A→ X .

Proposition 4.6.2 leads to a complete understanding of Funcocart(A, E) when X has
an initial object. Before stating the main result of this section, let us collect a couple of
general facts:

Proposition 4.6.7. Let X and Y be small∞-categories and let

C D

X Y

g

q p

f

be a pullback square in CAT∞, with p being a cocartesian fibration. If f is a final functor, then
the induced pull-back functor

f∗ : Funcocart
/Y (Y ,D)→ Funcocart

/X (X , C)

is an equivalence of∞-categories.

Proof. Let ΥD and ΥC be the straightenings of p : D → Y and of q : C → X , respectively.
Since the given square is a pullback, there is a natural equivalence ΥC ' ΥD ◦ f. We find:

Funcocart
/Y (Y ,D) ' lim

X
ΥD By [14, Prop. 3.3.3.1]

' lim
Y
ΥD ◦ f f is cofinal

' lim
Y
ΥC

' Funcocart
/X (X , C) By [14, Prop. 3.3.3.1],

and the conclusion follows. �

In the particular case where C = expE (B/Y), we find:

Corollary 4.6.8. Let

A B

X Y

u

q p

f

be a pullback in Cat∞, with p being a cocartesian fibration. Let E be a presentable∞-category.
If f is a final functor, then

(4.6.9) u∗ : Funcocart(B, E)→ Funcocart(A, E)

is an equivalence.

Proof. Apply Proposition 4.6.7 to expE (B/Y) and use Proposition 3.1.2-(1). �
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Observation 4.6.10. Recall from Corollary 4.3.4 that u∗ admits a right adjoint ucocart
∗ . It

follows formally that in the situation of Corollary 4.6.8, the ucocart
∗ realizes the inverse of

u∗.

Corollary 4.6.11. Let X be an ∞-category with an initial object x. Let p : A → X be a
cocartesian fibration and let E be a presentable∞-category. Then:

(1) the functor jx,! : Fun(Ax, E)→ Fun(A, E) factors through Funcocart(A, E).
(2) The adjunction

jx,! : Fun(Ax, E)� Fun(A, E) : j∗x
restricts to an equivalence of∞-categories between Fun(Ax, E) and Funcocart(A, E).

Proof. We prove (1). Let F ∈ Fun(Ax, E) and let γ : y→ z be a morphism in X . We need
to show that jx,!(F) is cocartesian at γ. Since x is initial in X , we can find a commutative
triangle

y

x z.

γγ0

γ2

in X . From Corollary 4.2.7, it is enough to prove that jx,!(F) is cocartesian at γ0 and γ2.
Equivalently, we can suppose that y = x. Now we apply Proposition 4.6.2 to jx,!(F):
notice that since x is initial, the inclusion {x} ↪→ X is fully faithful and therefore that
jx : Ax → A is fully faithful as well. Thus, the unit transformation F → j∗xjx,!(F) is an
equivalence, and therefore the strict specialization morphism provided by Proposi-
tion 4.6.2 is an equivalence as well.

We now prove (2). Since Funcocart(A, E) is fully faithful inside Fun(A, E) and since
jx,! factors through Funcocart(A, E), we see that the adjunction jx,! a j∗x descends to an
adjunction

jx,! : Fun(Ax, E)� Fun(A, E) : j∗x .

It is therefore enough to prove that j∗x is an equivalence. Since the inclusion {x} ↪→ X
is final, this follows from the limit-description of cocartesian functors provided in
Corollary 4.2.4. See also Corollary 4.6.8 below. �

Corollary 4.6.12. Let X be an ∞-category with an initial object x. Let p : A → X be a
cocartesian fibration and let E be a presentable∞-category. Then there is a natural equivalence

(−)cocart ' jx,! ◦ j∗x
of functors from Fun(A, E) to Funcocart(A, E).

Proof. Fix F ∈ Funcocart(A, E) and let G ∈ Fun(A, E). We have

MapFun(A,E)(F,G) ' MapFun(A,E)(jx,!j
∗
x(F),G) By Cor. 4.6.11

' MapFun(Ax,E)(j
∗
x(F), j

∗
x(G))

' MapFuncocart(Ax,E)(jx,!j
∗
x(F), jx,!j

∗
x(G))

' MapFuncocart(Ax,E)(F, jx,!j
∗
x(G))
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where the last two equivalences are again due to Corollary 4.6.11. Therefore, jx,! ◦ j∗x is
right adjoint to the inclusion of Funcocart(A, E) into Fun(A, E), whence the conclusion.

�

For later use, let us extract the formal argument used to prove Corollary 4.6.11-(2):

Lemma 4.6.13. Let
A B

X Y

u

q p

f

be a pullback in Cat∞, with p being a cocartesian fibration. Let E be a presentable∞-category.
Assume that u∗ : Funcocart(A, E)→ Funcocart(B, E) is an equivalence of∞-categories. Then,
the following conditions are equivalent:

(1) The functor u! : Fun(B, E)→ Fun(A, E) preserves cocartesian functors;

(2) The adjunctionu! a u∗ restricts to an equivalence of∞-categories between Funcocart(A, E)
and Funcocart(B, E);

(3) For every F ∈ Funcocart(B, E), there is a natural equivalence u!(F) ' ucocart
∗ (F).

Proof. Notice that both (2) and (3) imply tautologically (1). Since Funcocart(A, E) is a full
subcategory of Fun(A, E), and similarly for B in place of A, we see that as soon as (1) is
satisfied the induced functor

u! : Funcocart(B, E)→ Funcocart(A, E)
provides a left adjoint to u∗. So (2) holds, and since u∗ is an equivalence, (3) follows
from the uniqueness of the inverse. �

4.7. Invariance of cocartesian functors under localization. We saw in Corollary 4.6.8
that when f is a final functor,

u∗ : Funcocart(B, E)→ Funcocart(A, E)
is an equivalence, with inverse given by ucocart

∗ . Furthermore, in Corollary 4.6.11, we saw
that when f is the inclusion of an initial object, then the inverse can be identified with the
much simpler left Kan extension u!. In this section, we analyze a similar situation, where
f is assumed to be a localization (recall from [7, Proposition 7.1.10] that all localizations
are final), building on the results of the previous section. Our starting point is the
following finer analysis of cocartesian functors in this special situation:

Proposition 4.7.1. Let

(4.7.2)
A B

X Y .

u

q p

f

be a pullback square in Cat∞, with p being a cocartesian fibration. Assume that f exhibits Y as
a localization of X at a collection of morphisms W. Then for every presentable∞-category E
and every functor G : A→ E , the following conditions are equivalent:
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(1) G lies in the essential image of u∗ : Fun(B, E)→ Fun(A, E);
(2) G is cartesian at every mophism inW;

(3) For every γ ∈W, the morphism Eu((spG)(γ)) is an equivalence in expE (B/Y);
(4) G is cocartesian at every mophism inW.

Proof. LetWA be the set of cocartesian lifts of morphisms inW. We saw in Theorem B.2.1
that u : A → B exhibits B as a localization of A at WA. Thus, (1) is equivalent to
ask that G inverts every arrow in WA and Lemma B.1.1 shows that this is equivalent
to condition (2). Combining the specialization equivalence Proposition 2.3.3 and the
global functoriality established in Proposition 3.1.2-(1) and the fact that the front square
of (B.2.3) is a pullback, we deduce that (1) is equivalent to ask that Eu ◦ (spG) : X →
expE (B/Y) inverts all arrows inW, i.e. to condition (3). Finally, we prove the equivalence
between (3) and (4): let γ be a morphism in W. Combining Proposition 2.2.6-(1) and
[14, 2.4.1.12], we see that G is cocartesian at γ if and only if Eu ◦ (spG) takes γ into a
pE -cocartesian morphism in expE (B/Y). Since Eu((spG)(γ)) lies over f(γ), which is an
equivalence in Y , we see that this happens if and only if Eu((spG)(γ)) is an equivalence
in expE (B/Y), whence the conclusion. �

Proposition 4.7.3. Let

(4.7.4)
A B

X Y .

u

q p

f

be a pullback square in Cat∞, with p being a cocartesian fibration. Assume that f is a localization
functor and let E be a presentable∞-category. Then:

(1) A functor F ∈ Fun(B, E) is cocartesian if and only if u∗(F) cocartesian.

(2) The functor
u! : Fun(A, E)→ Fun(B, E)

preserves cocartesian functors.

(3) The adjunction
u! : Fun(A, E)� Fun(B, E) : u∗

restricts to an equivalence of∞-categories between Funcocart(A, E) and Funcocart(B, E).
Proof. Let W be the collection of morphisms that in X that are inverted by f. We start by
proving (1). The “only if” direction is a consequence of Proposition 4.3.1-(1). Suppose
on the other hand that u∗(F) is cocartesian. Notice that the homotopy category h(Y) is
the 1-categorical localization of h(X ) at the image of W in h(X ). In particular, every
1-morphism (in h(Y) and hence) in Y can be represented as a zig-zag (see [9]):

x0 → x1 ← x2 → · · ·← xn

in X , where the arrows pointing to the left are inW. Recall from Corollary 4.2.6, that F
is cocartesian at every equivalence of Y . Thus, using Corollary 4.2.7 we are left to show
that for every morphism γ of X , the functor F is cocartesian at f(γ), and this follows
from Lemma 4.3.2 and our assumption that u∗(F) is cocartesian.
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We now prove the claim (2). Let G : A→ E be a cocartesian functor. Proposition 4.7.1
ensures the existence of a functor F : B → E such that G ' u∗(F). Point (1) guarantees
that F is cocartesian. At the same time, we know from Theorem B.2.1 that u : B → A is a
localization functor. Thus, u∗ : Fun(B, E)→ Fun(A, E) is fully faithul, and therefore the
counit transformation g! ◦ g∗ → id is an equivalence. It follows that

F ' g!(g∗(F)) ' g!(G)
is cocartesian, and so (2) is proven.

Finally, for (3), recall from [7, Proposition 7.1.10] that localization functors are final.
Thus, (3) follows from (2) combined with Corollary 4.6.8 and Lemma 4.6.13. �

Corollary 4.7.5. Let

A ′ B ′

A B

X ′ Y ′

X Y

u ′

s ′ s

u

f ′

r ′ r

f

be a commutative cube in Cat∞, with the vertical arrows being cocartesian fibrations. Assume
that r and r ′ are localization functors and that the left and right vertical faces are pullbacks. Let
E be a presentable∞-category. Then, the following diagrams

Funcocart(A ′, E) Funcocart(B ′, E)

Funcocart(A, E) Funcocart(B, E),

u′∗

s! s ′!

u∗

Funcocart(B, E) Funcocart(A, E)

Funcocart(B ′, E) Funcocart(A ′, E)

gcocart
∗

u′∗ s∗

u′ cocart
∗

are canonically commutative.

Proof. Observe that the right square from Corollary 4.7.5 is obtained from the left square
by passing to right adjoints. Hence, we are left to prove the commutativity of the left
square. Since the top face is commutative, we have

s′∗ ◦ u∗ = u′∗ ◦ s∗

From Proposition 4.7.3, the adjunction s! a s∗ induces an equivalence of∞-categories
between Funcocart(A, E) and Funcocart(A ′, E) and similarly with s ′! a s′∗. The commuta-
tivity of the left square thus follows. �

Corollary 4.7.6. Let f : X → Y be a localization functor between∞-categories. Let B be an∞-category and denote by u : B ×X → B × Y the induced functor. Let E be a presentable∞-
category. The adjunction u! a u∗ induces an equivalence of∞-categories between Funcocart(A×
Y , E) and Funcocart(A×X , E).
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Proof. Consider the pullback square

A×Y A×X

Y X

and apply Proposition 4.7.3. �

Remark 4.7.7. When applied to the localization X → Env(X ), the above corollary says
that u! a u∗ induces an equivalence of∞-categories between Fun(A× Env(X ), E) and
Funcocart(A×X , E).

4.8. Exceptional functoriality. Let

(4.8.1)
A B

X Y

u

q p

f

be a pullback diagram in Cat∞, with p being a cocartesian fibration. We saw in Corol-
lary 4.6.8 that when f is a final functor the pullback

u∗ : Funcocart(B, E)→ Funcocart(A, E)

is an equivalence for every presentable∞-category E . In virtue of Proposition 4.2.9, the
inverse to u∗ is always given by the functor ucocart

∗ , which is nevertheless very inexplicit
in general. At the same time we saw in two rather different situations (Corollary 4.6.11
and Proposition 4.7.3) that sometimes the inverse can be computed by the left Kan
extension u!. In this section, we analyze this phenomenon more in detail, obtaining
a sufficient criterion guaranteeing that u! preserves cocartesian functors, that will be
needed later on.

We start with a simple observation:

Proposition 4.8.2. Let

A B

X Y

u

q p

f

be a pullback square in Cat∞, with p being a cocartesian fibration. Let E be a presentable∞-category. Assume that f is fully faithful, and let F ∈ Fun(A, E) be a functor cocartesian at a
morphims γ : x→ y in X . Then u!(F) is cocartesian at f(γ).

Proof. Since f is fully faithful, the same goes for u. Thus, the unit transformation
F → u∗(u!(F)) is an equivalence. Using Lemma 4.3.2, we therefore see that u!(F) is
cocartesian at f(γ) if and only if F ' u∗(u!(F)) is cocartesian at γ. The conclusion
follows. �
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We now carry out a finer analysis. Fix x ∈ X , set y := f(x) and fix as well a morphism
γ : y→ z in Y . Associated to these data, we can form the following commutative cube:

(4.8.3)

By Bγ

A B

∗ ∆1

X Y ,

jγ,x

jx

px

jγ

pγ

u

p0

y γ

f

q

whose vertical faces are pullbacks. Fix a presentable∞-category E . The commutativity
of the top face of the above cube induces a Beck-Chevalley transformation

(4.8.4) jγ,x,! ◦ j∗x → j∗γ ◦ u!
of functors from Fun(A, E) to Fun(Bγ, E). We have:

Proposition 4.8.5. Assume that the Beck-Chevalley transformation (4.8.4) is an equivalence.
Then for every F ∈ Fun(B, E), the functor u!(F) : A→ E is cocartesian at γ.

Proof. We have to prove that sp(u!(F)) is cocartesian at γ. By Lemma 4.3.2 applied to
γ : ∆1 → Y , this is equivalent to show that j∗γ(u!(F)) is cocartesian at 0 → 1. Since the
Beck-Chevalley transformation (4.8.4) is an equivalence, we are reduced to prove that
jγ,x,!(j

∗
x(F)) is cocartesian at 0→ 1. In other words, we are reduced to prove the statement

in the special case where (4.8.1) is the back square of (4.8.3). Since 0 is initial in ∆1, this
follows directly from Corollary 4.6.11. �

We now give a sufficient condition on f and γ ensuring that the Beck-Chevalley
transformation (4.8.4) is an equivalence:

Proposition 4.8.6. In the above setting, assume that:
(1) for every (t,α) ∈ X ×Y Y/y, the map

MapX (t, x)→MapY (f(t),y)

is an equivalence;

(2) for every (s,β) ∈ X ×Y Y/z, the composition

MapX (s, x)→MapY (f(s),y)→MapY (f(s), z)

is an equivalence.
Then for every F ∈ Fun(A, E), u!(F) is cocartesian at γ.

Remark 4.8.7. Notice that condition (1) above is automatically satisfied when f is fully
faithful, or when both MapX (t, x) and MapY (f(t),y) are both contractible. Similarly,
condition (2) is automatically satisfied when both MapX (s, x) and MapY (f(s), z) are both
contractible.
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Proof of Proposition 4.8.6. In virtue of Proposition 4.8.5, it is enough to show that these
assumptions guarantee that the Beck-Chevalley transformation (4.8.4) is an equivalence.
For this, it is enough to check that for every b ∈ Bγ, the induced functor

(4.8.8) By ×Bγ (Bγ)/b A×B B/jγ(b)

is cofinal. Let v := pγ(b) ∈ ∆1 and set w := γ(v) (we have w = y if v = 0 and w = z if
v = 1). Using Lemma E.2.1, it is sufficient to prove that under our assumptions, the map

(4.8.9) {0}×∆1 ∆1/v X ×Y Y/w

is cofinal. Observe that the left hand side is contractible (and it coincides with the unique
morphism ε from 0 to v in ∆1). In particular, the map (4.8.9) is cofinal if and only if its
image coincides with the final object of X ×Y Y/w. Now, unraveling the definitions we
see that the above map takes ε to (x, idy) if v = 0 and to (x,γ) if v = 1. Thus, we have to
prove that (x, idy) and (x,γ) are final objects in X ×Y Y/y and in X ×Y Y/z, respectively.
Fix (t,α) ∈ X ×Y Y/w and consider the following commutative diagram:

MapX×YY/w
((t,α), (x,γ(ε))) MapX (t, x)

MapY/w
(α,γ(ε)) MapY (f(t),y)

∗ MapY (f(t),w) .α

The top square is a pullback by definition and the bottom one is a pullback thanks to the
dual of [14, Lemma 5.5.5.12]. Our assumptions guarantee that in the two cases under
consideration, the right vertical composition is an equivalence. Therefore, it follows that
the top left corner is contractible, i.e. that (x,γ(ε)) is a final object in X ×Y Y/w, thus
completing the proof. �

Corollary 4.8.10. Let f : J→ I be a fully faithful functor between posets and consider a pullback
square in Cat∞

A B

J I ,

u

q p

f

where in addition p is a cocartesian fibration. Assume that for every object i in I, the subposet J/i
of J admits a final object. Then, the functor u! : Fun(A, E)→ Fun(B, E) preserves cocartesian
functors.
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Proof. Let F : B → E be a cocartesian functor. Let γ : i1 → i2 be a morphism in I. By
assumption, there exists a commutative diagram

i1

f(j) i2

γ

in I where j belongs to J. Using Corollary 4.2.7, we see it is enough to show that F is
cocartesian at a morphism of the form f(j)→ i where j ∈ J and i ∈ I. Let j∞ be a final
object in J/i. Then, there is a commutative diagram

f(j∞)

f(j) i

in I. Since f : J→ I is fully faithful and since F : B → E is cocartesian at j→ j∞, Proposi-
tion 4.8.2 ensures that u!(F) is cocartesian at f(j)→ f(j∞). Using again Corollary 4.2.7,
we are thus left to show that u!(F) is cocartesian at f(j∞) → i. In that case, the condi-
tions of Proposition 4.8.6 (in the form of Remark 4.8.7) are satisfied and the proof is
achieved. �

Corollary 4.8.11. Let

A B

X Y

q

u

p

f

be a pullback square in Cat∞, with p being a cocartesian fibration. Let E be a presentable∞-category. Assume that f is fully faithful and admits a right adjoint g and let γ : f ◦ g→ idY
be a counit transformation. Then for every F ∈ Fun(A, E), u!(F) is cocartesian at γy for every
y ∈ Y .

4.9. Induced t-structure for cocartesian functors. Let p : A→ X be a cocartesian fibra-
tion and let E be a stable presentable∞-category equipped with an accessible t-structure
τ = (E>0, E60). Then Fun(A, E) has an induced t-structure defined by

Fun(A, E)>0 := Fun(A, E>0) and Fun(A, E)60 := Fun(A, E60) .

Definition 4.9.1. We say a cocartesian functor F ∈ Funcocart(A, E) is connective (with
respect to τ) if its image in Fun(A, E) belongs to Fun(A, E)>0. We let Funcocart(A, E)>0 be
the full subcategory of Funcocart(A, E) spanned by connective objects.

Proposition 4.9.2. There exists a unique t-structure on Funcocart(A, E) whose connective part
coincides with Funcocart(A, E)>0. In particular, the inclusion Funcocart(A, E) ↪→ Fun(A, E) is
right t-exact.

Proof. Since Funcocart(A, E) is presentable and stable by Corollary 4.2.4, using [15, Propo-
sition 1.4.4.11] we are reduced to check that Funcocart(A, E)>0 is closed under colimits
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and extensions in Funcocart(A, E). Closure under colimits follows from Corollary 4.2.8,
and closure under extensions is automatic. So the conclusion follows. �

Lemma 4.9.3. Assume that X has an initial object x. Then a cocartesian functor F ∈
Funcocart(A, E) is connective if and only if j∗x(F) ∈ Fun(Ax, E) is connective.

Proof. The functor j∗x : Fun(A, E)→ Fun(Ax, E) is t-exact, so if F is connective then j∗x(F)
is connective as well. For the converse, we have to check that F takes values in E>0.
It suffices to show that for every y ∈ X , j∗y(F) : Ay → E takes values in E>0. Since x
is an initial object, there exists a morphism γ : x → y in X . Choose a straightening
fγ : Ax → Ay for Aγ. Then Proposition 4.2.3 provides a canonical identification

j∗y(F) ' fγ,!j
∗
x(F) .

Since j∗x(F) takes values in E>0 by assumption and since E>0 is closed under colimits in
E , the conclusion follows from the formula for left Kan extensions. �

Corollary 4.9.4. Assume that X has an initial object x. Then the adjoint equivalence of
Corollary 4.6.11

jx,! : Fun(Ax, E)� Funcocart(A, E) : j∗x
is t-exact.

Proof. Thanks to Lemma 4.9.3, we know that Funcocart(A, E)>0 corresponds via the
above equivalence to Fun(Ax, E>0). The conclusion follows from the uniqueness of the
t-structure. �

Example 4.9.5. Consider the posets I0 and I1 having I = {a,b, c,d} as the underlying set
and order given by the following Hasse diagrams:

I0 =

 b c d

a

 , I1 =


d

b d

a


The identity of I defines a morphism of posets f : I0 → I1, which we can reinterpret as a
constructible sheaf of posets I on ([0, 1], {0}). Fix a field k and consider the stable derived∞-category E := Modk. Let F : I0 →Modk be the functor defined by setting

Fa = Fd := k , Fb = Fc := 0 .

Then via Corollary 4.9.4, F determines an object in Funcocart(I , Modk)♥. Notice however
that

f!(F)d ' Fd ⊕ Fa[1] ' k⊕ k[1]

does not belong to the abelian category Mod♥k .
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4.10. Categorical actions on cocartesian functors. We use the terminology on categori-
cal actions reviewed in Section D. Fix a presentably symmetric monoidal∞-category E⊗.
As recalled in Recollection D.1.2, for every (small)∞-categoryA, the functor∞-category
Fun(A, E) inherits a symmetric monoidal structure Fun(A, E)⊗. When A is part of a
cocartesian fibration p : A→ X , cocartesian functors Funcocart(A, E) form a full subcate-
gory of Fun(A, E), but they are not closed under tensor product. Nevertheless, we still
see a shadow of the tensor structure of Fun(A, E) on cocartesian functors in terms of a
categorical action:

Proposition 4.10.1. Let p : A→ X be a cocartesian fibration. Then for every L ∈ Loc(X ; E)
(see Definition C.1.1) and every G ∈ Funcocart(A, E), the functor

p∗(L)⊗G : A→ E
is again cocartesian. In particular, the standard action of Loc(X ; E) on Fun(A, E) restricts to a
categorical action of Loc(X ; E) on Funcocart(A, E).

Proof. Let γ : x→ y be a morphism in X and let fγ : Ax → Ay be any straightening for
pγ : Aγ → ∆1. Since j∗x and j∗y are symmetric monoidal, we reduce to check that

fγ,!(j
∗
xp
∗(L)⊗ j∗x(G))→ j∗y(p

∗(L))⊗ j∗y(G)

is an equivalence. Since j∗x ◦ p∗(L) ' p∗x(L(x)), Lemma D.1.3 supplies a canonical
equivalence

fγ,!(j
∗
xp
∗(L)⊗ j∗x(G)) ' p∗y(L(x))⊗ fγ,!(j

∗
x(G)) .

Since G is cocartesian, the canonical comparison map

fγ,!(j
∗
x(G))→ j∗y(G)

is an equivalence. On the other hand, since L is a local system, the canonical map
L(γ) : L(x)→ L(y) is an equivalence. The conclusion follows. �

Consider now a pullback square

(4.10.2)
B A

Y X

u

q p

f

in Cat∞, where p is a cocartesian fibration. Then Construction D.2.1 supplies a canonical
comparison map

µ : Loc(Y ; E)⊗Loc(X ;E) Fun(A, E)→ Fun(B, E) .

Unraveling the definitions, we see that µ takes L⊗G to p∗(L)⊗G. In particular, Propo-
sition 4.10.1 shows that µ restricts to a well defined functor

(4.10.3) µcocart : Loc(Y ; E)⊗Loc(X ;E) Funcocart(A, E)→ Funcocart(B, E)

When f is a finite étale fibration (see Definition C.2.1), Corollary D.2.8 shows that µ is an
equivalence. The goal of this section is to show that under mild assumptions the same
holds in the cocartesian setting.
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Observation 4.10.4. In the above setting, assume that f is a finite étale fibration. Then
the composition q ′ := f ◦ q : B → X is a cocartesian fibration. This allows to consider
the exponential fibrations

expE (B/Y) ∈ PrFibL
Y and expE (B/X ) ∈ PrFibL

X .

We set

Funcocart(B/Y , E) := Σcocart
Y (expE (B/Y)) and Funcocart(B/X , E) := Σcocart

X (expE (B/X )) .

Notice that both Funcocart(B/Y , E) and Funcocart(B/X , E) are full subcategories of Fun(B, E).

Construction 4.10.5. Using the notation from Recollection 3.2.1, observe the commuta-
tivity of

B B

Y X

q f◦q

f

provides a canonical transformation

δ : B → f∗(B)
in CoCartY . In turn, Proposition 2.2.6-(1) shows that δ induces a morphism

expE (B/Y)→ f∗ exp(B/X ) ,

which by adjunction f∗ a fcc
∗ corresponds to a morphism

(4.10.6) α : expE (B/X )→ fcc
∗ exp(B/Y) .

Proposition 4.10.7. In the above setting, assume that f is a finite étale fibration. Then the
comparison morphism (4.10.6) is an equivalence. In particular,

Funcocart(B/Y , E) = Funcocart(B/X , E)
as full subcategories of Fun(B, E).

Proof. The second half follows applying Σcocart
X to the equivalence (4.10.6). To show that

α is an equivalence, it is enough to show that for every x ∈ X , j∗x(α) is an equivalence.
Unraveling the definitions, we see that

Bx '
∐
y∈Yx

Ax ,

which immediately implies that

exp(B/X )x '
∏
y∈Yx

Fun(Ax, E) .

Similarly, the formula for right Kan extensions paired with [20, Lemma 3.1.1], implies
that (

fcc
∗ expE (B/Y)

)
x
'
(
fcc
∗ f
∗ expE (A/X )

)
x
'
∏
y∈Yx

Fun(Ax, E) .

The conclusion follows. �
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Corollary 4.10.8. In the above setting, if f is a finite étale fibration then

u! : Fun(B, E)→ Fun(A, E)

preserves cocartesian functors and therefore it induces a well defined functor

u! : Funcocart(B, E)→ Funcocart(A, E) .

Proof. Seeing B fibered over X via q ′ := f ◦ q, [14, Proposition 2.4.1.3-(2)] implies that u
takes q ′-cocartesian edges to p-cocartesian ones. Therefore, Proposition 4.3.1-(2) shows
that u! restricts to a well defined functor

u! : Funcocart(B/X , E)→ Funcocart(A, E) .

Since Funcocart(B/X , E) = Funcocart(B/Y , E) by Proposition 4.10.7, the conclusion fol-
lows. �

Corollary 4.10.9. In the above setting, assume that f is a finite étale fibration and that E is
stable. Then

u! : Funcocart(B, E)→ Funcocart(A, E)

is monadic.

Proof. It follows from Lemma D.2.5 that the functors

u! : Fun(B, E)→ Fun(A, E) and u∗ : Fun(A, E)→ Fun(B, E)

are biadjoint. Combining Proposition 4.3.1-(1) and Corollary 4.10.8, we see that both
respect cocartesian functors. Therefore, u! : Funcocart(B, E)→ Funcocart(A, E) is biadjoint
to u∗. Besides, Lemma D.2.6 implies that u! : Fun(B, E) → Fun(A, E) is conservative.
Since Funcocart(A, E) is a full subcategory of Fun(A, E), it follows that the same goes for
the restriction of u! to cocartesian functors. At this point, the conclusion follows from
Lurie-Barr-Beck [15, Theorem 4.7.3.5]. �

Corollary 4.10.10. Let

B A

Y X

u

q p

f

be a pullback square in Cat∞, where p is a cocartesian fibration. Let E⊗ be a presentably
symmetric monoidal∞-category. If f is a finite étale fibration and E is stable, then the comparison
functor

Loc(Y)⊗Loc(Y) Funcocart(A, E)→ Funcocart(B, E) .

is an equivalence.

Proof. Using Corollary 4.10.9 as input, the same proof of Corollary D.2.8 applies. �
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5. PUNCTUALLY SPLIT AND STOKES FUNCTORS

In this section, we explore the new features that appear when one specializes the
exponential construction to the case of cocartesian fibrations in posets. Every such
fibration I has an underlying discrete fibration Iset (see Notation 5.1.1), and this allows
to introduce punctually split functors. We analyze their role and explore this notion from
the point of view of the exponential construction and discuss their basic functorialities.
Finally, we introduce the main object of study of this paper: Stokes functors.

5.1. Punctually split functors.

Notation 5.1.1. We let
(−)set : Poset→ Poset

be the functor sending a poset (I,6) to the underlying set I, seen as a poset with trivial
order. By extension, if X ∈ Cat∞ and I → X is a fibration in posets, we let Iset be the
cocartesian fibration on X obtained by applying (−)set fiberwise. In a more verbose
way, if I : X → Poset is the unstraightening of I , then Iset is the cocartesian fibration
classifying the composition (−)set ◦ I : X → Poset. Notice that Iset is in fact a left
fibration over X and that it comes equipped with a canonical morphism

iI : Iset → I
that preserves cocartesian edges over X . It is immediate that this construction promotes
to a global functor

(−)set : PosFib→ PosFib ,
equipped with a natural transformation i : (−)set → idPosFib.

We fix a presentable∞-category E .

Definition 5.1.2. Let p : I → X be an object in PosFib. Let F ∈ Fun(I , E).
(1) For x ∈ X , we say that F is split at x if j∗x(F) lies in the essential image of

iIx,! : Fun(Iset
x , E)→ Fun(Ix, E)

(2) We say that F is punctually split if it is split at every object x ∈ X .

(3) We say that F is split if it lies in the essential image of the induction functor

iI ,! : Fun(Iset, E)→ Fun(I , E)
We denote by FunPS(I , E) the full subcategory of Fun(I , E) formed by punctually split
functors.

Remark 5.1.3. It follows from Corollary 3.1.6 that split functors are punctually split.

Example 5.1.4. Let p : I → X be a cocartesian fibration in posets and let a ∈ I be an
element. Write evIa : {a} ↪→ I for the canonical inclusion. Since evIa factors through
iI : Iset → I , we see that for every E ∈ E the functor evIa,!(E) ∈ Fun(I , E) is split, and
hence punctually split by Remark 5.1.3.

Definition 5.1.5. In the setting of Definition 5.1.2, a splitting for F is the given of a functor
F0 : Iset → E and an equivalence α : iI ,!(F0) ' F.
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Warning 5.1.6. In general, splittings do not exist and even when they exist they are
typically neither unique nor canonical.

Lemma 5.1.7. Let X ∈ Cat∞ and let

B A

X

f

q p

be a commutative diagram where p and q are cocartesian fibrations and f preserves cocartesian
edges. Letting EssIm(f) be the essential image of f, the composition

EssIm(f) ⊆ A p→ X
is again a cocartesian fibration. Furthermore, the formation of EssIm(f) commutes with pullback
along any morphism Y → X in Cat∞. In particular, the fibers of EssIm(f) at x ∈ X canonically
coincide with the essential image of fx : Bx → Ax.

The essential image construction of Lemma 5.1.7 allows to organize punctually split
functors into a subfibration of the exponential fibration expE (I/X ):

Definition 5.1.8. Let p : I → X be a cocartesian fibration in posets and let iI : Iset → I
be the canonical morphism. We define the punctually split exponential fibration with
coefficients in E associated to p : I → X as

expPS
E (I/X ) := EssIm(E iI! ) .

Remark 5.1.9. Notice that expPS
E (I/X ) defines an object in COCARTX , but typically

not in PrFibL
X . Lemma 5.1.7 shows that it is a sub-cocartesian fibration of expE (I/X ).

Under the specialization equivalence, we see that ΣX (expPS
E (I/X )) coincides with the

full subcategory of Fun(I , E) spanned by punctually split functors.

Split functors provide a handy set of generators for Fun(A, I):

Recollection 5.1.10. Let A be an∞-category. For every a ∈ A, write evAa : {a}→ A be
the canonical inclusion. It follows from the Yoneda lemma that the functor

evAa,! : Spc→ Fun(A, Spc)

is the unique colimit-preserving functor sending ∗ to MapA(a,−). The density of the
Yoneda embedding implies therefore that Fun(A, Spc) is generated under colimits by
{evAa,!(∗)}a∈A. More generally, let E be a presentable∞-category generated under colimits
by a set {Eα}α∈I. Then under the identification

Fun(A, E) ' Fun(A, Spc)⊗ E
we see that eva,!(Eα) ' evAa,!(∗) ⊗ Eα and therefore that {evAa,!(Eα)}a∈A,α∈I generates
Fun(A, E) under colimits.

Proposition 5.1.11. Let p : I → X be a cocartesian fibration in posets. Then Fun(I , E) is
generated under colimits by split functors.

Proof. Combine Example 5.1.4 and Recollection 5.1.10. �
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5.2. Stokes functors. We introduce here the fundamental object of this paper. We fix
once more a presentable∞-category E .

Definition 5.2.1. Let p : I → X be a cocartesian fibration in posets. The∞-category of
I-Stokes functors with value in E is by definition

StI ,E := Σ
cocart
X (expPS

E (I/X )) .

Remark 5.2.2. Under the specialization equivalence (3.1.1), the∞-category StI ,E coin-
cides with full subcategory of Fun(I , E) spanned by functors F : I → E such that

(1) F is cocartesian (Definition 4.2.1).

(2) F is punctually split (Definition 5.1.2).

Example 5.2.3. Assume that the cocartesian fibration p : I → X is discrete, i.e. that its
fibers are sets. Then the map iI : Iset → I is an equivalence, so in this case every functor
F : I → E is split (and hence punctually split). It follows from the above remark that in
this case

StI ,E ' Funcocart(I , E) .

The cocartesian condition can be used to transport a splitting defined at an object
x ∈ X to a point y via a morphism γ : x→ y, as in the following lemma:

Lemma 5.2.4. Let
J JX

Y X

u

f

be a pullback square in Cat∞, whose vertical morphisms are cocartesian fibrations in posets.
Let γ : f(x) → y be a morphism in Y , with x ∈ X . Let F : JX → E be a functor such that
u!(F) : J → E is cocartesian at γ and such that the unit F→ u∗u!(F) is an equivalence above
x. If F is split at x, then u!(F) is split at y. In particular, when f = idX and F is cocartesian at
γ : x→ y, if F is split at x then it is split at y as well.

Proof. Let fγ : Jf(x) → Jy be the morphism of posets induced by γ : f(x) → y. Since
u!(F) : J → E is cocartesian at γ, Proposition 4.2.3 implies the existence of an equivalence
fγ,!((u!(F))f(x)) ' Fy. By assumption Fx ' (u!(F))f(x). The conclusion thus follows. �

This leads to the following neat description of Stokes functors when X admits an
initial object:

Proposition 5.2.5. Let p : I → X be a cocartesian fibration in posets. If X admits an initial
object x, then the adjunction

jx,! : Fun(Ix, E)� Fun(I , E) : j∗x
restricts to an equivalence of∞-categories between StIx,E and StI ,E .

Proof. Using Corollary 4.6.11, we see that both jx,! and j∗x preserve cocartesian functors
and that it restricts to an equivalence between Funcocart(Ix, E) and Funcocart(I , E). That
j∗x preserves punctually split functors follows directly from the definition. On the other
hand, combining together Corollary 4.6.11 and Lemma 5.2.4 we see that jx,! also preserves
the punctually split condition. The conclusion follows. �
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Corollary 5.2.6. Let p : I → X be an object of PosFib. Assume that X admits an initial object.
Let E be a presentable∞-category. Then, the induction

iI! : StIset,E → StI ,E

is essentially surjective. That is, every Stokes functor F : I → E splits.

Proof. Let x be an initial object in X . From Proposition 5.2.5, the horizontal arrows of the
following commutative square

StIset
x ,E StIset,E

StIx,E StI ,E

jset
x!

iIx! iI!

jx!

are equivalences. On the other hand, the left vertical arrow is essentially surjective by
definition. �

Warning 5.2.7. The splitting produced by Corollary 5.2.6 is not unique nor canonical.

5.3. Functoriality for punctually split and Stokes functors. Fix a morphism

J JX I

Y X

vu

f

in PosFib. We now show that the basic functorialities of pullback and induction are well
behaved with respect to punctually split and Stokes functors. We start at the exponential
level:

Proposition 5.3.1. The functors

Eu : expE (J /Y)→ expE (JX/X ) and Ev! : expE (JX/X )→ expE (I/X )

respect the punctually split sub-cocartesian fibrations and thus they induce the following com-
mutative diagram:

(5.3.2)

expPS
E (J /Y) expPS

E (JX/X ) expPS
E (I/X )

expE (J /Y) expE (JX/X ) expE (I/X )

Y X

Eu Ev!

Ev!Eu

whose left squares are pullbacks.

Proof. An object in expE (JX/X ) is a pair (x, F), where x ∈ X and F : (JX )x → E . The
functor Eu takes (x, F) to (f(x), F), where F is now seen as a functor from If(x) ' (JX )x
to E . In particular, Eu preserves and reflects the punctually spit condition, which shows
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that the top left square is both commutative and a pullback. On the other hand, the
commutativity of

(J set
X )x Iset

x

(JX )x Ix

vset
x

iJX iI

vx

immediately implies that Ev! preserves the condition of being split at x. �

Corollary 5.3.3. In the above setting:
(1) Let F : J → E be a functor. Let x ∈ X be an object. Then, F is punctually split at f(x) if

and only if u∗(F) is punctually split at x.

(2) if G : JX → E is punctually split, then the same goes for v!(G) : I → E .
In particular the functors

u∗ : Fun(J , E)→ Fun(JX , E) and v! : Fun(JX , E)→ Fun(I , E)
restrict to well-defined functors

u∗ : FunPS(J , E)→ FunPS(JX, E) and v! : FunPS(JX, E)→ FunPS(I , E) .

Proof. Apply ΣX to the commutative diagram (5.3.2) and use Proposition 3.1.2. �

Corollary 5.3.4. In the above setting:
(1) if F : J → E is a Stokes functor, the same goes for u∗(F) : JX → E ;

(2) if G : JX → E is a Stokes functor, then the same goes for v!(G) : I → E .
Thus, the functors

u∗ : Fun(J , E)→ Fun(JX , E) and v! : Fun(JX , E)→ Fun(I , E)
restrict to well-defined functors

u∗ : StJ ,E → StJX,E and v! : StJX,E → StI ,E .

Proof. Apply Σcocart
X to the commutative diagram (5.3.2) and combine Proposition 4.3.1

and Corollary 5.3.3. �

We conclude this section with the following generalization of Proposition 5.2.5:

Proposition 5.3.5. Let

J I

Y X

g

f

be a pullback square in Cat∞, where the vertical morphisms are cocartesian fibrations in posets.
Assume that f : Y → X is a localization functor. Let E be a presentable∞-category. Then, the
following statements hold :

(1) Let F ∈ Fun(I , E). Then, F is a Stokes functor if and only if so is g∗(F).

(2) Let G ∈ Fun(J , E). If G is a Stokes functor, then so is g!(G).
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(3) The adjunction g! a g∗ induces an equivalence of∞-categories between StI ,E and StJ ,E .

Proof. The claim (1) follows from Proposition 4.7.3-(1) and Corollary 5.3.3-(1). Let
G : J → E be a Stokes functor. From Proposition 4.7.3-(2) the functor g!(G) is co-
cartesian. To check that g!(G) is punctually split amounts to show by (1) that g∗(g!(G))
is punctually split. On the other hand, Proposition 4.7.3-(3) gives g∗(g!(G)) ' G and (2)
is proved. The claim (3) then follows from Proposition 4.7.3-(3). �

5.4. Stokes functors and (co)limits. Stokes functors are poorly behaved with respect to
limits and colimits, as the following next two lemmas are essentially the only stability
properties one gets in general:

Proposition 5.4.1. Let p : I → X be a cocartesian fibration in sets, seen as an object in PosFib.
Then StI ,E is presentable and furthermore:

(1) StI ,E is stable under colimits in Fun(I , E).
(2) Assume additionally that the fibers of p are finite and that E is presentable stable. Then

StI ,E is stable under limits in Fun(I , E).

Proof. Via the equivalence StI ,E ' Funcocart(I , E) of Example 5.2.3, presentability follows
from Corollary 4.2.4, statement (1) follows from Corollary 4.2.8 and statement (2) follows
from Proposition 4.2.14. �

More in general, we have:

Lemma 5.4.2. Let p : I → X be a cocartesian fibration in posets. Then StI ,E is closed under
arbitrary coproducts in Fun(I , E).
Proof. Thanks to Proposition 4.2.9, we know that cocartesian functors are closed un-
der arbitrary colimits in Fun(I , E). Besides, for every x ∈ X , the restriction functor
j∗x : Fun(I , E) → Fun(Ix, E) commute with all colimits as well. This reduces us to the
case where X is a single point, and we have to prove that split functors are closed under
coproducts. Let therefore {Fi}i∈I be a family of split functors and fix splittings

αi : iI ,!(Vi) ' Fi .

Since iI ,! commutes with colimits, it immediately follows that
∐
i∈I Vi provides a split-

ting for
∐
i∈I Fi. �

Definition 5.4.3. Let p : I → X be an object of PosFib and let C ⊂ PrL be a full subcate-
gory. We say that p : I → X is C-bireflexive if the full subcategory StI ,E of Fun(I , E) is
closed under limits and colimits for every E ∈ C.

Example 5.4.4. If C only consists in a single category E , we say that p : I → X is E -
bireflexive. If C ⊂ PrL is the collection of all presentable stable∞-categories, we simply
say that p : I → X is stably bireflexive.

Remark 5.4.5. [21, Theorem 7.1.3] provides many geometrical examples of stably bire-
flexive cocartesian fibrations in posets.

Lemma 5.4.6. Let p : I → X be an object of PosFib and let E be a presentable (stable) ∞-
category such that p : I → X is E -bireflexive. Then StI ,E is a localization of Fun(I , E), and in
particular it is presentable (stable).
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Proof. Since E is presentable (stable), Fun(I , E) is presentable (stable) in virtue of [14,
Proposition 5.5.3.6] and [15, Proposition 1.1.3.1]. Then, the conclusion follows from the∞-categorical reflection theorem, see [22, Theorem 1.1]. �

Notation 5.4.7. In the setting of Lemma 5.4.6, the canonical inclusion StI ,E ↪→ Fun(I , E)
admits a left adjoint and a right adjoint, that we denote by LStI ,E and RStI ,E respectively.

Lemma 5.4.8. Let p : I → X be an object of PosFib. Let E be a presentable stable compactly gen-
erated∞-category such that p : I → X is E -bireflexive. Let {Eα}α∈I be a set of compact genera-
tors for E . Then StI ,E is presentable stable compactly generated by the {LStI ,E (eva,!(Eα))}α∈I,a∈I
where the eva : {a}→ I are the canonical inclusions.

Proof. That StI ,E is presentable stable follows from Lemma 5.4.6. By Recollection 5.1.10,
the {eva,!(Eα)}α∈I,a∈I are compact generators of Fun(I , E). Then Lemma 5.4.8 formally
follows from the fact that StI ,E ↪→ Fun(I , E) commutes with colimits. �

The following two lemmas are immediate consequences of Proposition A.2.3.

Lemma 5.4.9. Let X be an ∞-category. Let p : I → J be a morphism in PosFibfX . Let E
be a presentable stable ∞-category such that I → X and J → X are E -bireflexive. Then,
p! : StI ,E → StJ ,E commutes with limits and colimits.

Lemma 5.4.10. Let X be an∞-category. Let p : I → J be a morphism in PosFibfX . Let E
be a presentable stable ∞-category such that I → X and Ip → X are E -bireflexive. Then,
Grp : StI ,E → StIp,E commutes with limits and colimits.

Corollary 5.4.11. Let (X,P) be an exodromic stratified space. Let p : I → J be a graduation
morphism of cocartesian fibrations in finite posets over Π∞(X,P). Let E be a presentable stable∞-category and consider the pull-back square

StI ,E StJ ,E

StIp,E StJ set,E

p!

Grp Gr
π!

supplied by Theorem 7.2.1. If all the above cocartesian fibrations in posets are E -bireflexive, then
the square is a pullback in PrL,R.

Proof. The∞-categorical reflection theorem of [22, Theorem 1.1] implies that in this case
all the∞-categories of Stokes functors appearing in the above square are presentable.
Then the conclusion follows combining Lemma 5.4.9 with Lemma 5.4.10. �

5.5. Van Kampen for Stokes functors. In Proposition 4.4.10 we proved a Van Kampen
result for cocartesian functors. We now show that the same holds for Stokes functors:

Proposition 5.5.1 (Van Kampen for Stokes functors). Let X• : I→ Cat∞ be a diagram with
colimit X . Let p : I → X be a cocartesian fibration in posets and set

I• := X• ×X I : I→ Cat∞ .

Let E be a presentable∞-category. Then the equivalence of Lemma 4.4.1 restricts to an equiva-
lence

StI ,E ' lim
i∈I

StIi,E .



52 MAURO PORTA AND JEAN-BAPTISTE TEYSSIER

Proof. Using Corollary 5.3.4 in place of Proposition 4.3.1, we see that the natural map

Fun(I , E)→ lim
i∈I

Fun(Ii, E)

gives rise to the following commutative square:

(5.5.2)

Fun(I , E) lim
i∈I

Fun(Ii, E)

StI ,E lim
i∈I

StIi,E .

It follows from Lemma 4.4.1 that the top horizontal functor is an equivalence. Thus, the
bottom horizontal one is fully faithful. To conclude the proof, it is enough to prove that a
functor F : I → E is Stokes if and only if for every i ∈ I, its image in Fun(Ii, E) is Stokes.
The “only if” follows from Corollary 5.3.4. For the converse, we have already shown
in Proposition 4.4.10 that if each restriction of F is cocartesian then F was cocartesian to
begin with. We are left to check that F is punctually split. Combining Corollary 4.2.6 and
Lemma 4.4.9, we see that F is punctually split if and only if it is split at every object of
X lying in the image of some structural map fi : Xi → X . However, if x ∈ X is in the
image of fi, then F is split at x thanks to Corollary 5.3.3. �

As a consequence of Van Kampen for Stokes functors, we can prove:

Corollary 5.5.3. In the situation of Proposition 5.5.1, if furthermore E is stable and if Ii → X
is E -bireflexive for every i ∈ I, then I → X is E -bireflexive and the limit of Proposition 5.5.1
can be computed inside PrL,R.

Proof. Let f : i→ j be a morphism in I. Since Ii and Ij are E -bireflexive, it follows that
StIi,E and StIj,E are presentable and that the transition functor

f∗ : StIj,E → StIi,E
commute with limits and colimits. Therefore, it admits both a left and a right adjoint. In
particular, the diagram StI•,E factors through PrL,R. Since limits in PrL can be computed
in CAT∞, Proposition 5.5.1 implies that StI ,E is presentable and stable. Besides, since all
transition maps in StI•,E commute with limits, it automatically follows that the structural
functors

StI ,E → StIi,E
commute with limits as well. Thus, StI ,E is closed under limits inside Fun(I , E). On the
other hand, Lemma 5.4.2 shows that StI ,E is closed under arbitrary coproducts inside
Fun(I , E). Since E is stable and we already showed that StI ,E is stable, closure under
finite colimits is automatic. The conclusion follows. �

5.6. Change of coefficients for punctually split and Stokes functors. Fix a cocartesian
fibration in posets p : I → X and let f : E → E ′ be a morphism in PrL. Recall from
Section 3.5 that this induces a transformation

fI/X : expE (I/X )→ expE ′(I/X )

in PrFibL. We have:
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Proposition 5.6.1. The transformation fI/X respects the punctually split sub-cocartesian
fibrations, and thus it induces a functor

fI/X : expPS
E (I/X )→ expPS

E ′ (I/X )

in PrFibL
X . In particular, the induced functor

f : Fun(I , E)→ Fun(I , E ′)
induces well defined functors

f : FunPS(I , E)→ Fun(I , E ′) and f : StI ,E → StI ,E ′ .

Proof. Since f commutes with colimits, it commutes with the formation of left Kan
extensions. This immediately implies the first statement. Applying ΣX and using
Proposition 3.5.1, we deduce that f : Fun(I , E)→ Fun(I , E ′) preserves punctually split
functors. In turn, this fact and Proposition 4.5.1 implies that f also preserves Stokes
functors. �

Cocartesian functors exhibit a nice behavior with respect to the tensor product in
PrL (see Corollary 4.5.7). On the other hand expPS

E (I/X ) is typically not a presentable
fibration, and StI ,E is typically not presentable. This prevents from formally deducing
an analogue of Corollary 4.5.7 for Stokes functors: such a result will be true, but only
in a more restrictive geometric setting, see [21, Theorem 7.2.7]. For the moment, let us
simply collect a couple of elementary observations that will be needed later.

When bireflexivity holds, we can construct, for every pair of presentable∞-categories
E and E ′, a canonical comparison morphism StI ,E ⊗ E ′ → StI ,E⊗E ′ . The key point is the
following lemma:

Lemma 5.6.2. Let p : I → X be a cocartesian fibration in posets. Let E and E ′ be presentable∞-categories. Let x ∈ X be an object and let F : I → E be a functor that splits at x. Then for
every object E ′ ∈ E ′, the functor

F⊗ E ′ ∈ Fun(I , E)⊗ E ′ ' Fun(I , E ⊗ E ′)
splits at x as well.

Proof. Let ix : Ix → I be the canonical functor. For any presentable∞-category D, both
functors

i∗x : Fun(I ,D)→ Fun(Ix,D) and iIx,! : Fun(Iset
x ,D)→ Fun(Ix,D)

commute with colimits, so we obtain the following canonical identifications:

Fun(I , Spc)⊗D Fun(Ix, Spc)⊗D Fun(Iset
x , Spc)⊗D

Fun(I ,D) Fun(Ix,D) Fun(Iset
x ,D) .

i∗x⊗D

o o

iIx ,!⊗D

o
i∗x iIx ,!

This proves the lemma when E = Spc, and the general case follows from the associativity
of the tensor product in PrL. �
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Construction 5.6.3. Let p : I → X be a cocartesian fibration in posets. Let E and E ′
be presentable ∞-categories such that p : I → X is {E , E ′}-bireflexive. Consider the
following solid commutative diagram:

(5.6.4)

StI ,E ⊗ E ′ StI ,E⊗E ′

Funcocart(I , E)⊗ E ′ Funcocart(I , E ⊗ E ′)

Fun(I , E)⊗ E ′ Fun(I , E ⊗ E ′)

∼

∼

in PrL. By definition, StI ,E ⊗ E ′ is generated under colimits by objects of the form F⊗ E ′,
where F : I → E is a Stokes functor and E ′ ∈ E ′ is an object. Lemma 5.6.2 guarantees
that such an object is mapped via the bottom horizontal equivalence into an object in
StI ,E⊗E ′ . Since the right vertical arrows are fully faithful by definition, it follows that the
dashed arrow exist.

Proposition 5.6.5. Let p : I → X be a cocartesian fibration in posets. Let E and E ′ be
presentable∞-categories. Assume that:

(1) The fibers of I are finite;

(2) p : I → X is E , E ′-bireflexive.
Then the canonical comparison functor

StI ,E ⊗ E ′ → StI ,E⊗E ′

of Construction 5.6.3 is fully faithful.

Proof. Since the fibers of I are finite, Proposition 4.2.14 implies that Funcocart(I , E) is
closed under limits and colimits in Fun(I , E). By (2), it follows that StI ,E is closed under
limits and colimits in Funcocart(I , E) as well. Since in this situation StI ,E is presentable
by Lemma 5.4.6, it follows that the inclusion of StI ,E into Funcocart(I , E) has both a left
and a right adjoint. Therefore, the functoriality of the tensor product in PrL implies that
the top left vertical arrow in the diagram (5.6.4) is fully faithful. On the other hand, the
middle horizontal functor is an equivalence thanks to Corollary 4.5.7, so the conclusion
follows. �

Definition 5.6.6. Let p : I → X be an object of PosFib and let C ⊂ PrL be a full subcate-
gory stable under tensor product. We say that p : I → X is C-universal if it is C-bireflexive
and the comparison map StI ,E ⊗ E ′ → StI ,E⊗E ′ of Construction 5.6.3 is an equivalence
for everyE , E ′ ∈ C. If C ⊂ PrL is the collection of all presentable stable∞-categories, we
simply say that p : I → X is stably universal.

Proposition 5.6.7. Let X• : I → Cat∞ be a diagram with colimit X . Let p : I → X be a
cocartesian fibration in posets and set

I• := X• ×X I : I→ Cat∞ .

Assume that Ii → X is stably universal for every i ∈ I. Then I → X is stably universal.
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Proof. Note that I → X is stably bireflexive by Corollary 5.5.3. For every presentable
stable∞-categories E , E ′, we have

StI ,E ⊗ E ′ ' (lim
i∈I

StIi,E )⊗ E
′ Corollary 5.5.3

' lim
i∈I

(StIi,E ⊗ E
′) Lemma 4.5.5

' lim
i∈I

StIi,E⊗E ′

' StI ,E⊗E ′ Corollary 5.5.3

�

5.7. Induced t-structures for Stokes functors. Fix a presentable stable∞-category E
equipped with an induced t-structure τ = (E>0, E60). In Section 4.9 we showed that
cocartesian functors inherits a t-structure from τ, and we analyzed the basic properties.
We now investigate the behavior with respect to Stokes functor.

We start with a couple of general facts concerning t-structures.

Construction 5.7.1. Let C and D be stable ∞-categories equipped with t-structures
τC = (C60, C>0) and τD = (D60,D>0) and let

F : C → D
be a right t-exact stable functor. For every object C ∈ C, one has F(τC>0(C)) ∈ D>0, and
therefore the mapping space

MapD
(
F(τC>0(C)), τ

D
6−1(F(C))

)
is contractible. It follows that there exists the dashed morphisms making the diagram

(5.7.2)

F
(
τC>0(C)

)
F(C) F

(
τC6−1(C)

)

τD>0
(
F(C)

)
F(C) τD6−1

(
F(C)

)
commutative.

Lemma 5.7.3. In the situation of Construction 5.7.1, let C ∈ C be an object. If F(τC6−1(C)) ∈
D6−1 then both canonical comparison maps

F
(
τC>0(C)

)→ τD>0
(
F(C)

)
and F

(
τC6−1(C)

)→ τD6−1
(
F(C)

)
are equivalences.

Proof. Since F is a stable functor, the top row of (5.7.2) is a fiber sequence in D. By
definition of t-structure, the same holds true for the bottom row. Set

K := fib
(
F
(
τC>0(C)

)→ τD>0
(
F(C)

))
and K ′ := fib

(
F
(
τC6−1(C)

)→ τD6−1
(
F(C)

))
.

We therefore obtain a fiber sequence

K→ 0→ K ′ ,

which implies K ′ ' K[1]. Observe now that K ′ ∈ D6−1. At the same time,

K[1] ' cofib
(
F
(
τC>0(C)

)→ τD>0
(
F(C)

))
∈ D>0 .
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Thus, it follows that K ′ ∈ D>0 ∩D6−1 = {0}. Thus, both K and K ′ are zero, which implies
that the comparison morphisms are equivalences. �

We now start analyzing the behavior of the standard t-structure on Stokes functors.

Recollection 5.7.4. Let f : A→ B be a functor of∞-categories. Then

f∗ : Fun(B, E)→ Fun(A, E)
is t-exact with respect to the standard t-structures. In particular, f! is right t-exact and f∗
is left t-exact.

Lemma 5.7.5. Let f : I → J be a morphism of posets, where I is discrete and finite. Then

f! : Fun(I , E)→ Fun(J , E)
is t-exact.

Proof. Fix a functor F : I → E and an object b ∈ J . By definition

f!(F)b '
⊕
f(a)≤b

Fa ,

so the conclusion follows from the fact that both E>0 and E60 are closed under finite
sums. �

Corollary 5.7.6. Let I be a finite poset and let F : I → E be a functor. If F is split, then so are
τ6n(F) and τ>n(F) for every n ∈ Z.

Proof. It suffices to treat the case n = 0. Choose a functor V : Iset → E with an equiva-
lence F ' iI ,!(V). Since I is finite, Lemma 5.7.5 implies that

τ60(iI ,!(V)) ' iI ,!(τ60(V)) and τ>0(iI ,!(V)) ' iI ,!(τ>0(V)) ,

whence the conclusion. �

Lemma 5.7.7. Let I be a poset and let F : I → E be a functor. Let (V ,φ : iI ,!(V) ' F) be a
splitting for F. Let n ∈ Z be an integer. If F takes values in E>n (resp. E6n), then the same goes
for V .

Proof. It suffices to consider the case n = 0. For a ∈ I , φ induces

Fa '
⊕
b6a

Vb .

In particular, Va is a retract of Fa. Since Fa ∈ E>0 (resp. Fa ∈ E60), it follows that Va ∈ E>0
(resp. Va ∈ E60) as well. �

Corollary 5.7.8. Let f : I → J be a morphism of finite posets. Let F : I → E be a split functor
and let n ∈ Z be an integer. If F takes values in E6n, then so does f!(F);

Proof. It suffices to consider the case n = 0. Since F is split, we can find a functor
V : Iset → E and an equivalence φ : F ' iI ,!(V). Lemma 5.7.7 guarantees that V takes
values in E60. Thus, we find

f!(F) ' f!(iI ,!(V)) ' iJ ,!(f
set
! (V)) ,

and the conclusion now follows from Lemma 5.7.5 applied to iJ ◦ fset : Iset → J . �
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Notation 5.7.9. Given an∞-category A, we denote again by

τ>n : Fun(A, E)→ Fun(A, E>n) and τ6n : Fun(A, E)→ Fun(A, E6n)
the induced truncation functors, given respectively by the compositions

τ>n(F) := τ>n ◦ F and τ6n(F) := τ6n ◦ F .

Lemma 5.7.10. Let f : I → J be a morphism of finite posets and let F : I → E be a split functor.
Then for every integer n, the canonical maps of Construction 5.7.1

f!(τ>n(F))→ τ>n(f!(F)) and f!(τ6n(F))→ τ6n(f!(F))

are equivalences.

Proof. It suffices to consider the case n = 0. Since F is split, Corollary 5.7.6 guarantees
that τ6−1(F) is again split and takes values in E6−1. Therefore, Corollary 5.7.8 implies that
f!(τ6−1(F)) takes values in E6−1. At this point, the conclusion follows from Lemma 5.7.3.

�

Proposition 5.7.11. Let p : I → X be a cocartesian fibration in finite posets and let E be a stable
presentable∞-category equipped with an accessible t-structure τ = (E60, E>0). If F : I → E is a
Stokes functor then for every integer n ∈ Z, both τ6n(F) and τ>n(F) are again Stokes functors.
In particular, p : I → X is E -bireflexive, then StI ,E acquires a unique accessible t-structure
such that the inclusion

StI ,E ↪→ Fun(I , E)
is t-exact. If in addition τ is compatible with filtered colimits, the same goes for the induced
t-structure on StI ,E .

Proof. We know from Lemma 5.4.6 that StI ,E is presentable and stable. Since StI ,E is
closed under limits and colimits in Fun(I , E), the first half of the statement implies the
existence of the desired t-structure, its accessibility and its compatibility with filtered
colimits.

Let us therefore prove the first part. It suffices to consider the case n = 0. Let
F : I → E be a Stokes functor. We first prove that τ>0(F) and τ60(F) are punctually split.
Fix an object x ∈ X . Since j∗x : Fun(I , E) → Fun(Ix, E) is t-exact, we find canonical
equivalences

j∗x(τ>0(F)) ' τ>0(j∗x(F)) and j∗x(τ60(F)) ' τ60(j∗x(F)) .

Since j∗x(F) is split by assumption, Corollary 5.7.6 implies that the same goes for τ60(j∗x(F))
and τ>0(j∗x(F)) as well, which proves the first claim.

We now prove that τ>0(F) and τ60(F) are cocartesian. Let γ : x→ y be a morphism in
X and let fγ : Ix → Iy be any straightening for Iγ → ∆1. By Lemma 5.7.10, the canonical
comparison maps

fγ,!(τ>0(j
∗
x(F)))→ τ>0(fγ,!(j

∗
x(F))) and fγ,!(τ60(j

∗
x(F)))→ τ60(fγ,!(j

∗
x(F)))

are equivalences. Since F is cocartesian, the canonical map

fγ,!(j
∗
x(F))→ j∗y(F)

is an equivalence. The conclusion now follows from the t-exactness of both j∗x and j∗y. �
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Corollary 5.7.12. In the setting of Proposition 5.7.11, one has a canonical equivalence:

St♥I ,E ' StI ,E♥ .

Proof. By definition of the standard t-structure on Fun(I , E), we have Fun(I , E)♥ '
Fun(I , E♥). Proposition 5.7.11 guarantees that a Stokes functor is connective (resp.
coconnective) if and only if it is connective (resp. coconnective) as an object in Fun(I , E),
so the conclusion follows. �

Recollection 5.7.13. If A is a Grothendieck abelian category, we denote by D(A) the
derived ∞-category of A (see [15, Definition 1.3.5.8]). By [15, Propositions 1.3.5.9
& 1.3.5.21] we see that D(A) is a presentable stable ∞-category equipped with an
accessible t-structure τ = (D(A)>0, D(A)60) compatible with filtered colimits and such
that A ' D(A)♥.

Corollary 5.7.14. Let p : I → X be an object of PosFib and let A be a Grothendieck abelian
category such that p : I → X is D(A)-bireflexive. Then StI ,A is a Grothendieck abelian category.

Proof. Lemma 5.4.6 implies that StI ,D(A) is presentable and stable, while Proposition 5.7.11
guarantees that τ induces an accessible t-structure on StI ,D(A) which is compatible with
filtered colimits and such that the inclusion

StI ,D(A) ↪→ Fun(I , D(A))
is t-exact. Moreover, Corollary 5.7.12 and Recollection 5.7.13 imply that

St♥I ,D(A) ' StI ,A .

Thus, it follows that StI ,A is a Grothendieck abelian category. �

Corollary 5.7.15. LetX be an∞-category and let f : I → J be a morphism between cocartesian
fibrations in finite posets over X . If I → X and J → X are E -bireflexive, then the functor

f! : StI ,E → StJ ,E

is t-exact.

Proof. It follows from Proposition 5.7.11 and Recollection 5.7.4 that f! is right t-exact. Let
F ∈ (StI ,E )60. We have to prove that f!(F) takes values in E60. Combining Corollaries
3.1.6 and 5.3.4, we can reduce ourselves to the case where X is reduced to a point, where
the result follows from Corollary 5.7.8. �

Remark 5.7.16. The inclusion Funcocart(I , E) ↪→ Fun(I , E) is typically not left t-exact
and in general

Funcocart(I , E)♥ 6' Funcocart(I , E♥) ,
as Example 4.9.5 shows. Notice however that the functor F considered there is not
punctually split at 0. Similarly, if f : I → J is a morphism between cocartesian fibrations
in finite posets, neither

f! : Fun(I , E)→ Fun(J , E)
nor its cocartesian variant are left t-exact. However, it becomes left t-exact once restricted
to StI ,E , thanks to Corollary 5.7.15.
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Corollary 5.7.17. Let I → X be a cocartesian fibration in posets. If X admits an initial object
x, then a Stokes functor F : I → E takes values in E♥ if and only if j∗x(F) : Ix → E takes values
in E♥.

Proof. The “only if” direction simply follows from the t-exactness of j∗x : Fun(I , E) →
Fun(Ix, E). For the “if” direction, we equivalently have to show that for every y ∈ X ,
the restriction j∗y(F) takes values in E♥. Since x is initial in X , we can find a morphism
γ : x→ y. Choose any straightening fγ : Ix → Iy for Iγ → ∆1. Since F is cocartesian, the
canonical map

fγ,!(j
∗
x(F))→ j∗y(F)

is an equivalence. The conclusion now follows from Corollary 5.7.8. �

5.8. Categorical actions on Stokes functors. We use the terminology on categorical
actions reviewed in Section D (see also Section 4.10, of which this section is the continua-
tion). We fix a presentably symmetric monoidal and stable∞-category E⊗. In analogy
to Proposition 4.10.1, we have:

Proposition 5.8.1. Let p : I → X be a cocartesian fibration in posets. Then for every L ∈
Loc(X ; E) and every G ∈ FunPS(I , E), the functor

p∗(L)⊗G : I → E
is again punctually split. In particular, if G is a Stokes functor, the same goes for p∗(L)⊗G.

Proof. Fix x ∈ X . Since the restrictions j∗x : Fun(I , E)→ Fun(Ix, E) are E -linear, we can
assume without loss of generality that X is reduced at a single point. Choose a splitting
V : Iset → E for G. Lemma D.1.3 implies that iI ,! : Fun(Iset, E)→ Fun(I , E) is E -linear.
Therefore, for every L ∈ E we obtain

p∗(L)⊗G ' p∗(L)⊗ iI ,!(V) ' iI ,!(p
set,∗(L)⊗ V) ,

i.e. p∗(L)⊗G is split. �

Corollary 5.8.2. Let p : I → X be a E -bireflexive cocartesian fibration in posets. Then the
categorical action of Loc(X ; E) on Fun(I , E) restricts to a categorical action of Loc(X ; E) on
StI ,E .

Proof. This is obvious from Proposition 5.8.1. �

We now derive an analogue of Corollaries D.2.8 and 4.10.10 in the setting of Stokes
functors. We fix a pullback square

J I

Y X

u

q p

f

in Cat∞, where p is a cocartesian fibration in posets. In addition, we assume that f is a
finite étale fibration (see Definition C.2.1) and that both I and J are E -bireflexive. In
this setting, Construction D.2.1 supplies a canonical transformation

µ : Loc(Y ; E)⊗Loc(X ;E) Fun(I , E)→ Fun(J , E) ,
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and Proposition 4.10.1 and Corollary 5.8.2 imply that this action restricts to a well defined
categorical action

µ : Loc(Y ; E)⊗Loc(X ;E) StI ,E → StJ ,E .

Lemma 5.8.3. In the above setting, the functor

u! : Fun(J , E)→ Fun(I , E)
respects Stokes functors and in particular it induces a well defined functor

u! : StJ ,E → StI ,E .

Proof. We know from Corollary 4.10.8 that u! preserves cocartesian functors. It is there-
fore enough to prove that it preserves punctually split functors as well. Let therefore
F : J → E be a punctually split functor. Fix x ∈ X . For every y ∈ Yx, we have a splitting

Vy : J set
y → E

for j∗y(F). Since f is a finite étale fibration, the same goes for u (see Lemma C.2.2), and
therefore

j∗x(u!(F)) '
⊕
y∈Yx

j∗y(F) .

It follows from Lemma 5.4.2 that
⊕
y∈Yx Vy provides a splitting for j∗x(u!(F)), whence the

conclusion. �

Proposition 5.8.4. In the above setting, the functor

u! : StJ ,E → StI ,E

is monadic.

Proof. As in the proof of Corollary 4.10.9, Lemmas 5.8.3 and D.2.5 imply that u! and u∗ are
biadjoint. Besides, u! : Fun(J , E)→ Fun(I , E) is conservative thanks to Lemma D.2.6,
so the same holds true for its restriction to the∞-categories of Stokes functors. �

Corollary 5.8.5. Let
J I

Y X

u

q p

f

be a pullback square in Cat∞, where p is a cocartesian fibration in posets. Let E⊗ be a presentably
symmetric monoidal∞-category. Assume that:

(1) f is a finite étale fibration;

(2) E is stable;

(3) both I and J are E -bireflexive.
Then, the comparison functor

µ : Loc(Y ; E)⊗Loc(X ;E) StI ,E → StJ ,E

is an equivalence.

Proof. Using Proposition 5.8.4 as input, the same proof of Corollary D.2.8 applies. �
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We conclude this section with the following result, which has been inspired by [3,
Lemma 15.5] and that will play an important role later on:

Corollary 5.8.6 (Retraction lemma). Let

X• : ∆op
s → Cat∞

be a semi-simplicial diagram with colimit X . Let I → X be a cocartesian fibration in posets and
set

I• := X• ×X I .
Let E⊗ be a presentably symmetric monoidal stable∞-category. Assume that:

(1) Env(X ) is compact in Spc;

(2) for every [n] ∈ ∆s, the structural morphism Xn → X is a finite étale fibration;

(3) For every [n] ∈ ∆s, In is E -bireflexive;
Then there exists an integerm > 0 depending only on Env(X ) such that StI ,E is a retract of

lim
[n]∈∆s,≤m

StIn,E

in PrL.

Proof. To begin with, Corollary 5.5.3 implies that StI ,E is presentable, stable and closed
under limits and colimits in Fun(I , E) and that besides

StI ,E ' lim
i∈I

StIi,E ,

the limit being computed in PrL,R.

For any integerm > 0, set
X (m) := colim

[n]∈∆op
s,≤m

X• .

It automatically follows that
X ' colim

m∈Nop
X (m) ,

where the colimit is now filtered. Since the enveloping∞-groupoid functor Env : Cat∞ →
Spc is a left adjoint, we see that

Env(X ) ' colim
m∈N

Env(X (m)) .

Since Env(X) is compact, there exists an integer m > 0 such that Env(X ) is a retract
of Env(X (m)). As a consequence, we see that Loc(X ; E) is a retract of Loc(X (m); E). In
particular,

StI ,E ' Loc(X ; E)⊗Loc(X ;E) StI ,E
is a retract of

Loc(X (m); E)⊗Loc(X ;E) StI ,E '
(

lim
[n]∈∆s,≤m

Loc(Xn; E)
)
⊗Loc(X ;E) StI ;E .

Notice that the diagram Loc(X•; E) takes values in PrL,R. Therefore, Lemma 4.5.5 sup-
plies a canonical equivalence(

lim
[n]∈∆s,≤m

Loc(Xn; E)
)
⊗Loc(X ;E) StI ;E ' lim

[n]∈∆s,≤m
Loc(Xn; E)⊗Loc(X ;E) StI ;E .
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Since each Xn → X is a finite étale fibration, Corollary 5.8.5 supplies a canonical
equivalence

Loc(Xn; E)⊗Loc(X ;E) StI ;E ' StIn;E .
Thus, the conclusion follows. �

6. GRADUATION

In this section we keep working with cocartesian fibrations in posets, but we restrict
to stable coefficients. This allows to introduce a new fundamental operation for Stokes
functors: graduation. Intuitively, this allows to break a Stokes functor in more elementary
pieces, and it will be the key ingredient needed to develop the theory of level morphisms
and level induction.

6.1. Relative graduation. Let X be an∞-category. Starting with a morphism p : I → J
in PosFibX , we can perform the following two constructions:

Construction 6.1.1. Consider the fiber product

Ip I

J set J

π p

iJ

Notice that Iset
p → Iset is an equivalence. When X is reduced to a point, we can identify

Ip with the poset (I ,≤p), where

a ≤p a ′
def.⇐⇒ p(a) = p(a ′) and a ≤ a ′ .

In other words, if p(a) 6= p(a ′), then a and a ′ are incomparable with respect to ≤p.

Construction 6.1.2. Let

Υ = ΥJ := Stco
X (J ) : X → Cat∞

be the straightening of pJ : J → X . Consider the composition

Υ∆
1

:= Fun(∆1,Υ(−)) : X → Cat∞,

and write J ∆1 := Unco
X (Υ

∆1) for the associated cocartesian fibration. The source and
identity functors

Fun(∆1,Υ(−))→ Υ(−) and Υ(−)→ Fun(∆1,Υ(−))

induce morphisms of cocartesian fibration in posets over X

s : J ∆1 → J and id : J → J ∆1
Consider the pullback diagram

I≤ I

J ∆1 J .

σ

p

s
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Objects of I≤ are triples (x,a,b) where a ∈ Ix, b ∈ Jx and where p(a) ≤ b in Jx.
We also consider the full subcategory iI ,< : I< ↪→ I≤ spanned by objects (x,a,b) with
p(a) < b. When I is clear from the context, we simply write i< instead of iI ,<.

Remark 6.1.3. The target functor Fun(∆1,Υ(−)) → Υ(−) induces a morphism of co-
cartesian fibration in posets t : J ∆1 → J . Let τ : I≤ → J be the composition of
I≤ → J ∆1 with t : J ∆1 → J . Then, one checks that if X is a point, the induced functor
(σ, τ) : I≤ → I × J is fully-faithful.

In general, I< is no longer a cocartesian fibration. To remedy this, we introduce the
following:

Definition 6.1.4. Let X be an∞-category. Let p : I → J be a morphism in PosFib over
X . We say that p : I → J is a graduation morphism if the cocartesian fibration J set → X
is locally constant in the sense of Definition C.1.4.

The following lemma is simply a matter of unraveling the definitions:

Lemma 6.1.5. Let X be an ∞-category. Let p : I → J be a graduation morphism over X .
Then, i< : I< → I≤ is a cocartesian subfibration of I≤ over X .

Consider the following diagram with pull-back squares:

(6.1.6)

I<

Ip I≤ I

J set J J ∆1 J .

i<

ip σ

p

iJ id s

We fix a presentable stable∞-category E and write

ε< : i<!i
∗
< → idFun(I≤,E)

for the counit of the adjunction i<! : Fun(I<, E)� Fun(I≤, E) : i∗<.

Definition 6.1.7. The graduation functor relative to p : I → J (or p-graduation functor)

Grp : Fun(I , E)→ Fun(Ip, E)
is the cofiber

Grp := cofib
(
i∗pε<σ

∗ : i∗p ◦ i<! ◦ i∗< ◦ σ∗ → i∗p ◦ σ∗
)

.

Notation 6.1.8. When p = id, we note Gr for Grid.

In the following basic example, we recall that if p : I → J is a morphism of posets and
if b ∈ J , we put I≤b = I/b := I ×J J/b. Since J is a poset, the canonical morphism
J/b → J is fully-faithful. Thus, the canonical morphism I/b → I identifies I/b with
the full subcategory of I spanned by objects a ∈ I such that p(a) ≤ b. Similarly,
I<b := I ×J J<b is the full subcategory of I spanned by objects a ∈ I such that
p(a) < b.
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Example 6.1.9. Let p : I → J be a morphism of posets. Let E be a presentable stable∞-category. Let V : Iset → E be a functor and put F := iI!(V). Let a ∈ Ip. Then, there is
a canonical equivalence

(Grp(F))a '
⊕
a ′≤a

p(a ′)=p(a)

Va ′ .

Proof. We have

(i∗p ◦ i<! ◦ i∗< ◦ σ∗(F))a ' colim
(a ′,b)∈(I<)/(a,p(a))

Fa ′ ' colim
(a ′,a ′′,b)∈C

Va ′′

where C is the full subcategory of I × J × Iset spanned by triples (a ′,b,a ′′) such that
a ′′ ≤ a ′ ≤ a and p(a ′) < b ≤ p(a). Let D be the full subcategory of I × Iset spanned
by pairs (a ′,a ′′) such that a ′′ ≤ a ′ ≤ a and p(a ′) < p(a). Let A be the subset of Iset

formed by the a ′′ such that a ′′ ≤ a and p(a ′′) < p(a). Consider the commutative
diagram

D C

A Iset

f

p2 p3

where f : D → C is given by (a ′,a ′′) 7→ (a ′,p(a),a ′′). We claim that f is cofinal. Indeed,
for every triple (a ′,b,a ′′) ∈ C,D(a ′,b,a ′′)/ := D×C C(a ′,b,a ′′)/ is the subposet ofD spanned
by pairs (α ′,a ′′) with a ′ ≤ α ′. Observe that (a ′,a ′′) is a minimal element of D(a ′,b,a ′′)/,
which is thus weakly contractible. Hence, the claimed cofinality follows from [14,
Theorem 4.1.3.1]. Thus,

(i∗p ◦ i<! ◦ i∗< ◦ σ∗(F))a ' colim
D

V |D

We also claim that p2 : D → A is cofinal. Indeed, if a ′′ ∈ A, Da ′′/ := D ×A Aa ′′/ is the
subposet of D spanned by couples (α ′,a ′′). Observe that (a ′′,a ′′) is a minimal element
of Da ′′/, which is thus weakly contractible. Hence, the claimed cofinality follows from
[14, Theorem 4.1.3.1]. Thus,

(i∗p ◦ i<! ◦ i∗< ◦ σ∗(F))a ' colim
A

V |A '
⊕
a ′≤a

p(a ′)<p(a)

Va ′

On the other hand,
(i∗p ◦ σ∗(F))a ' Fa '

⊕
a ′≤a

Va ′

Example 6.1.9 thus follows. �

In particular when p : I → J is the identity of I , we obtain:

Example 6.1.10. In the setting of Example 6.1.9, let V : Iset → E be a functor and put
F := iI!(V). Let a ∈ Iset. Then, there is a canonical equivalence

(Gr F)a ' Va
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Example 6.1.11. Let X be an∞-category. Let p : I → J be a graduation morphism over
X and assume that J = J set. Then, Ip = I and Grp : Fun(Ip, E) → Fun(I , E) is the
identity functor.

Proposition 6.1.12. Let X be an∞-category. Let p : I → J be a graduation morphism over
X . Let E be a presentable stable∞-category. Then Grp : Fun(I , E)→ Fun(Ip, E) commutes
with colimits. In particular, Grp admits a right adjoint

Gr∗p : Fun(Ip, E)→ Fun(I , E)
that can be explicitly computed as

Gr∗p ' fib
(
σ∗ ◦ ip,∗

η<→ σ∗ ◦ i<,∗ ◦ i∗< ◦ ip,∗
)

,

where η< is the unit of the adjunction i∗< a i<,∗.

Proof. The first half follows immediately from the fact that Grp is a composition of
functors commuting with colimits. The second half simply follows from the Yoneda
lemma. �

Remark 6.1.13. For an explicit description of the right adjoint Gr∗p in the spirit of Exam-
ple 6.1.9, see Proposition 6.3.11.

Under extra finitness conditions, Proposition 6.1.12 has a counterpart for limits. Before
stating it, we introduce the following

Definition 6.1.14. We define PosFibf as the full subcategory of PosFib spanned by
cocartesian fibrations in posets p : I → X such that for every x ∈ X , the poset Ix is
finite.

Proposition 6.1.15. Let X be an ∞-category. Let p : I → J be a graduation morphism
in PosFibf over X . Let E be a presentable stable ∞-category. Then Grp : Fun(I , E) →
Fun(Ip, E) commutes with limits.

Proof. Follows immediately from Proposition A.2.3 and the fact that in a stable ∞-
category, the cofiber functor commutes with limits in virtue of Lemma A.2.1. �

Proposition 6.1.16. Let X be an ∞-category. Let p : I → J be a graduation morphism
in PosFibf over X . Let E be a presentable stable ∞-category. Then Grp : Fun(I , E) →
Fun(Ip, E) is conservative.

Proof. From Corollary 3.1.6, we can suppose that X is a point. Let f : F → G be a
morphism in Fun(I , E) such that Grp(f) : Grp(F) → Grp(G) is an isomorphism. Let
A ⊂ I be the subset of elements a such that f is not an isomorphism at a. We argue
by contradiction and assume that A is not empty. Since I is finite, A admits a minimal
element a. If Ca := I< ×I≤ (I≤)/(a,p(a)), there is a morphism of cofibre sequences

colim
Ca

F|Ca Fa Grp(F)a

colim
Ca

G|Ca Ga Grp(G)a

fa Gr(f)a
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By definition, an object of Ca is a couple (b, c) ∈ I × J with p(b) < c such that b ≤ a
and c ≤ p(a). In particular p(b) < p(a), so that b < a. That is, the above colimit over
Ca only features values of f at elements b ∈ I strictly smaller than a. Thus, the left
vertical arrow is an equivalence by the minimality of a. The right vertical arrow is an
equivalence by assumption. Hence fa : Fa → Ga is an equivalence. Contradiction. �

Remark 6.1.17. Note that Proposition 6.1.16 fail if the finiteness assumption on I is
dropped. If I = Z and if F is the functor constant to a non zero object in E , then we have
F 6= 0 and Gr(F) ' 0.

6.2. Exponential graduation. The graduation functor introduced in Section 6.1 should
be understood as the global counterpart of the exponential graduation, which we now
discuss. Fix a presentable stable ∞-category E . For every ∞-category X and every
graduation morphism p : I → J in PosFib over X , we can apply expE (−/X ) to the
diagram (6.1.6). This yields the following commutative diagram

expE (I</X )

expE (Ip/X ) expE (I≤/X ) expE (I/X )

expE (J
set/X ) expE (J /X ) expE (J

∆1/X ) expE (J /X )

Ei<!
Eip! Eσ!

EiJ! E id
! Es!

in PrFibL
X . Recall from Lemma 3.4.1 the existence of right adjoints Eσ,∗, E i<,∗ and E ip,∗

for Eσ! , E i<! and E ip! , respectively.

Definition 6.2.1. In the above setup, the exponential graduation relative to p is the functor

expGrp := cofib(E ip,∗ ◦ E i<! ◦ E
i<,∗ ◦ Eσ,∗ → E ip,∗ ◦ Eσ,∗) ,

where the morphism is induced by the counit of the adjunction E i<! a E i<,∗.

The following result summarizes the local and the global behavior of the exponential
graduation functor:

Proposition 6.2.2. Keep the same notations as above. Then:

(1) for every x ∈ X , the diagram

Fun(Ix, E) Fun((Ip)x, E)

expE (I/X ) Fun(Ip, E)

Grpx

expGrp

commutes.
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(2) The diagram

Fun/X (X , expE (I/X )) Fun/X (X , expE (Ip/X ))

Fun(I , E) Fun(Ip, E)

ΣX (expGrp)

spI spIp
Grp

commutes.

Proof. Statement (1) immediately follows from Corollary 3.1.6 applied to E i<! and the
fact that the adjunctions Eσ! a Eσ,∗, E i<! a E i<,∗ and E ip! a E ip,∗ are relative to X , see
Lemma 3.4.1. On the other hand, statement (2) is a direct consequence of Proposi-
tion 3.4.2. �

Our next goal is to understand the behavior of expGr with the exponential functoriality
for morphisms in PosFib. We start analyzing cartesian morphisms. Consider therefore a
diagram

(6.2.3)

I IX

J JX

Y X

p q

u

u ′

f

whose squares are pullbacks and where I → Y and J → Y are cocartesian fibrations in
posets. We also assume that J set → X is locally constant. We have:

Proposition 6.2.4. In the above setting, the diagram

(6.2.5)

expE (Ip/Y) expE ((IX )pX /X )

expE (I/Y) expE (IX/X )

Eup

expGrp

Eu
expGrq

is canonically commutative, and it is therefore a pullback.

Proof. Unraveling the definitions, we see that an object in expE (IX/X ) can be identified
with a pair (F, x), where x ∈ X and F : (IX )x → E is a functor. Under the canonical
identification (IX )x ' If(x), the functor Eu sends (F, x) to (F, f(x)). At this point, the
commutativity follows from Corollary 3.1.6 and Proposition 6.2.2-(1), while Proposi-
tion 2.2.6-(1) immediately implies that the square in consideration is a pullback. �

Corollary 6.2.6. In the above setting, the natural transformation

Grq ◦u∗ → u∗p ◦Grp
between functors from Fun(I , E) to Fun((IX )q, E) is an equivalence.

Proof. We can see (6.2.5) as a commutative square in PrFibL. The statement then follows
applying Σ and invoking Proposition 3.1.2-(1) and Proposition 6.2.2-(2). �
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Remark 6.2.7. As a particular case of Corollary 6.2.6, we see that relative graduation
commutes with restriction over an object of X .

6.3. Graduation and induction. Our next task is to understand how graduation be-
haves with respect to morphisms in PosFibX for a fixed∞-category X . In other words,
we are interested in seeing to which extent (exponential) graduation and (exponential)
induction intertwine with each other. Our starting point is the following. Let X be an∞-category and let

(6.3.1)
I K

J L

p

f

q

g

be a commutative diagram in PosFib over X . We make the following running

Assumption 6.3.2.
(1) Both p : I → J and q : K → L are graduation morphisms.

(2) For every x ∈ X , the map gset
x : J set

x → Lset
x is injective.

The second half of this assumption guarantees that if a,b ∈ Jx are such that a < b,
then g(a) < g(b) as well. Thus, the above assumption guarantees the existence and
commutativity of the following diagram:

(6.3.3)

I<

K<

Ip I≤ I

Kq K≤ K

J set J ∆1 J

Lset L∆1 L

f<

iI ,<

ip

fp,q

σI

f≤

p

f

iq

iK,<

σK

g

q

Fix a stable presentable∞-category E and consider the induced natural transformation

(6.3.4) fp,q! ◦Grp → Grq ◦f!
of functors from Fun(I , E) to Fun(Kq, E). The goal of this section is to establish the
following:
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Proposition 6.3.5. Let E be a stable presentable∞-category and let F ∈ Fun(I , E). Under
Assumption 6.3.2, the natural transformation (6.3.4) is an equivalence and the diagram

expE (I/X ) expE (K/X )

expE (Ip/X ) expE (Kq/X )

Ef!

expGrp expGrq
Efp,q
!

commutes.

We first deal with the natural transformation (6.3.4), and we start by the following
particular case:

Lemma 6.3.6. LetX be an∞-category. Let E be a presentable stable∞-category. Let p : I → J
be a graduation morphism in PosFib over X . Consider the commutative diagram

Iset I

J J

p◦iI

iI

p

id

Then, the induced natural transformation iIp! → Grp ◦iI! is an equivalence.

Proof. Combining Corollary 3.1.6 and Corollary 6.2.6, we can suppose that X is a point.
Let V : Iset → E be a functor. Then, for every a ∈ Ip, we have

(iIp!(V))a '
⊕
a ′≤a

p(a ′)=p(a)

Va ′

Then, Lemma 6.3.6 follows from the computation performed in Example 6.1.9. �

Corollary 6.3.7. Under the assumptions of Lemma 6.3.6, for every punctually split functor
F : I → E , the graduation Grp(F) : Ip → E is punctually split.

Proof. From Corollary 6.2.6, we are left to treat the case where X is a point. In this case,
the statement follows from Lemma 6.3.6. �

Corollary 6.3.8. Let I → X be an object of PosFibf such that Iset → X is locally constant.
Let E be a presentable stable∞-category. Let F : I → E be a functor. Then, the following are
equivalent:

(1) the canonical morphism i∗I(F)→ Gr(F) admits a section σ : Gr(F)→ i∗I(F);

(2) the functor F split.
If these conditions are satisfied, the morphism

τ : iI! Gr(F)→ F

induced by σ is an equivalence.

Proof. Assume that (1) holds. To prove (2), it is enough to show that τ is an equivalence.
By Proposition 6.1.16, it is enough to show that

Gr(τ) : Gr iI! Gr(F)→ Gr(F)
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is an equivalence. Then, Corollary 6.3.8 follows from Lemma 6.3.6. Assume that F split
and let us write F ' iI ,!(V) where V : I → E is a functor. By Lemma 6.3.6, the canonical
morphism from (1) reads as i∗I iI ,!(V)→ V . Then, the unit transformation V → i∗I iI ,!(V)
does the job. �

We are now ready for:

Proof of Proposition 6.3.5. Combining Corollary 3.1.6 and Corollary 6.2.6, we can assume
that X is a point. Recall moreover from Proposition 5.1.11 that Fun(I , E) is generated
under colimits by punctually split functors. Since both source and target of (6.3.4)
commute with colimits, it is enough to check that the canonical morphism

fp,q!(Grp(F))→ Grq(f!(F))

is an equivalence when F is punctually split. We can therefore assume that F ' iI!(V)
for some functor V : Iset → E . Thus, we can compute:

fp,q!(Grp(F)) ' fp,q!(Grp(iI!(V)))

' fp,q! ◦ iIp!(V) By Lemma 6.3.6

' iKq!(fset
! (V))

' Grq(iK!(fset
! (V))) By Lemma 6.3.6

' Grp ◦f! ◦ iK!(V)
' Grp ◦f!(F) .

Thus, (6.3.4) is an equivalence. As for the second half of the statement, observe that
applying expE (−/X ) to the diagram (6.3.4) supplies a canonical natural transformation

α : E fp,q
! ◦ expGrp → expGrq ◦E

f
! .

To prove that it is an equivalence, it is enough to prove that its restriction αx is an
equivalence for every x ∈ X . Combining Proposition 3.1.2-(2) and Proposition 6.2.2-(1),
we see that αx coincides with the natural transformation (6.3.4), so the conclusion follows
from what we have already proven. �

We store the following particular cases of Proposition 6.3.5 for later use.

Corollary 6.3.9. Let X be an∞-category. Let p : I → J be a graduation morphism in PosFib
over X . Consider the commutative square

I J

J J

p

p

id

id

Let π : Ip → J set be the morphism induced by p. Let E be a presentable stable ∞-category.
Then, for every functor F : I → E , the canonical morphism

π!(Grp(F))→ Gr(p!(F))

is an equivalence.
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Corollary 6.3.10. Let X be an∞-category. Let i : I ↪→ J be a fully faithful functor in PosFib
over X . Consider the commutative square

I J

I J .

id

i

id

i

Let E be a presentable stable ∞-category. Then, for every functor F : I → E , the canonical
morphism

iset
! (Gr(F))→ Gr(i!(F))

is an equivalence.

Proposition 6.3.11. Let p : I → J be a morphism of posets. Let E be a presentable stable∞-category. Then, for every F ∈ Fun(Ip, E) and every a,b ∈ I with a ≤ b, we have canonical
equivalences

(Gr∗p(F))(a ≤ b) '
{
F(a ≤ b) if p(a) = p(b)
0 : Fa → Fb if p(a) < p(b)

Proof. Let i : p−1(p(a)) → I and j : p−1(p(a)) → Ip be the inclusions. From Proposi-
tion 6.3.5 and Example 6.1.11 applied to the commutative square

p−1(p(a)) I

∗ J

i

p

p(a)

there is a canonical equivalence of functors j! ' Grp ◦i!. Passing to right adjoints gives a
canonical equivalence i∗ ◦Gr∗p ' j∗. This proves the first claim. Let a,b ∈ I with a ≤ b
and p(a) < p(b). We want to show that

α := (Gr∗p(F))(a ≤ b) : (Gr∗p(F))a → (Gr∗p(F))b
is the zero morphism. This amounts to show that for every V ∈ E , the morphism

Map(V ,α) : Map(V , evI ,∗
a Gr∗p(F))→Map(V , evI ,∗

b Gr∗p(F))

is the zero morphism. By adjunction, this amounts to show that

Map(β, F) : Map(Grp ◦evIa,!(V), F)→Map(Grp ◦evIb,!(V), F)

is the zero morphism, where

β : Grp ◦evIb,!(V)→ Grp ◦evIa,!(V)

is the induced morphism in Fun(Ip, E). We are thus left to show that β is the zero
morphism. From Proposition 6.3.5, β identifies with a morphism of the form evIpb,!(V)→
evIpa,!(V). Let c ∈ Ip. Since p(a) < p(b), then either p(c) 6= p(a) or p(c) 6= p(b). In the

first case, a and c cannot be compared in Ip, so that evIpa,!(V) sends c to 0. In the second

case, b and c cannot be compared in Ip, so that evIpb,!(V) sends c to 0. Hence, in both
cases β is zero when evaluated at c. Thus, β is the zero morphism. �
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Proposition 6.3.12. Let X be an∞-category. Let p : I → J be a graduation morphism over
X . Let a ∈ I . Let E be a presentable stable∞-category. Then the triangle

Fun(Ip, E) Fun(I , E)

E

Gr∗p

evIp ,∗
a evI ,∗

a

is canonically commutative.

Proof. Equivalently, it is enough to check that the canonical map

evIpa! → Grp ◦evIa!

is an equivalence. Since evIpa factors through Iset → Ip and evIa factors through Iset → I ,
the statement follows directly from Proposition 6.3.5, in the form of the special case
treated in Lemma 6.3.6. �

Corollary 6.3.13. Let X be an∞-category. Let p : I → J be a graduation morphism over X .
Then, Gr∗p : Fun(Ip, E)→ Fun(I , E) commutes with colimits. In particular, Grp : Fun(I , E)→
Fun(Ip, E) preserves compact objects.

Proof. Immediate from Proposition 6.3.12 and the fact that the functors evI ,∗
a ,a ∈ I are

jointly conservative and commute with colimits. �

6.4. Graduation and cocartesian functors.

Proposition 6.4.1. Let X be an ∞-category. Let p : I → J be a graduation morphism in
PosFib over X . Let E be a presentable stable∞-category. Then, the functor

expGrp : expE (I/X )→ expE (Ip/X )

preserves cocartesian edges. If in addition both I and J belong to PosFibf, then expGrp reflects
cocartesian edges as well.

Warning 6.4.2. Since the adjoints Eσ,∗, E i<,∗ and E ip,∗ do not preserve cocartesian edges,
it is a priori not obvious that expGrp defines a morphism of cocartesian fibrations over
X .

Proof of Proposition 6.4.1. Unraveling the definitions, we have to prove the following
statement. Let γ : x → y be any morphism in X and fix compatible straightenings
fγ : Ix → Iy, gγ : Jx → Jy making the diagram

(6.4.3)

Ix Iy

Jx Jy

fγ

px py

gγ

commutative. Then we have to prove that for every pair of functors Fx : Ix → E and
Fy : Iy → E and every map α : (Fx, x) → (Fy,y) in expE (I/X ) lying over γ, if the
canonically induced morphism

α : fγ,!(Fx)→ Fy
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is an equivalence then the same goes for the map

(6.4.4) β : (fγ)px,py!(Grpx(F))→ Grpy(Fy)

induced by the morphismβ := expGrp(α) : (Grpx(Fx), x)→ (Grpy(Fy),y) in expE (Ip/X ).
Notice that, since J set → X is locally constant, the underlying map gset

γ : J set
x → J set

y is
a bijection. In particular, Assumption 6.3.2 is satisfied, and we therefore find a natural
transformation (fγ)px,py! ◦Grpx → Grpy ◦fγ! making the diagram

(fγ)px,py!(Grpx(Fx)) Grpy(Fy)

Grpy(fγ!(Fx)) ,

β

Grpy (α)

commutative. Now, Proposition 6.3.5 guarantees that the vertical arrow is an equivalence,
so β is an equivalence if and only if Grpy(α) is. This immediately proves the first half of
the statement, and the second half follows from the conservativity of Grpy , that holds
when I and J are in PosFibf thanks to Proposition 6.1.16. �

Corollary 6.4.5. In the setting of Proposition 6.4.1, the functor Grp : Fun(I , E)→ Fun(Ip, E)
preserves cocartesian functors. If in addition I and J belong to PosFibf, then the resulting
commutative square

Funcocart(I , E) Fun(I , E)

Funcocart(Ip, E) Fun(Ip, E)

Grp Grp

is a pullback.

Proof. Thanks to Proposition 6.4.1, we see that expGrp is a morphism in PrFibL. Apply-
ing Σcocart

X , we see that Grp preserves cocartesian functors. As for the pullback statement,
since both horizontal functors are fully faithful, it amounts to check that if F : I → E is
such that Grp(F) is cocartesian, then the same goes for F. Via the specialization equiv-
alence (3.1.1), we can equivalently see F as a section spI(F) : X → expE (I/X ) of the
structural map of expE (I/X ). Using Proposition 6.2.2-(2), we see that the problem at
hand becomes showing that spI(F) is a cocartesian section if and only if expGrp ◦ spI(F)
is a cocartesian section of expE (Ip/X ), and this latter statement follows directly from
the second half of Proposition 6.4.1. �

In fact, we can extract from the proof of Corollary 6.4.5 the following more precise
statement:

Corollary 6.4.6. In the setting of Proposition 6.4.1, let γ : x→ y be a morphism in X and let
F : I → E be a functor. Then if F is cocartesian at γ, the same goes for Grp(F) : Ip → E . The
converse holds provided that both I and J belong to PosFibf.

Proof. Passing to the other side of the specialization equivalence (3.1.1) and invoking
Proposition 6.2.2-(2), we have to prove that a section s : X → expE (I/X ) takes γ to a
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cocartesian morphism if and only if expGrp ◦s takes γ to a cocartesian morphism in
expE (Ip/X ). As this statement is obviously implied by Proposition 6.4.1, the conclusion
follows. �

Combining together Corollary 6.3.7 and Corollary 6.4.5 we obtain:

Corollary 6.4.7. Let X be an ∞-category. Let p : I → J be a graduation morphism in
PosFibX . Let E be a presentable stable∞-category. Then, for every cocartesian punctually split
functor F : I → E , its p-graduation Grp(F) : Ip → E is cocartesian and punctually split.

We conclude this section with the following handy consequence:

Corollary 6.4.8. Let X be an ∞-category. Let p : I → J be a graduation morphism in
PosFibX . Let E be a presentable stable∞-category. Then the functor

expGrp : expE (I/X )→ expE (Ip/X )

admits a right adjoint expGr∗p relative to X . In particular, for every x ∈ X , the diagram

Fun((Ix)px , E) Fun(Ix, E)

expE (Ip/X ) expE (I/X )

Gr∗px

expGr∗p

commutes. In addition, the diagram

Fun/X (X , expE (Ip/X )) Fun/X (X , expE (I/X ))

Fun(Ip, E) Fun(I , E)

ΣX (expGr∗p)

spIp spI
Gr∗p

commutes as well.

Proof. Since expGrp preserves cocartesian edges by Proposition 6.4.1, [15, Proposition
7.3.2.6] shows that it is enough to prove that for every x, the induced functor on the
fibers at x

(expGrp)x : Fun((Ix)px , E)→ Fun(Ix, E)
admits a right adjoint. By Proposition 6.2.2-(1), we see that (expGrp)x canonically coin-
cides with Grpx , so the existence of the right adjoint is guaranteed by Proposition 6.1.12.
This proves at the same time the commutativity of the first diagram. As for the second,
it simply follows from the uniqueness of the adjoints, the fact that the specialization
functors are equivalences and Proposition 6.2.2-(2). �

Proposition 6.4.9. Let X be an∞-category. Let p : I → J be a graduation morphism over
X . Let E be a presentable stable ∞-category. Then, the graduation functor relative to p
(Definition 6.1.7)

Grp : Fun(I , E)→ Fun(Ip, E)
preserves the category of Stokes functors. In other words, it restricts to a functor

Grp : StI ,E → StIp,E .



HOMOTOPY THEORY OF STOKES DATA 75

Proof. This follows from Corollary 6.4.7, Corollary 6.2.6 and Lemma 6.3.6. �

Corollary 6.4.10. Let I → X be an object of PosFib such that Iset → X is locally constant.
Let E be a presentable stable∞-category. Then, the following square

StIset,E StI ,E

Fun(Iset, E) Fun(I , E)

iI ,!

iI ,!

is a pullback

Proof. Let F : I → E be a split Stokes functor. Let V : Iset → E such that F ' iI ,!(V). By
Lemma 6.3.6, we have

Gr(F) ' Gr(iI ,!(V)) ' V .
By Corollary 6.4.5, we deduce that V : Iset → E is cocartesian. Since V is automatically
punctually split, Corollary 6.4.10 thus follows.

�

6.5. Essential image of a fully-faithul induction. The following propositions describe
the essential image of a fully-faithul induction in terms of graduation.

Lemma 6.5.1. Let X be an∞-category. Let i : I → J be a fully faithful functor in PosFib
over X . Let E be a presentable stable∞-category. Then, the functor

i! : FunPS(I , E)→ FunPS(J , E)
is fully faithful. Let F ∈ FunPS(J , E). Then, the following statements are equivalent :

(1) F lies in the essential image of i! : FunPS(I , E)→ FunPS(J , E).
(2) i∗(F) lies in FunPS(I , E) and the counit map i!(i∗(F))→ F is an equivalence.

(3) (Gr F)a ' 0 for every a ∈ J set not in the essential image of iset : Iset → J set.

Proof. Since i : I → J is fully faithful, so is i! : Fun(I , E) → Fun(J , E). In particular,
the unit of i! a i∗ is an equivalence. The fact that (1) implies (2) is then obvious. The
statement (2) trivially implies (1). To show the equivalence with (3), we can suppose
from Corollary 3.1.6 and Corollary 6.2.6 that X is a point. If (2) holds, the sought-after
vanishing follows from Example 6.1.10. Suppose that (3) holds. Let us write F = iJ !(V)
where V : J set → E . From Example 6.1.10, Va ' 0 for every a ∈ J set \ Iset. IfW = V |Iset ,
we thus have V ' iset

! (W). Hence,

F = iJ !(V) ' iJ ! ◦ iset
! (W) ' i! ◦ iI!(W)

which proves (1), thus finishing the proof of Lemma 6.5.1. �

Proposition 6.5.2. LetX be an∞-category. Let i : I ↪→ J be a fully faithful functor in PosFib
over X . Let E be a presentable stable∞-category. Let F ∈ StJ ,E . Then, the following statements
are equivalent :

(1) F lies in the essential image of i! : StI ,E → StJ ,E .

(2) i∗(F) lies in StI ,E and the counit map i!(i∗(F))→ F is an equivalence.
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(3) (Gr F)a ' 0 for every a ∈ J set not in the essential image of iset : Iset → J set.

Proof. The equivalence between (1) and (2) follows as in Lemma 6.5.1. Assume that
(1) holds. Then (3) holds in virtue of Corollary 6.3.10. Assume that (3) holds. We are
doing to show that (2) holds. Since F is punctually split, Lemma 6.5.1 implies that i∗(F)
is punctually split and that the counit map i!(i∗(F))→ F is an equivalence. Hence, we
are left to show that i∗(F) is cocartesian. To do this, we can suppose that X = ∆1. In that
case, consider the commutative square

Ix I

Jx J .

ix

jx

i

jx

By Proposition 5.2.5, the counit map jx,!j
∗
x(F)→ F is an equivalence. By Corollary 6.2.6,

the split functor j∗x(F) : Jx → E satisfies the conditions of Lemma 6.5.1-(3). Thus, there
exists G : Ix → E such that j∗x(F) ' ix,!(G). Hence, we have

i∗(F) ' i∗jx,!j
∗
x(F) ' i∗jx,!ix,!(G) ' i∗i!jx,!(G) ' jx,!(G)

where the last equivalence follows from the fully faithfulness of i : I ↪→ J . Then i∗(F) is
cocartesian by Proposition 5.2.5. �

Corollary 6.5.3. Let X be an ∞-category. Let i : I ↪→ J be a fully faithful morphism in
PosFib over X . Let E be a presentable∞-category. Assume that

iJ ,! : StJ set,E → StJ ,E

is essentially surjective (resp. fully faithful). Then, so is

iI ,! : StIset,E → StI ,E .

Proof. Consider the commutative square

StIset,E StJ set,E

StI ,E StJ ,E

iset
!

iI ,! iJ ,!

i!

whose horizontal arrows are fully faithful since i : I ↪→ J is fully faithful. In particular,
if iJ ,! is fully faithful so is iI ,!. Assume that iJ ,! is essentially surjective. Let F : I → E be
a Stokes functor. Write i!(F) ' iJ ,!(V) where V : J set → E is Stokes. By Lemma 6.3.6, we
have

Gr i!(F) ' Gr iJ ,!(V) ' V ' GrV .
By Proposition 6.5.2, we deduce that (GrV)a ' 0 for every a ∈ J set not in the essential
image of iset : Iset → J set. By Proposition 6.5.2 again, there is a Stokes functorW : Iset →
E such that V ' iset

! (W). Then,

i!iI ,!(W) ' iJ ,!i
set
! (W) ' i!(F) .

Since i : I ↪→ J is fully faithful, we deduce that F ' iJ ,!(W). The proof of Corollary 6.5.3
is thus complete. �
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6.6. Graduation and t-structures. We now explore the properties of the relative gradu-
ation with respect to the t-structures of Proposition 5.7.11.

Proposition 6.6.1. Let X be an∞-category and let p : I → J be a graduation morphism of
cocartesian fibrations in finite posets over X . Let E be a presentable stable∞-category equipped
with an accessible t-structure τ = (E60, E>0). If I , Ip are E -bireflexive, then the relative
graduation functor

Grp : StI ,E → StIp,E
is t-exact.

Proof. The very definition of Grp (see Definition 6.1.7) and Recollection 5.7.4 imply
together that Grp is right t-exact. Let now F ∈ (StI ,E )60. To check that Grp(F) ∈
(StIp,E )60, it suffices to show that for every x ∈ X one has

j∗x(Grp(F)) ∈ Fun((Ip)x, E) .

By Corollary 6.2.6 and Remark 6.2.7 we have a canonical equivalence

j∗x(Grp(F)) ' Grpx(j
∗
x(F)) .

We can therefore assume that X is reduced to a point. Since F is punctually split, we can
find a functor V : Iset → E . Lemma 5.7.7 guarantees that V takes values in E60. Since
Ix is finite and E60 is closed under finite sums, the conclusion follows from the fomula
given in Example 6.1.9. �

Corollary 6.6.2. In the setting of Proposition 6.6.1, a Stokes functor F : I → E is connective
(resp. coconnective) with respect to the induced t-structure on StI ,E if and only if Grp(F) is
connective (resp. coconnective).

Proof. It follows combining t-exactness and conservativity of Grp, see Proposition 6.6.1
and Proposition 6.1.16. �

6.7. Splitting criterion. The goal of this subsection is to establish a splitting criterion
(Corollary 6.7.17), to be used in the essential surjectivity part of the proof of [21, Theo-
rem 9.2.1].

Construction 6.7.1. Let X be an ∞-category. Let i : I ↪→ J and k : K ↪→ J be fully
faithful functors in PosFibf over X such that J set = Iset tKset. In particular, for every
functor G : Iset → E , we have

G ' iset
! i

set ∗(G)⊕ kset
! k

set ∗(G) .

We denote by ∆(G) the split cofiber sequence

(6.7.2) iset
! i

set ∗(G)→ G→ kset
! k

set ∗(G) .

We assume that J set → X is locally constant. Let E be a presentable stable∞-category.
Let F : J → E be a functor. We suppose that the canonical morphism iset,∗i∗J (F) →
iset ∗Gr(F) admits a section

(6.7.3) σ : iset ∗Gr(F)→ iset,∗i∗J (F) .

By adjunction, σ yields a morphism

τ : iJ !i
set
! i

set ∗Gr(F)→ F
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in Fun(J , E). We denote by ∆(F,σ) the following cofiber sequence

(6.7.4) iJ !i
set
! i

set ∗Gr(F) F F\I .τ

Remark 6.7.5. By Corollary 6.2.6 and Corollary 3.1.6, observe that the formation of F\I

commutes with pull-back.

Lemma 6.7.6. In the setting of Construction 6.7.1, the canonical morphism

kset
! k

set,∗Gr(F)→ Gr(F\I)

is an equivalence.

Proof. Since Gr commutes with colimits, applying Gr to (6.7.4) yields a cofiber sequence

Gr i!iI!iset ∗Gr(F)→ Gr(F)→ Gr(F\I) .

By Lemma 6.3.6 and Corollary 6.3.10, we have Gr i!iI!iset ∗Gr(F) ' iset
! i

set,∗Gr(F). Since
we have

Gr(F) ' iset
! i

set,∗Gr(F)⊕ kset
! k

set,∗Gr(F) ,
Lemma 6.7.6 thus follows. �

Lemma 6.7.7. In the setting of Construction 6.7.1, the following hold:
(1) If F is cocartesian, so is F\I .

(2) If F is punctually split, so is F\I .

(3) If F split,the cofiber sequences ∆(F,σ) and iJ ,!∆(Gr(F)) are equivalent. In particular,
F\I split.

Proof. Item (1) follows immediately from the stability of Funcocart(J , E) under colimits
(Proposition 4.2.9). By Remark 6.7.5, the formation of F\I commutes with pull-back.
Hence, (3) implies (2). We now prove (3) and assume that F split. By Corollary 6.3.8, the
canonical morphism i∗J (F)→ Gr(F) admits a section ι⊕ κ. Then, the vertical arrows of
the commutative square

iset
! i

set,∗i∗J (F) i∗J (F)

iset
! i

set,∗Gr(F) Gr(F)

σ⊕0 σ⊕κ

admit sections represented by dashed arrows. By adjunction, there is a commutative
square

F F

iJ ,!i
set
! i

set,∗Gr(F) iJ ,! Gr(F)

id

τ

whose right vertical arrow is an equivalence in virtue of Corollary 6.3.8. Item (3) is thus
proved. �
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Corollary 6.7.8. In the setting of Construction 6.7.1, assume that F : J → E punctally split.
Then, F\I lies in the essential image of k! : Fun(K, E)→ Fun(J , E).

Proof. By Lemma 6.7.7, we know that F\I punctually split. By Lemma 6.7.6, we have
(Gr F\I)(a) ' 0 for every a ∈ I . Then, Corollary 6.7.8 follows from Lemma 6.5.1. �

Construction 6.7.9. In the setting of Construction 6.7.1, let l : L ↪→ K and m :M ↪→ K
be fully faithful functors in PosFibf over X such that Kset = Lset tMset. We suppose
that the canonical morphism lset ∗i∗J (F)→ lset ∗Gr(F) admits a section

(6.7.10) λ : lset ∗Gr(F)→ lset ∗i∗J (F) .

Let ι : I ∪ L ↪→ J be the full subcategory of I spanned by objects of I and L. Then,
the vertical arrows of the commutative square

ι∗i∗J (F) ι∗i∗J (F
\I)

ι∗Gr(F) ι∗Gr(F\I)

σ⊕λ 0⊕λ

admit sections represented by dashed arrows. By adjunction, we thus deduce a mor-
phism of cofiber sequence

(6.7.11) ∆(F,σ⊕ λ)→ ∆(F\I , 0⊕ λ) .

Lemma 6.7.12. In the setting of Construction 6.7.9, the natural transformation

F\I∪L → (F\I)\I∪L

deduced from (6.7.11) is an equivalence.

Proof. Immediate from Lemma 6.7.6 and Proposition 6.1.16. �

Notation 6.7.13. We denote by αI ,L : F
\I → F\I∪L the canonical morphism obtained

by composing F\I → (F\I)\I∪L with the inverse of F\I∪L → (F\I)\I∪L supplied by
Lemma 6.7.12.

Lemma 6.7.14. In the setting of Construction 6.7.9, assume that F\I split. Then there is a
commutative square

iJ ,! Gr(F\I) F\I

iJ ,! Gr(F\I∪L) F\I∪L

iJ ,! Gr(αI ,L)
αI ,L

whose horizontal arrows are equivalences.
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Proof. Recall that J set = Iset t Lset tMset. Consider the commutative diagram

i∗J (αI ,L) : i
∗
J (F

\I) i∗J (F
\I)\I∪L i∗J (F

\I∪L)

Gr(αI ,L) : Gr(F\I) Gr(F\I)\I∪L Gr(F\I∪L) .

∼

0⊕λ⊕µ ′

∼

0⊕0⊕µ ′ 0⊕0⊕µ

Since F\I split, Lemma 6.7.7 ensures that so do (F\I)\I∪L. By Lemma 6.7.12, the functor
F\I∪L split as well. By Corollary 6.3.8, we thus deduce the existence of the section µ
represented as a dashed arrow. Since the right horizontal arrows are equivalences, there
exists a section µ ′ making the right square commutative. On the other hand, Lemma 6.7.6
implies that Gr(F\I)\I∪L is a direct factor of Gr(F\I). Since F\I split, we deduce from
Lemma 6.7.7 the existence of a section λ making the left square commutative. Then,
Lemma 6.7.14 follows from Corollary 6.3.8. �

Lemma 6.7.15. In the setting of Construction 6.7.9, the morphism

(6.7.16) F→ F\I ×F\I∪L F\L

is an equivalence.

Proof. Follows immediately from Lemma 6.7.6 and Proposition 6.1.16. �

Corollary 6.7.17. In the setting of Construction 6.7.9, the following are equivalent:

(1) the functor F split;

(2) the functors F\I and F\L split.

Proof. If (1) holds, so do (2) in virtue of Lemma 6.7.7. Assume that (2) holds. From
Lemma 6.7.15, we are left to show that F\I ×F\I∪L F\L split. Since F\I and F\L split,
Lemma 6.7.14 ensures that the diagram

F\I F\I∪L F\L
αI ,L αL,I

is equivalent to

iJ ,! Gr(F\I) iJ ,! Gr(F\I∪L) F\L .
iJ ,! Gr(αI ,L) iJ ,! Gr(αL,I )

Since the induction functor iJ ,! commutes with finite limits, Corollary 6.7.17 thus follows.
�

7. LEVEL STRUCTURES

We now introduce an axiomatization of the notion of level structure from the theory
of good meromorphic flat bundles [18]. The key concept is that of level morphism for a
morphism of cocartesian fibrations in posets.
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7.1. Level morphisms. We start with the following pair of definitions:

Definition 7.1.1. A morphism of posets p : I → J is a level morphism if it is surjective
and for every a,b ∈ I , we have

p(a) < p(b) in J ⇒ a < b in I .

Definition 7.1.2. Let X be an∞-category and let p : I → J be a morphism in PosFibX .
We say that p is a level morphism if for every x ∈ X , the induced morphism px : Ix → Jx
is a level morphism.

Example 7.1.3. Let I → X be an object of PosFib. Then, the morphisms of cocartesian
fibrations idI : I → I and I → X × ∗ ' X are level morphisms.

Remark 7.1.4. The class of level morphisms is stable under pullback.

Construction 7.1.5. Fix an ∞-category X and let p : I → J be a level graduation
morphism in PosFibX . Fix also a presentable stable∞-category E . Recall from Construc-
tion 6.1.1 the following pullback diagram

Ip I

J set J ,

π p

as well as the commutative diagram

expE (I/X ) expE (J /X )

expE (Ip/X ) expE (J
set/X ) .

Ep!

expGrp expGr

Eπ!

supplied by Proposition 6.3.5. It induces a canonical transformation

φp : expE (I/X )→ expE (J /X )×expE (Iset/X ) expE (Ip/X )

in PrFibL
X . Observe as well that combining Propositions 2.2.6-(2) and Proposition 6.4.1,

we see that all the functors in the above square preserve cocartesian edges. Thus, the
same goes for φp. Since ΣX : PrFibL

X → PrL is a right adjoint, ΣX (φp) is a functor

ΣX (φp) : Fun(I , E)→ Fun(J , E)×Fun(Iset,E) Fun(Ip, E) ,

and Propositions 3.4.2 and 6.2.2-(2) imply that it canonically coincides with the functor
induced by the commutative diagram

Fun(I , E) Fun(J , E)

Fun(Ip, E) Fun(J set, E) .

p!

Grp Gr

π!

Proposition 7.1.6. The functors φp and ΣX (φp) are fully faithful.
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Proof. Thanks to Proposition E.1.1, we are immediately reduced to prove the statement
when X is a point. In this case, unraveling the definitions, we have to check that for
every pair of functors F,G : I → E the square

(7.1.7)

MapFun(I ,E)(F,G) MapFun(J ,E)(p!(F),p!(G))

MapFun(Ip,E)(Grp(F), Grp(G)) MapFun(J set,E)(Grp!(F), Grp!(G))

is a pullback. Notice that the collection of functors F for which the statement is true is
closed under colimits. Invoking Proposition 5.1.11 and Example 5.1.4 we can therefore
assume without loss of generality that F ' evIa,!(E) for some a ∈ I and some E ∈ E .
Notice that

p!
(
evIa,!(E)

)
' evJ

p(a),!(E)

and that Lemma 6.3.6 supplies canonical identifications

Grp
(
evIa,!(E)

)
' evIpa,!(E) and Gr

(
evJ
p(a),!(E)

)
' evJ

set

p(a),!(E) .

Thus (7.1.7) can be rewritten as follows:

MapE (E,Ga) MapE (E, (p!(G))a)

MapE (E, Grp(G)a) MapE (E, Gr(p!(G))a) ,

and to prove that it is a pullback becomes equivalent to prove that for every a ∈ I and
every G : I → E , the square

(7.1.8)

Ga (p!(G))a

Grp(G)a Gr(p!(G))a

is a pullback in E . Since E is stable, we see that the collection of functors G for which
the above square is a pullback is closed under colimits. Invoking once again Proposi-
tion 5.1.11 and Example 5.1.4, we can suppose that G ' evIb,!(M), for some b ∈ I and
M ∈ E . We now proceed by analysis case-by-case:

(1) Case p(a) < p(b) or p(a) and p(b) incomparable. Since p is a level morphism, this
implies respectively that a < b or that a and b are incomparable. In either cases,
(7.1.8) becomes

0 0

0 0

which is indeed a pullback.
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(2) Case p(a) > p(b). Since p is a level morphism, this implies that a > b. Then
(7.1.8) becomes

M M

0 0

idM

which is indeed a pullback.

(3) Case p(a) = p(b). We then distinguish two further cases:
(i) Case a ≥ b. Then (7.1.8) becomes

M M

M M ,

idM

idM idM
idM

which is indeed a pullback.

(ii) Case a < b or a and b incomparable. Then (7.1.8) becomes

0 M

0 M ,

idM

which is indeed a pullback.
Thus, the conclusion follows. �

7.2. Level induction. The goal of this subsection is to prove the following result:

Theorem 7.2.1. Let X be an∞-category and let p : I → J be a level graduation morphism in
PosFibX . Then the square

expPS
E (I/X ) expPS

E (J /X )

expPS
E (Ip/X ) expPS

E (J set/X )

Ep!

expGrp expGr

Eπ!

is a pullback square in COCARTX . In particular, the induced square

StI ,E StJ ,E

StIp,E StJ set,E

p!

Grp Gr

is a pullback square in CAT∞.

Proof. The second half follows directly from the first since Σcocart
X : COCARTX → CAT∞

is a right adjoint. Moreover, the straightening/unstraightening equivalence immediately
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reduces the proof of the first half to the case where X is a point. In this case, we have to
show that the top horizontal arrow of the commutative square

FunPS(I , E) FunPS(J , E)×FunPS(Iset,E) FunPS(Ip, E)

Fun(I , E) Fun(J , E)×Fun(Iset,E) Fun(Ip, E) .

is an equivalence. Note that the vertical arrows are fully faithful. From Proposition 7.1.6,
the bottom arrow is fully faithful. Thus, so is the top horizontal arrow. We are thus left to
show essentially surjectivity. From Lemma 6.3.6, the lateral faces of the following cube

Fun(Iset, E) Fun(J set, E)

FunPS(I , E) FunPS(J , E)

Fun(Iset, E) Fun(J set, E)

FunPS(Ip, E) Fun(J set, E)

pset
!

iI! iJ !

p!

iIp!

pset
!

id

π!

Grp Gr

are commutative. Hence, all faces are commutative. We thus obtain a commutative
square

Fun(Iset, E) Fun(Iset, E)×Fun(J set,E) Fun(J set, E)

FunPS(I , E) FunPS(Ip, E)×Fun(J set,E) FunPS(J , E)

iI!

Since iIp! : Fun(Iset, E)→ FunPS(Ip, E) and iJ ! : Fun(J set, E)→ FunPS(J , E) are essen-
tially surjective by definition, we deduce that so is the right vertical arrow of the above
square. Since the top horizontal arrow is an equivalence, the conclusion follows. �

7.3. Level induction and Stokes detection.

Construction 7.3.1. Fix an ∞-category X and let p : I → J be a level graduation
morphism in PosFibX . Fix also a presentable stable ∞-category E . We consider the
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following commutative cube:

Fun(I , E) Fun(J , E)

StI ,E StJ ,E

Fun(Ip, E) Fun(J set, E)

StIp,E StJ set,E

p!

Grp

Gr
p!

Grp
π!

π!

Gr

Passing to fiber products on the front and back squares, we obtain the following commu-
tative square:

(7.3.2)

StI ,E StJ ,E ×StIset,E
StIp,E

Fun(J , E) Fun(J , E)×Fun(J set,E) Fun(Ip, E) .

LSt

i j

LFil

Since
C := Fun(J , E)×Fun(J set,E) Fun(Ip, E)

is a finite limit in Cat∞ whose transitions functors commute with filtered colimits, filtered
colimits in C are computed objectwise. Since E is stable, we deduce that colimits in C are
computed objectwise. Hence, since p! : Fun(I , E)→ Fun(J , E) and Grp : Fun(I , E)→
Fun(Ip, E) commute with colimits, so does LFil. Thus, LFil admits a right adjoint

RFil : Fun(J , E)×Fun(J set,E) Fun(Ip, E)→ Fun(I , E) .

Remark 7.3.3. By abstract nonsense, RFil sends a triple G = (F1, F2,α) to the pullback
square

RFil(G) p∗(F1)

Gr∗p(F2) Gr∗p π
∗Gr(F1)

α

in Fun(I , E).

From Theorem 7.2.1, the functor LSt in (7.3.2) is an equivalence. Let RSt be an inverse.
Then for every G ∈ StJ ,E ×StIset,E

StIp,E , the chain of equivalences

Map(RSt(G),RFil(G)) ' Map(G,LFil(RFil(G))) By Proposition 7.1.6

' Map(RFil(G),RFil(G))

gives rise to a canonical morphism

(7.3.4) RSt(G)→ RFil(G) .



86 MAURO PORTA AND JEAN-BAPTISTE TEYSSIER

Proposition 7.3.5. Let X be an∞-category. Let p : I → J be a level graduation morphism in
PosFibf over X . Let E be a presentable stable∞-category. Let F : I → E be a functor. Then the
following are equivalent :

(1) F is a Stokes functor.

(2) Grp(F) : Ip → E and p!(F) : J → E are Stokes functors.

Proof. That (1) implies (2) follows from Corollary 5.3.4 and Proposition 6.4.9. Assume
that (2) holds. Then LFil(F) lies in StI ,E ×StIset,E

StIp,E . From (7.3.4) applied to G := LFil(F),
there is a zig-zag

RSt(LFil(F))→ RFil(LFil(F))← F

whose right arrow is an equivalence in virtue of Proposition 7.1.6. Hence, there is a
canonical morphism

α : RSt(LFil(F))→ F .
Since RSt(LFil(F)) is a Stokes functor, we are left to show that α is an equivalence. Since
Grp(α) : Grp(RSt(LFil(F))) → Grp(F) identifies canonically with the identity of Grp(F),
we conclude from Proposition 6.1.16 by conservativity of Grp. �
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A. COMPACTNESS RESULTS FOR∞-CATEGORIES

This part is to be understood as an appendix, collecting auxiliary results needed in the
main body, mostly of categorical flavor. At the same time, we use in a couple of points
the language of the specialization equivalence that has been developed in Section 3 to
obtain important structural results for cocartesian fibrations, that are interesting in their
own right. See in particular Theorem A.1.2, Theorem B.2.1 and Corollary D.2.8.

A.1. Compactness in the unstable setting. Inspired by the usual terminology in non-
commutative geometry (see e.g. [16, Chapter 11]), we introduce:

Definition A.1.1. We say that an∞-category C is
(1) compact if it is a compact object in Cat∞;

(2) proper if for every c, c ′ ∈ C, the mapping space MapC(c, c
′) is a compact object in

Spc.

The first goal of this section is to prove the following:

Theorem A.1.2. Let X be an∞-category and let A→ X be a cocartesian fibration. Assume
that X is compact and that for every x ∈ X , the fiberAx is compact in Cat∞. ThenA is compact
in Cat∞ as well.

Remark A.1.3. See [6, Remark 6.5.4] for an analogous statement for finite∞-categories
instead of compact ones.

The proof will use the specialization equivalence. Before giving it, we need a couple
of preliminaries.

Lemma A.1.4.
(1) Compact objects in Cat∞ are closed under finite products.

(2) An∞-category X ∈ Cat∞ is compact if and only if for every filtered diagram C• : I→
Cat∞ with colimit C, the canonical map

(A.1.5) colim
i

Fun(X , Ci)→ Fun(X , C)

is an equivalence in Cat∞.

Proof. First we prove (1). Fix therefore two compact ∞-categories X and Y . We can
suppose that X and Y are retract of finite ∞-categories X ′ and that Y ′, respectively.
Then X ×Y is a retract of X ′ ×Y , which in turn is a retract of X ′ ×Y ′. It is therefore
sufficient to prove that the latter is again a finite ∞-category. This latter statement
follows immediately from the fact that the products ∆n ×∆m are again finite.

We now prove point (2). Since ∗ is compact, we see that the stated condition implies
the compactness of X by applying MapCat∞(∗,−) to (A.1.5). As for the converse, since
Cat∞ is compactly generated by the standard simplexes and since −×X a Fun(X ,−),
it is in fact enough to prove that for every [n] ∈ ∆, the canonical map

colim
i

MapCat∞(∆n ×X , Ci)→MapCat∞(∆n ×X , C)

is an equivalence. Since point (1) guarantees that ∆n ×X is again compact, the conclu-
sion follows. �
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Lemma A.1.6. Let X be an∞-category. Then:
(1) the forgetful functor

UX : CartX → Cat∞/X

commutes with filtered colimits;

(2) if X is compact in Cat∞, then the functor

ΣX : Cat∞/X → Cat∞
commutes with filtered colimits.

Proof. Notice that UX is by definition faithful. Thus, to prove (1) it is enough to prove
that for any filtered diagram C• : I→ CartX , the following two statements hold:

(i) the colimit p : C → X of UX (C•) : I→ Cat∞/X is a cartesian fibration;

(ii) for every other cartesian fibration q : D → X equipped with a cone f• : C• → D in
CartX , the induced functor f : C → D preserves cartesian edges.

For (i), it is enough to apply the definition. First, since the horns Λni and the simplexes
∆n are compact in Cat∞, we see that inner fibrations are stable under filtered colimits.
Second, write λi : Ci → C for the canonical maps. Since the diagram was filtered, we
see that every object c ∈ C is of the form λi(ci) for some i ∈ I and some ci ∈ Ci.
Let α : x → p(c) be a morphism in X . Since p(c) ' p(λi(ci)) ' pi(ci) and since pi
is a cartesian fibration, we can find a pi-cartesian lift βi : di → ci of α inside Ci. Set
d := λi(di) and β := λi(βi). We claim that β is a p-cartesian lift of α. To see this, for
every (j,u : i → j) ∈ Ii/, write λu : Ci → Cj for the induced functor. Consider then the
following commutative square:

colim
(j,u)∈Ii/

Cj/λu(βi) colim
(j,u)∈Ii/

(
Cj/λu(di) ×X/p(c) X/α

)

C/β C/d ×X/p(c) X/α ,

where the colimits are computed in Cat∞. Since λu preserves cartesian edges, we see
that the top horizontal map is an equivalence. It is therefore enough to prove that the
vertical arrows are equivalence. Since the colimit is filtered, it commutes with fiber
products, and therefore we are reduced to check that the canonical functors

colim
(j,u)∈Ii/

Cj/λu(βi) → C/β and colim
(j,u)∈Ii/

Cj/λu(di) → C/d

are equivalences. We deal with the one on the left, as the other follows by a similar
argument. Since Cat∞ is compactly generated by the standard simplexes, it is enough to
prove that for every ∆n, the canonical map

colim
(j,u)∈Ii/

MapCat∞(∆n, Cj/λu(βi))→MapCat∞(∆n, C/β)

is an equivalence. Unraveling the definition of the comma category and using the
identification ∆n ?∆1 ' ∆n+2, we see that this map is canonically identified with the
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upper left diagonal map in the following commutative cube:

Mapβ(∆
n+2, C) Map(∆n+2, C)

colim
(j,u)∈Ii/

Mapλu(βi)(∆
n+2, Cj) colim

(j,u)∈Ii/
Map(∆n+2, Cj)

∗ Map(∆1, C)

∗ colim
(j,u)∈Ii/

Map(∆1, Cj) .

evn+1,n+2

β

λu(βj)

evn+1,n+2

Notice that the front and the back squares are pullback by definition. It is therefore
sufficient to check that the other diagonal maps are equivalences, and this follows
directly from the fact that both ∆n+2 and ∆1 are compact in Cat∞. This proves at the
same time that p : C → X is a cartesian fibration, and that p-cartesian edges are exactly
the morphisms of the form λi(βi) for some pi-cartesian edge βi inside Ci. In particular,
(ii) follows immediately.

We now prove (2). Notice that ΣX is right adjoint to the functor −× X : Cat∞ →
Cat∞/X . It is therefore enough to verify that −×X commutes with compact objects.
Recall from [12, Lemma A.3.10] that an object in Cat∞/X is compact if and only if it is
compact in Cat∞ after forgetting the structural map to X . Since X itself is compact, the
conclusion follows from Lemma A.1.4-(1). �

We are now ready for:

Proof of Theorem A.1.2. Fix a filtered diagram E• : I→ Cat∞ with colimit E . In virtue of
Lemma A.1.4-(2), we have to prove that the canonical map

colim
I

Fun(A, Ei)→ Fun(A, E)

is an equivalence. Write ΥA for the straightening of A and recall from Notation 3.2.4
that we write EAc for the cartesian fibration classifying the functor

Fun(ΥA(−), E) : X op → Cat∞ .

We similarly define the cartesian fibrations EAi,c. Consider the canonical map

colim
I
EAi,c → EAc

in CartX . To see that this map is an equivalence, it is enough to test that for each x ∈ X ,
the induced map between the fibers at x is an equivalence. However, at the level of
fibers at x, this map is canonically identified with

colim
I

Fun(Ax, Ei)→ Fun(Ax, E) .
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Since Ax is compact by assumption, we see Lemma A.1.4-(2) guarantees that this map is
indeed an equivalence.

We can now apply Lemma A.1.6-(1) to deduce that the canonical map

colim
I
EAi,c → EAc

is an equivalence also when the colimit is computed in Cat∞/X . At this point, the
conclusion follows from the identifications

Fun(A, Ei) ' ΣX (EAi,c) and Fun(A, E) ' ΣX (EAc ) ,

and Lemma A.1.6-(2). �

A.2. Compact and proper (co)limits. One of the most fundamental results in category
theory is the commutation of filtered colimits with finite limits in Set and in Spc. In fact,
the finiteness condition can be relaxed, using various combinations of compactness and
properness.

Lemma A.2.1. Let E be a stable complete and cocomplete ∞-category. Let C be a compact∞-category. Then:
(1) the functor colimC : Fun(C, E)→ E commutes with limits.

(2) the functor limC : Fun(C, E)→ E commutes with colimits.

Proof. The two statements are dual to each other. It is therefore enough to prove the
second. Because E is stable, it is enough to prove that limC commutes with filtered
colimits, for which we refer to [20, Lemma 6.7.4]. �

Lemma A.2.2. Let f : A→ B be a functor between∞-categories. Let b ∈ B. Assume that A
is compact and that for every b ′ ∈ B, the mapping space MapB(b,b ′) is compact. Then both
A×B Bb/ and A×B B/b are compact.

Proof. Replacing A and B by Aop and Bop respectively we see that it is enough to argue
that A×B Bb/ is compact. For this, observe first that since Bb/ → B is a cocartesian
fibration, the pullback A ×B Bb/ → A is a cocartesian fibration as well. Since A is
compact, we are left from Theorem A.1.2 to show that the fibers of A×B Bb/ → A are
compact, which holds by assumption on the mapping spaces of B. �

Proposition A.2.3. Let X be an∞-category and let p : A→ B be a morphism of cocartesian
fibrations over X . Assume that for every x ∈ X , the∞-categoryAx is compact and Bx is proper.
Let E be a complete, cocomplete and stable∞-category. Then the functor

p! : Fun(A, E)→ Fun(B, E)
commutes with limits.

Proof. From Corollary 3.1.6, it is enough to treat the case where X is a point. In that case
for every F : A→ E and every b ∈ B, we have by definition of left Kan extension

(p!(F))(b) ' colim
A×BB/b

F|A×BB/b

From Lemma A.2.2, the ∞-category A ×B B/b is compact. Thus, Proposition A.2.3
follows from Lemma A.2.1 applied to C = A×B B/b. �

Remark A.2.4. The assumption on B is always satisfied when the fibers of B are posets.
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B. STABILITY OF LOCALIZATIONS UNDER COCARTESIAN PULLBACK

In [13, Proposition 2.1.4], Hinich proved that the pullback of a localization functor
via a cocartesian fibration is again a localization functor. The theory surrounding the
specialization equivalence and cocartesian functors developed so far allows for a model-
independent proof, which we now give.

B.1. Preliminaries.

Lemma B.1.1. Let p : B → Y be a cocartesian fibration and let E be a presentable∞-category.
Let γ : x→ y be a morphism in Y . Let F ∈ Fun(Bx, E) andG ∈ Fun(By, E), and let α : F→ G
be a morphism in expE (B/Y). The following statements are equivalent:

(1) for every p-cocartesian lift φ : a → b of γ in B, the induced morphism (see Nota-
tion 4.1.9)

α(φ) : F(a)→ G(b)

is an equivalence in E ;

(2) α is a pE -cartesian morphism in expE (B/Y).
In addition, α is an equivalence in expE (B/Y) if and only if γ is an equivalence and condition
(1) holds.

Proof. Since pE : expE (B/Y) → Y is a cartesian fibration, a morphism α : F → G in
expE (B/Y) is an equivalence if and only if it is pE -cartesian and its image in Y is
an equivalence. So the second half of the statement follows automatically from the
equivalence between statements (1) and (2). Choose a factorization of α as

F G

G ′

α

α0 α1

where α1 is pE -cartesian. Then as observed in Notation 4.1.9, any p-cocartesian lift
φ : a→ b of γ induces via α1 an equivalence

α1(φ) : G
′(a) ' G(b) .

It follows that condition (1) is equivalent to ask that for every a ∈ Bx the morphism

α0(a) : F(a)→ G ′(a)

is an equivalence in E . In turn, this condition is equivalent to ask that α0 is an equivalence
in expE (B/Y), and hence to condition (2). �

For later use, let us store the following consequence of Lemma B.1.1

Corollary B.1.2. Let p : A→ X be a locally constant cocartesian fibration (see Definition C.1.4).
Let E be a presentable∞-category and let F : A→ E be a cocartesian functor. Let σ : X → A be
a cocartesian section. Then, σ∗(F) : X → E inverts every arrow of X .
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Proof. Since p : A→ X is locally constant, the same goes for the associated exponential
fibration pE : expE (A/X ) → X . Fix a morphism γ : x → y in X , so that σ(γ) : σ(x) →
σ(y) is a p-cocartesian lift of γ in A. Choose a specialization morphism

(sp F)x G (sp F)y
β α

for F relative to γ. Then Proposition C.1.8 guarantees thatβ is pE -cartesian in expE (A/X ).
Thus, the result follows combining Lemma B.1.1 and Corollary 4.1.10. �

B.2. Hinich’s theorem. We are now ready for:

Theorem B.2.1 (Hinich). Let

A B

X Y

u

q p

f

be a pullback square in Cat∞, where p is a cocartesian fibration. Assume that f exhibits Y as a
localization of X at a collection of morphismsW. Then u is a localization functor as well, and
exhibits B as localization of A at the collectionWA of cocartesian lifts of the arrows ofW.

Proof. We apply the criterion given in [7, Proposition 7.1.11]. To begin with, observe
that if ϕ ∈ WA then ϕ is q-cocartesian and therefore u(ϕ) is p-cocartesian and lies
over f(q(ϕ)) which is an equivalence in X since q(ϕ) ∈ W. Thus u(ϕ) must be an
equivalence as well, i.e. u inverts the arrows inWA.

Next, u is essentially surjective: indeed, if b ∈ B is an element, we can find x ∈ X
and an equivalence f(x) ' p(b), because f is essentially surjective. But then b defines an
element in Bf(x) and since the given square is a pullback, we have Bf(x) ' Ax. Thus, we
can write b ' u(a) for some a ∈ A.

Since a functor g : C → D is a localization if and only if fop : Cop → Dop is a localization
(see [7, Proposition 7.1.7]), to complete the proof it is enough to prove that

u∗ : Fun(B, Spc)→ Fun(A, Spc)

is fully faithful and the essential image consists of those functors F : A→ Spc that invert
the arrows inWA. We will more generally prove that this is the case for any presentable∞-category E in place of Spc. Proposition 3.1.2-(1) allows to rewrite u∗ as

Σ(Eu) : Fun/Y (Y , expE (B/Y))→ Fun/X (X , expE (A/Y)) .

In virtue of Proposition 2.2.6-(1), we can rewrite

Fun/X (X , expE (A/Y)) ' Fun/Y (X , expE (B/Y)) ,

and under this identification Σ(Eu) simply becomes

(B.2.2) f∗ : Fun/Y (Y , expE (B/Y))→ Fun/Y (X , expE (B/Y)) .
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Consider now the following commutative cube:
(B.2.3)

∗ Fun(Y ,Y)

Fun/Y (Y , expE (B/Y)) Fun(Y , expE (B/Y))

∗ Fun(X ,Y)

Fun/Y (X , expE (B/Y)) Fun(X , expE (B/Y)) .

idY

f∗

f∗
f

f∗

The bottom and the top squares are pullbacks by definition. Since f is a localization, the
functor

f∗ : Fun(Y ,Y)→ Fun(X ,Y)
is fully faithful, which implies that the back square is a pullback as well. Thus, the front
square is a pullback as well, and therefore the full faithfulness of (B.2.2) follows from
the full faithfulness of

f∗ : Fun(Y , expE (B/Y))→ Fun(X , expE (B/Y)) ,

which holds because f is a localization.
Since the front square is a pullback, we also deduce that a section s ∈ Fun/Y (X , expE (A/Y))

lies in the essential image of f∗ if and only if it inverts all arrows inW. Via the special-
ization equivalence of Proposition 2.3.3, we deduce that a functor F ∈ Fun(B, E) lies in
the essential image of u∗ if and only if Eu ◦ (sp F) : X → expE (B/Y) inverts all arrows
in W. Fix γ : x → y in W. By assumption f(γ) is an equivalence in Y , so Lemma B.1.1
shows that Eu ◦ (sp F) inverts γ if and only if(

Eu(sp F)
)
γ
:
(
Eu(sp F)

)
x
→ (
Eu(sp F)

)
y

is pE -cartesian in expE (B/Y). Since pE : expE (B/Y) → Y is a cartesian fibration, it is
actually enough to check that the above morphism is locally cartesian. Therefore, we can
replace B → Y by Bf(γ) → ∆1, and since Bf(γ) ' Aγ, Lemma B.1.1 further shows that it
is enough to check that for every q-cocartesian lift φ : a→ a ′ of γ in A, the morphism

(sp F)γ(φ) : (sp F)x(a)→ (sp F)y(a ′)

is an equivalence in E . However, Corollary 4.1.10 provides a canonical identification of
this morphism with F(φ). In other words, Eu ◦ (sp F) inverts γ if and only if F inverts all
q-cocartesian lifts of γ. The conclusion follows. �

C. LOCALLY CONSTANT AND FINITE ÉTALE FIBRATIONS

We collect in this section some material on cocartesian fibrations that generalize the
idea of local constancy and finite covering in topology.
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C.1. Local constancy. We start with the following definition:

Definition C.1.1. Let X be an∞-category and let E be a presentable∞-category. We
write

Loc(X ; E) := Fun(Env(X ), E) .

Example C.1.2. Let (X,P) be an exodromic stratified space. Then [12, Theorem 0.3.1]
implies that Env(Π∞(X,P)) ' Π∞(X). Therefore, Loc(Π∞(X,P); E) correspond via the
exodromy equivalence exactly to E -valued hyperconstructible hypersheaves on X.

Notation C.1.3. Let X be an ∞-category and let λX : X → Env(X ) be the canonical
localization morphism. Then for every presentable∞-category E , the functor

λ∗X : Loc(X ; E)→ Fun(X , E)
is fully faithful. Given L ∈ Loc(X ; E) we will often consider it implicitly as a functor
L : X → E with the property of inverting every arrow in X .

Definition C.1.4. We say that a functor p : A → X of∞-categories is a locally constant
fibration if it is a cocartesian fibration and its straightening Υ : X → CAT∞ belongs to
Loc(X ; CAT∞).

The following simply follows unraveling the definitions:

Lemma C.1.5. Locally constant fibrations are stable under pullback.

It is possible to give a more intrinsic formulation of locally constant cocartesian
fibrations as follows.

Recollection C.1.6. Let p : A→ ∆1 be a cartesian and cocartesian fibration and let

f : A0 � A1 : g
be the induced adjunction. Write η : idA0 → g ◦ f and ε : f ◦ g → idA1 for the unit and
the counit of this adjunction. It follows from [14, Proposition 5.2.2.8] that for every
morphism φ : a→ b in A lying over 0→ 1 in ∆1, there is a commutative diagram in A

(C.1.7)

g(f(a)) f(a)

a b

g(b) f(g(b))

α

ηa

φ

β

εb

where:
(1) α and εb ◦ β are p-cartesian;

(2) β and α ◦ ηb are p-cocartesian.

Proposition C.1.8. Let p : A → X be a cocartesian fibration and let Υ : X → CAT∞ be its
straightening. For every morphism γ : x→ y in X , the following statements are equivalent:

(1) pγ : Aγ → ∆1 (see Notation 4.1.4) is a cartesian fibration and an arrow in Aγ is
cocartesian if and only it is cartesian;
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(2) Υ(γ) : Υ(x)→ Υ(y) is an equivalence in CAT∞;
In particular, p is locally constant if and only if condition (1) holds for every morphism γ in X .

Proof. Assume first that (1) holds. Since pγ is both Cartesian and coCartesian the functor
Φ(γ) admits a right adjoint R(γ) : Υ(y)→ Υ(x). Then Recollection C.1.6 implies that in
diagram (C.1.7) both α and α ◦ ηa are p-cartesian lifts of γ, so the universal property of
p-cartesian edges implies that ηa must be an equivalence. The dual argument shows
that εb is an equivalence as well. It follows that Υ(γ) is an equivalence.

Suppose conversely thatΦ(γ) is an equivalence. Then it admits a right adjoint, which
in turn implies that pγ is a cartesian fibration. Then in Recollection C.1.6 both η and ε are
equivalences. It immediately follows that the cocartesian lift a→ f(a) is also cocartesian,
and that the cocartesian lift g(b)→ b is also cartesian, whence the conclusion. �

C.2. Finite étale fibrations. We now introduce the following abstract formulation of
the notion of finite covering in topology:

Definition C.2.1. We say that a cocartesian fibration between∞-categories f : Y → X is
a finite étale fibration if:

(1) it is locally constant;

(2) it is a cartesian fibration;

(3) the fibers of f are finite sets.

Lemma C.2.2. Finite étale fibrations are closed under pullback.

Finite étale fibrations satisfy another important stability property, that we are going to
explain now.

Construction C.2.3. Let f : X → Y be a functor of small ∞-categories. Recall from
Recollection 3.2.1 the adjunction

fcc
! : CoCartX � CoCartY : f∗ .

Evaluating the unit of this adjunction on a cocartesian fibration p : A→ X , we obtain
the following commutative square:

(C.2.4)
A fcc

! (A)

X Y .

fA

p q

f

When f is a localization, f∗ : CoCartY → CoCartX is fully faithful. In this case, the counit
fcc
! (X ) ' fcc

! (f
∗(Y))→ Y is an equivalence. Therefore, in this case, the structural map

q : fcc
! (A)→ Y is canonically identified with fcc

! (p).

Lemma C.2.5. Assume that f exhibits Y as the localization of X at a class of morphisms W.
Let ΥA : X → Cat∞ be the straightening of p : A→ X . Then, the following are equivalent:

(1) the square (C.2.4) is a pullback;

(2) the functor ΥA : X → Cat∞ mapsW to equivalences;



96 MAURO PORTA AND JEAN-BAPTISTE TEYSSIER

(3) For every γ ∈W, the pullback pγ : Aγ → ∆1 (see Notation 4.1.4) is a cartesian fibration
and an arrow in Aγ is cocartesian if and only it is cartesian.

Proof. The equivalence between (1) and (2) follows from the universal property of the
localization. The equivalence between (2) and (3) follows from Proposition C.1.8. �

Corollary C.2.6. Let p : A→ X be a cocartesian fibration between∞-categories. Let f : X →
Y be a functor exhibiting Y as the localization of X at a class of morphisms W. Then, the
following are equivalent:

(1) p : A→ X is a finite étale fibration;

(2) the square (C.2.4) is a pullback and fcc
! (p) : f

cc
! (A)→ Y is a finite étale fibration.

If these conditions are satisfied, the functor fA : A→ fcc
! (A) exhibits fcc

! (A) as the localization
of A at every morphism aboveW.

Proof. That (2) implies (1) follows from the preservation of finite étale fibrations under
pullback from Lemma C.2.2. Assume that (1) holds. Let λY : Y → Env(Y) ' Env(X ) be
the localization at every morphism. Since p : A→ X is locally constant, Lemma C.2.5-(2)
is satisfied both for (p,W) and (fcc

! (p), Mor(Y)). Hence, there is a commutative diagram

A fcc
! (A) λcc

X ,!(A)

X Y Env(X )

p fcc
! (p) λcc

X ,!(p)

f λY

whose squares are pullback squares. By Lemma C.2.2, we are thus left to show that

(C.2.7) λcc
X ,!(p) : λ

cc
X ,!(A)→ Env(X )

is a finite étale fibration. Since the outer square is a pullback, the fibres of (C.2.7) are
finite sets. Local constancy is obvious since Env(X ) is an∞-groupoid. Note that (C.2.7)
is an inner fibration as it is cocartesian. To show that it is cartesian, it is enough to show
[14, Proposition 2.4.1.5] that λcc

X ,!(A) is an∞-groupoid. To do this, it is enough to show
that A → λcc

X ,!(A) exhibits λcc
X ,!(A) as the localization of A at every morphism. Hence,

we are left to show more generally that A→ fcc
! (A) exhibits fcc

! (A) as the localization of
A at every morphism above a morphism ofW. By Theorem B.2.1, it is enough to show
that every morphism in A is p-cocartesian. This follows immediately from the fact that
the fibers of p : A→ X are discrete. �

Corollary C.2.8. Let f : X → Y be a localization functor. Then the adjunction

fcc
! : CoCartX � CoCartY : f∗

restricts to an equivalence between the∞-subcategories spanned by finite étale fibrations.

Proof. If p : A → X is a finite étale fibration, then so is fcc
! (p) : f

cc
! (A) → Y in virtue

Corollary C.2.6 and the unit of fcc
! a f∗ applied to p : A → X is an equivalence. If

p : B → Y is a finite étale fibration, then so is f∗(p) : f∗(A)→ X by Lemma C.2.2. Since
f : X → Y is a localization, the counit of f! a f∗ applied to p : B → Y is automatically an
equivalence. �

The link with topological covering maps is expressed by the following:
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Lemma C.2.9. Let (X,P) be a stratified space and let f : Y → X be a continuous morphism.
Assume that:

(1) f : Y → X is a finite covering map;

(2) there is a refinement R→ P such that (X,R) is conical with locally weakly contractible
strata.

Then (Y,P) admits a conical refinement with locally weakly contractible strata and the induced
map

Π∞(Y,P)→ Π∞(X,P)
is a finite étale fibration.

Proof. Since f is a local homeomorphism, (Y,R) is also conical with locally weakly
contractible strata. Therefore, there is a commutative diagram

Π∞(Y,R) Π∞(Y,P)

Π∞(X,R) Π∞(X,P)
rcc
!

in Cat∞. Assume that the left arrow is a finite étale fibration. By Corollary C.2.6 we
deduce the existence of a pullback square of finite étale fibrations

Π∞(Y,R) rcc
! (Π∞(Y,R))

Π∞(X,R) Π∞(X,P)
rcc
!

such that the top arrow exhibits r!(Π∞(Y,R)) as the localization of Π∞(Y,R) at every
arrow above an equivalence of P. By [12, Theorem 0.3.1], we deduce the existence of a
canonical equivalence

rcc
! (Π∞(Y,P)) ' Π∞(Y,P) .

Hence, Π∞(Y,P) → Π∞(X,P) is a finite étale fibration. Thus, we are left to prove
Lemma C.2.9 in the case where (X,P) is conically stratified. In that case, so is (Y,P).
Therefore, we have the following pullback square of simplicial sets

SingQ(Y) Sing(Y)

SingP(X) Sing(X) .

Since f is a covering map, it is in particular a Serre fibration. Therefore, Sing(Y) →
Sing(X) is a Kan fibration. It follows that the above square is a homotopy pullback, and
therefore that

Π∞(Y,Q) Π∞(Y)

Π∞(X,P) Π∞(X)
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is a pullback in Cat∞. By Lemma C.2.2, we are left to prove Lemma C.2.9 when P = ∗
is the trivial stratification. We know that Sing(Y)→ Sing(X) is a Kan fibration, so that
Π∞(Y)→ Π∞(X) is both a left and a right fibration. Since the base is an∞-groupoid, it
follows that it is locally constant in the sense of Definition C.1.4. Besides, for x ∈ Xwe
have a pullback

Sing(Yx) Sing(Y)

{x} Sing(X)

of simplicial sets. Since the right vertical map is a Kan fibration, we deduce that it is a
homotopy pullback, i.e. that

{x}×Π∞(X) Π∞(Y) ' Π∞(Yx) .

Since f is a finite covering map, Yx is discrete, whence the conclusion. �

D. CATEGORICAL ACTIONS

We collect some material on∞-categorical actions that is needed throughout the text.

D.1. Generalities. We refer to [15, §4.8.1] for the theory of tensor products of presentable∞-categories, that endows PrL with a symmetric monoidal structure PrL,⊗. Fix an object
E⊗ ∈ CAlg(PrL,⊗). We refer to E⊗ as a presentably symmetric monoidal ∞-category. In
particular, we have an underlying tensor product

⊗E : E × E → E
commuting with colimits in both variables and a tensor unit IE ∈ E . We refer to an
object in PrL

E := ModE⊗(PrL,⊗) as an∞-categorical module over E⊗. Ignoring homotopy
coherences, such an object can informally be described as an∞-category D equipped
with an external tensor product

⊗ : E ×D → D
that commutes with colimits in both variables and that satisfies the usual module rela-
tions. In particular, IE ⊗ (−) : D → D comes with an identification with idD. Similarly,
a morphism f : D → D ′ of∞-categorical E⊗-modules can informally be described as a
functor f equipped with homotopy coherent identifications

f(E⊗D) ' E⊗ f(D) ,

for E ∈ E and D ∈ D. Finally, [15, Theorem 4.5.2.1] supplies PrL
E with an induced

symmetric monoidal structure PrL,⊗
E . In particular, given two∞-categorical E⊗-modules

D and D ′, we can form the relative tensor product

D ⊗E D ′ ∈ PrL,⊗
E .

Recollection D.1.1. It follows from [15, Corollary 3.4.1.7] that a symmetric monoidal
functor f⊗ : E⊗ → D⊗ allows to see D⊗ as a ∞-categorical module over E⊗. The
underlying tensor product is then informally defined as

E⊗D := f(E)⊗D D .
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Similarly, if

E⊗

D⊗ D′⊗

f⊗ g⊗

h⊗

is a commutative triangle in CAlg(PrL,⊗), then h : D → D ′ inherits the structure of a
E -linear functor.

Recollection D.1.2. Let E⊗ be a presentably symmetric monoidal∞-category. It follows
from [15, Remark 2.1.3.4] that for every (small) ∞-category A, Fun(A, E) inherits a
symmetric monoidal structure, that we denote Fun(A, E)⊗. Informally speaking, given
two functors F,G : A→ E , their tensor product is defined by the rule

(F⊗G)(a) := F(a)⊗E G(a) .

Similarly, if f : B → A is a functor of∞-categories, then

f∗ : Fun(A, E)→ Fun(B, E)

inherits a canonical symmetric monoidal structure.

Lemma D.1.3. Let E⊗ be a presentably symmetric monoidal∞-category and let f : A→ B be
a cocartesian fibration. Reviewing Fun(B, E) as a Fun(A, E)⊗-module via Recollections D.1.1
and D.1.2, the left Kan extension functor

f! : Fun(B, E)→ Fun(A, E)

is Fun(A, E)⊗-linear.

Proof. It follows from [16, Proposition 2.5.5.1] that f! is an oplax symmetric monoidal
functor when we see both Fun(B, E) and Fun(A, E) as symmetric monoidal∞-categories.
Using [15, Corollary 3.4.1.5], we reduce ourselves to check that for every F ∈ Fun(A, E)
and every G ∈ Fun(B, E), the canonical map

f!(f
∗(F)⊗G)→ F⊗ f!(G)

is an equivalence. Since the tensor product of E commutes with colimits in both variables,
this follows from the formula for left Kan extensions provided by the dual of [20,
Lemma 3.1.1]. �

D.2. Universal monadicity for finite étale fibrations. To motivate the results of this
section, consider the following:

Construction D.2.1. Fix a presentably symmetric monoidal∞-category E⊗ and let

B A

Y X

u

q p

f
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be a pullback square in Cat∞. Via Recollection D.1.2, we obtain a commutative square

Fun(X , E)⊗ Fun(Y , E)⊗

Fun(A, E)⊗ Fun(B, E) .

f∗

p∗ q∗

u∗

Combining [15, Theorem 4.5.2.1 and Proposition 3.2.4.7], we obtain a canonical compari-
son map

(D.2.2) µ : Fun(Y , E)⊗Fun(X ,E) Fun(A, E)→ Fun(B, E) .

Warning D.2.3. When X = ∗, the comparison map (D.2.2) is an equivalence. If both f
and p are cocartesian fibrations, one can easily prove that inside ModTrivX (E⊗)(PrFibL,⊗

X )
there is a canonical equivalence

expE (Y/X )⊗TrivX (E) expE (A/X ) ' expE (B/X ) .

However, the global section functor

ΣX : ModTrivX (E⊗)(PrFibL,⊗
X )→ModFun(X ,E)(PrL,⊗)

is only lax monoidal. Because of this, the functor (D.2.2) is typically not an equivalence.

The goal of this section is to show that the situation gets considerably better if f is
assumed to be a finite étale fibration and E to be stable. We start introducing some
terminology:

Definition D.2.4. Let f : C → D and g : D → C be functors between∞-categories. We
say that f and g are biadjoints if the adjunctions f a g and g a f hold.

Lemma D.2.5. Let f : Y → X be a finite étale fibration and let E be stable presentable ∞-
category. Then the functors

f! : Fun(Y , E)→ Fun(X , E) and f∗ : Fun(X , E)→ Fun(Y , E)
are biadjoints.

Proof. Fix a functor F : Y → E . Since f : Y → X is a cocartesian fibration, the dual of [20,
Lemma 3.1.1] provides for every x ∈ X a natural equivalence

f!(F)(x) ' colim
y∈Yx

Fy .

Since f is a finite étale fibration, Yx := Y ×X {x} is a finite set. Thus, since E is stable, we
deduce

f!(F)(x) '
⊕
y∈Yx

Fy .

Since f is a cartesian fibration as well, [20, Lemma 3.1.1] yields

f∗(F)(x) ' lim
y∈Yx

Fy '
⊕
y∈Yx

Fy .

Thus, f! and f∗ canonically agree, whence the conclusion. �
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Lemma D.2.6. Let f : Y → X be a finite étale fibration and let E be stable presentable ∞-
category. Then the composition

idFun(Y ,E) → f∗ ◦ f! ' f∗ ◦ f∗ → idFun(Y ,E)

is an equivalence. In particular, f! is conservative.

Proof. Write α for the given composition. It is enough to prove that for every x ∈ X ,
j∗x(α) is an equivalence in Fun(Yx, E). Using Corollary 3.1.6 (applied withA = Y , B = X
and Y = {x}), we can therefore reduce ourselves to the case where X consists of a single
point.

In this case, Y is just a set. Unraveling the definitions, we see that the unit of f! a f∗
evaluated on F : Y → E sends y ∈ Y to the canonical inclusion

iy : F(y)→ ⊕
y ′∈Yf(y)

F(y ′) ,

while the counit of f∗ a f∗ evaluated on F sends y ∈ Y to the canonical projection

πy :
⊕

y ′∈Yf(y)

Fy ′ → Fy ,

whence the conclusion. �

The following is the main result concerning finite étale fibrations:

Proposition D.2.7 (Universal monadicity for finite étale fibrations). Let f : Y → X be
a finite étale fibration and let E be a stable presentable ∞-category. For every categorical
Fun(X , E)-module D, the induced functor

f! ⊗D : Fun(Y , E)⊗Fun(X ,E) D → D
is monadic.

Proof. Using Lemma D.1.3, we see that both f∗ : Fun(X , E)→ Fun(Y , E) and f! : Fun(Y , E)→
Fun(X , E) are Fun(X , E)-linear. Besides, they are biadjoints to each other thanks to
Lemma D.2.5. Therefore, we obtain well defined functors

f! ⊗D : Fun(Y , E)⊗Fun(X ,E) D → D and f∗ ⊗D : D → Fun(Y , E)⊗Fun(X ,E) D ,

that are still biadjoints to each other. Besides, Lemma D.2.6 implies that the composition

id→ (f! ⊗D) ◦ (f∗ ⊗D)→ id

is an equivalence, so it follows that f! ⊗ idD is conservative. Therefore, it is monadic
thanks to Lurie-Barr-Beck’s theorem [15, Theorem 4.7.3.5]. �

Corollary D.2.8. In the situation of Construction D.2.1, assume that f : Y → X is a finite étale
fibration. Then the comparison functor

µ : Fun(Y , E)⊗Fun(X ,E) Fun(A, E)→ Fun(B, E)

is an equivalence.
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Proof. Notice that u : B → A is a finite étale fibration thanks to Lemma C.2.2. Consider
the following commutative triangle:

Fun(Y , E)⊗Fun(X ,E) Fun(A, E) Fun(B, E)

Fun(A, E) .

µ

f!⊗Fun(A,E) u!

Using Proposition D.2.7, we see that both diagonal morphisms are monadic. To conclude
that the horizontal arrow is an equivalence, it is enough by [15, Corollary 4.7.3.16] to
check that the Beck-Chevalley transformation

µ ◦ (f∗ ⊗ Fun(A, E))→ u∗

is an equivalence. Since u! is conservative, it is enough to prove that the induced
transformation

(f! ◦ f∗)⊗ Fun(A, E) ' (f! ⊗ Fun(A, E)) ◦ (f∗ ⊗ Fun(A, E))→ u! ◦ u∗

is an equivalence. Fix a functor F : A→ E and an object a ∈ A. Set x := p(a) and write
I for the tensor unit of Fun(A, E) (that is, the constant functor associated to the tensor
unit IE of E ). Evaluating the source of the above transformation at F and at a yields(

f!f
∗(I)⊗ F

)
(a) '

( ⊕
y∈Yx

I
)
⊗ F(a) ,

while (
u!u

∗(F)
)
(a) '

⊕
b∈Ba

F(a) .

Since the square in Construction D.2.1 is a pullback, Ba ' Yp(a) ' Yx, whence the
conclusion. �

E. ADDITIONAL PROPERTIES OF COCARTESIAN FIBRATIONS

Finally, we collect some auxiliary results on cocartesian fibrations that are occasionally
needed throughout the text.

E.1. Global vs. local full faithfulness. The following results provides a categorical
local-to-global principle to test fully faithfulness:

Proposition E.1.1. Let X be an ∞-category and let f : A → B be a morphism in PrFibL
X .

Then:

(1) f is fully faithful if and only if for every x ∈ X the induced functor fx : Ax → Bx is
fully faithful;

(2) if f is fully faithful, then the same goes for

ΣX (f) : Fun/X (X ,A)→ Fun/X (X ,B) .
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Proof. First we prove (1). Write p : A → X and q : B → X for the structural maps.
Fix a,a ′ ∈ A and set x := p(a) and x ′ := p(a ′). The morphism f induces a canonical
commutative triangle

MapA(a,a ′) MapB(f(a), f(a
′))

MapX (x, x ′)

ω

in Spc. Thus, we see that ω is an equivalence if and only if for every γ : x→ x ′ the fiber
ωγ is an equivalence. Let a→ aγ be a cocartesian lift of γ inside A. Since f preserves
cocartesian edges, we see that f(a)→ f(aγ) is cocartesian in B. Thus, [14, Proposition
2.4.4.2] and the above commutative triangle supply a canonical identification ofωγ with
the map

MapAx ′ (aγ,a ′)→MapBx ′ (f(aγ), f(a
′))

induced by fx ′ : Ax ′ → Bx ′ . Thus, if fx ′ is fully faithful, we deduce that ω is an equiv-
alence. As for the converse, it suffices to observe that with the above notations, the
square

MapAx ′ (aγ,a ′) MapBx ′ (f(aγ), f(a
′))

MapA(a,a ′) MapB(f(a), f(a
′))ω

is a pullback. Thus, when γ = idx, we see that the full faithfulness of f implies the full
faithfulness of fx.

We now prove (2). Consider the following commutative diagram

Fun/X (X ,A) Fun(X ,A) Fun(X ,X )

Fun/X (X ,B) Fun(X ,B) Fun(X ,X ) ,

whose rows are fibers sequences at idX ∈ Fun(X ,X ). Since fully faithful functors are
stable under pullbacks, it suffices to prove that the middle vertical functor is fully faithful.
This follows immediately from the assumption and from [11, Proposition 5.1] (see also
Lemma 5.2 in loc. cit.). �

Corollary E.1.2. Let C• : I→ PrL be a filtered diagram. Let

C := colim
i∈I
Ci

be its colimit computed in PrL and denote ιi : Ci → C for the canonical maps. If all the transition
maps in C• are fully faithful, the same goes for each ιi.

Proof. Fix an index i ∈ I. Up to replacing I by Ii/, we can suppose without loss of
generality that i is the initial object of I. Thus, we obtain a transformation Ci → C•,
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where Ci is seen as a constant diagram. Passing to the cocartesian unstraightenings, we
obtain a morphism

f : Ci × I→ UnI(C•)

of cocartesian fibrations over I. Our assumption implies that this functor is fully faithful
fiberwise, and therefore Proposition E.1.1 guarantees that f is itself fully faithful. Notice
now that Ci × I and UnI(C•) are also cartesian fibrations over I and that

Ci ' lim
j∈Iop
Ci ' Funcart

/I (I, Ci × I) and C ' lim
j∈Iop
Cj ' Funcart

/I (I, UnI(C•)) .

Moreover, under these equivalences, φ induces the functor ιi : Ci → C. We claim that φ
preserves cartesian edges. Assuming this statement, we see that f induces the following
commutative diagram:

Ci Fun(I, Ci)

C Fun/I(I, UnI(C•)) ,

ιi ΣI(f)

whose horizontal arrows are fully faithful. Since ΣI(f) is fully faithful by Proposi-
tion E.1.1, we conclude that ιi is fully faithful as well.

We are left to prove the claim. Let j→ ` be a morphism in I and let fj,` : Cj → C` be the
induced functor. It fits in the following commutative triangle

Ci

Cj C` ,

fj f`

fj,`

where fj and f` are the functors induced by i → j and i → `, respectively. Write gj, g`
and gj,` for their right adjoints. Unraveling the definitions, we have to check that the
Beck-Chevalley transformation

fj → gj,` ◦ f`

is an equivalence. However, f` ' fj,` ◦ fj, and the unit idCj → gj,` ◦ fj,` is an equivalence
because fj,` is fully faithful by assumption. Thus, the conclusion follows. �

E.2. Inducing left adjointability from the base. The following lemma provides a gen-
eral mechanism to deduce left adjointability involving cocartesian fibrations from the
case of trivial fibrations. It plays an important role in the proof of the spreading out [21,
Theorem 6.4.2] for Stokes analytic stratified spaces.
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Lemma E.2.1. Consider the commutative cube

D C

B A

T Z

Y X

j

p

i

whose vertical faces are pull-back diagrams. Assume that the vertical arrows are cocartesian
fibrations. Let a ∈ C and set x := p(a) ∈ Z . Assume that the functor

T ×Z Z/x → Y ×X X/i(x)

is cofinal. Then, the functor
D ×C C/a → B ×A A/j(a)

is cofinal.

Proof. Since the vertical faces of the above cube are pull-back, the following square

D ×C C/a B ×A A/j(a)

T ×Z Z/x Y ×X X/i(x)

is a pull-back. From [14, 2.4.3.2], its vertical arrows are cocartesian fibrations. Since
cocartesian fibrations are smooth [14, 4.1.2.15] and since the pull-back along a smooth
map preserves cofinality [14, 4.1.2.10], Lemma E.2.1 thus follows. �
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