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Abstract. � LetM be a meromorphic connection with poles along a smooth divisor
D in a smooth algebraic variety. Let SolM be the solution complex of M. We
prove that the good formal structure locus of M coincides with the locus where the
restrictions to D of SolM and Sol EndM are local systems. By contrast to the very
di�erent natures of these loci (the �rst one is de�ned via algebra, the second one
is de�ned via analysis), the proof of their coincidence is geometric. It relies on the
moduli of Stokes torsors.

The main problematic of this paper is to understand how the geometry of the Stokes
phenomenon in any dimension sheds light on the interplay between the singularities
of a di�erential equation and the singularities of its solutions.

Consider an algebraic linear system M of di�erential equations with n variables

BX

Bxi
� ΩiX i � 1, . . . , n

where Ωi is a square matrix of size r with coe�cients into the ring Crx1, . . . , xnsrx
�1
n s

of Laurent polynomials with poles along the hyperplane D in Cn given by xn � 0.
At a point away from D, the holomorphic solutions of the system M are fully
understood by means of Cauchy's theorem. At a point of D, the situation is much
more complicated. It is still the source of challenging unsolved problems. We call D
the singular locus of M. Two distinguished open subsets of D where the singularities
of M are mild can be de�ned.

First, the set GoodpMq of good formal structure points of M is the subset of
D consisting of points P at the formal neighbourhood of which M admits a good
formal structure. For P being the origin, and modulo rami�cation issues that will
be neglected in this introduction, this means roughly that there exists a base change
with coe�cients in CJx1, . . . , xnKrx�1

n s splitting M as a direct sum of well-understood
systems easier to work with.

Good formal structure can always be achieved in the one variable case [Sv00].
It is desirable in general because it provides a concrete description of the system,
at least formally at a point. In the higher variable case however, it was observed in
[Sab00] that M may not have good formal structure at every point of D. Thus, the
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set GoodpMq is a non trivial invariant of M. As proved by André [And07], the set
GoodpMq is the complement in D of a Zariski closed subset F of D either purely
of codimension 1 in D or empty. Traditionally, F is called the Turning locus of M,
by reference to the way the Stokes directions of M move along a small circle in D
going around a turning point. In a sense, the good formal structure locus of
M is the open subset of D where the singularities of the system M are as
simple as possible.

To de�ne the second distinguished subset of D associated to M, let us view M
as a D-module, that is a module over the Weyl algebra of di�erential operators. Let
us denote by SolM the solution complex of the analyti�cation of M. Concretely,
H0 SolM encodes the holomorphic solutions of our di�erential system while the
higher cohomologies of SolM keep track of higher Ext groups in the category of
D-modules. As proved by Kashiwara [Kas75], the complex SolM is perverse.
From a theorem of Mebkhout [Meb90], the restriction of SolM to D, that is, the
irregularity complex of M along D, denoted by Irr�DM in this paper, is also perverse.
In particular, pSolMq|D is a local system on D away from a closed analytic subset of
D. The smooth locus of pSolMq|D denotes the biggest open in D on which pSolMq|D
is a local system. In a sense, the smooth locus of pSolMq|D is the open subset
of D where the singularities of the (derived) solutions of M are as simple
as possible.

As observed in [Tey13], the open set GoodpMq is included in the smooth
locus of pSolMq|D and pSol EndMq|D. The reverse inclusion was conjectured in
[Tey13, 15.0.5]. Coincidence of GoodpMq with the smooth locus of pSolMq|D
and pSol EndMq|D seems surprising at �rst sight, since goodness is an algebraic
notion whereas SolM is transcendental. The main goal of this paper is to prove via
geometric means the following

Theorem 1. � Let X be a smooth complex algebraic variety. Let D be a smooth
divisor in X. Let M be a meromorphic connection on X with poles along D. Then, the
good formal structure locus ofM is the locus of D where pSolMq|D and pSol EndMq|D
are local systems.

Other criteria detecting good points of meromorphic connections are available
in the literature. Let us mention André's criterion [And07, 3.4.1] in terms of
specialisations of Newton polygons. Let us also mention Kedlaya's criterion [Ked10,
4.4.2] in terms of the variation of spectral norms under varying Gauss norms on the
ring of formal power series. This criterion is numerical in nature. By contrast, the
new criterion given by Theorem 1 is transcendental. Its sheaf theoretic �avour makes
it possible to track the turning points in the cohomology of the irregularity complex.
For an application of this observation, let us refer to Theorem 2 below.

The main tool at stake in the proof of Theorem 1 is geometric, via moduli of
Stokes torsors [Tey19]. For a detailed explanation of the line of thoughts that
brought them into the picture, let us refer to 2.1. Before stating an application of
Theorem 1 (see Theorem 2 below), we explain how these moduli are used by giving
the main ingredients of the proof of Theorem 1 in dimension 2. In that case, we
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have to show the goodness of a point 0 P D given that pSolMq|D and pSol EndMq|D
are local systems in a neighbourhood of 0. The main problem is to extend the good
formal structure of M across 0. This decomposition can be seen as a system of
linear di�erential equations N de�ned in a neighbourhood of a small disc ∆� of D
punctured at 0.

To show that N extends across 0, we �rst construct via Stokes torsors a moduli
space X parametrizing very roughly systems de�ned in a neighbourhood of ∆ and
formally isomorphic to M along ∆. A distinguished point of X is given by M itself.
Similarly, we construct a moduli space Y parametrizing roughly systems de�ned in a
neighbourhood of ∆� and formally isomorphic to M|∆� along ∆�. Two distinguished
points of Y are M|∆� and N . Restriction from ∆ to ∆� provides a morphism of
algebraic varieties res : X ÝÑ Y. The problem of extending N is then the problem
of proving that res hits N . The moduli X and Y have the wonderful property that
the tangent map TM res of res at M is exactly the map

Γp∆,H1 Sol EndMq ÝÑ Γp∆�,H1 Sol EndMq

associating to s P Γp∆,H1 Sol EndMq the restriction of s to ∆�. In this geometric
picture, the smoothness of pH1 Sol EndMq|D around 0 thus translates into the fact
that TM res is an isomorphism of vector spaces. Since X and Y are smooth, we
deduce that res is étale at the point M. Thus, the image of res in Y contains a non
empty open set. We prove furthermore (see Theorem 3 below) that res is a closed
immersion, so its image is closed in Y. Since Y is irreducible, we conclude that res is
surjective, which proves the existence of the sought-after extension of N .

Let us now describe an application of Theorem 1. Let X be a smooth variety over a
�nite �eld of characteristic p ¡ 0. Let ` � p be a prime number. As proved by Deligne
[EK12], there is only a �nite number of semi-simple `-adic local systems on X with
prescribed rank, bounded rami�cation at in�nity and up to a twist by a character
coming from the base �eld. A natural question is to look for a di�erential analogue of
this �niteness result. Let X be a smooth complex proper algebraic variety. Let M be
a meromorphic connection on X. In this situation, H. Esnault and A. Langer asked
whether it is possible to control the resolution of turning points of M by means of
X, the rank of M and the irregularity of M. In dimension 2, this question amounts
to bound the number of blow-ups needed to eliminate the turning points of M. To
the author's knowledge, this question is still widely open. If such a bound exists in
dimension 2, the number of turning points of M should in particular be bounded by
a quantity depending only on the surface X, the rank of M and the irregularity of
M. As an application of Theorem 1, we give such a bound in a relative situation,
thus providing the �rst evidence for a positive answer to H. Esnault and A. Langer's
question. This is the following

Theorem 2. � Let S be a smooth complex algebraic curve. Let 0 P S. Let p : C ÝÑ
S be a relative smooth proper curve of genus g. Let M be a meromorphic connection
on C with poles along the �bre C0 of p above 0. Let rDpMq be the highest generic
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slope of M along C0. Then, the number of turning points of M along C0 is bounded
by 8prankMq2pg � 1qrDpMq.

To prove Theorem 2, the main tools are Theorem 1 and a new boundedness result
for nearby slopes [Tey16] suggested by the `-adic picture [HT21]. See remark 7.1.4
for details.

A crucial step in the proof of Theorem 1 is to understand the geometry of the
restriction map for Stokes torsors. This is achieved by Theorem 3 below. To state it,
let X be a smooth complex algebraic variety. Let D be a normal crossing divisor in
X. Let M be a meromorphic connection on X with poles along D. Suppose that M
has good formal structure in the sense of Mochizuki 1.5. Let pD : rX ÝÑ X be the
�bre product of the real blow-ups of X along the components of D. For every subset
A � D, put BA :� p�1

D pAq. Let St DM be the Stokes sheaf of M (see section 2.3 for
details). This is a sheaf of complex unipotent algebraic groups on BD. Then, we have
the following

Theorem 3. � Let U � V � D be non empty open subsets in D such that V is
connected. Then, the natural morphism

H1pBV,St DM q // H1pBU,St DM q

is a closed immersion of a�ne schemes of �nite type over C.

Let us �nally give an application of Theorem 3 to degenerations of irregular
singularities. Let X be a smooth algebraic variety and let D be a germ of smooth
divisor at 0 P X. Let M be a germ of meromorphic connection de�ned in a
neighbourhood of D in X and with poles along D. Motivated by Dubrovin's
conjecture and the study of Frobenius manifolds, Cotti, Dubrovin and Guzzetti
[CDG19] studied how much information on the Stokes data of M can be retrieved
from the restriction of M to a smooth curve C transverse to D and passing through
0.

Under the assumption that M
pD splits as a direct sum of regular connections

twisted by meromorphic functions a1, . . . , an P OXp�Dq with simple poles along D,
they proved that the Stokes data of the restriction M|C determine in a bijective way
the Stokes data of M in a small neighbourhood of 0 in D. This is striking, since the
numerators of the ai � aj may vanish at 0, thus inducing a discontinuity at 0 in the
con�guration of the Stokes directions. Using di�erent methods, this was reproved by
Sabbah in [Sab, Th 1.4]. In this paper, we give a short conceptual proof of a stronger
version of Cotti, Dubrovin and Guzzetti's injectivity theorem: we don't make any
assumption on the shape of M

pD, nor do we suppose that D is smooth, nor do we
assume that C is transverse to D. The price to pay for this generality is the use of
resolution of turning points, as proved in the fundamental work of Kedlaya [Ked11]
and Mochizuki [Moc11b]. The intuition that the techniques developed in this paper
could be applied to the questions considered by Cotti, Dubrovin and Guzzetti is due
to C. Sabbah.

To state our result, let us recall that a M-marked connection is the data of a pair
pM, isoq where M is a germ of meromorphic connection with poles along D de�ned
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in a neighbourhood of D in X, and where iso : M
pD ÝÑ M

pD is an isomorphism of
formal connections.

Theorem 4. � Let X be a germ of smooth algebraic variety around a point 0. Let D
be a germ of divisor passing through 0. Let M be a germ of meromorphic connection
at 0 with poles along D. Let C be a smooth curve passing through 0 and not contained
in any of the irreducible components of D. If pM1, iso1q and pM2, iso2q are M-marked
connections such that

pM1, iso1q|C � pM2, iso2q|C
then pM1, iso1q and pM2, iso2q are isomorphic in a neighbourhood of 0.

Let us give an outline of the paper. In section 1, we introduce some background
material on asymptotic analysis and on the Stokes sheaf. In section 2, we introduce
the sheaf of relative Stokes torsors and prove its constructibility. In section 3, we
prove the representability of the moduli of Stokes torsors. We then prove Theorem
3. In section 4, we interpret the tangent spaces and the obstruction theory for these
moduli in a transcendental way via the solution complexes for connections. We then
prove Theorem 4. In section 5, we show how to reduce the proof of Theorem 1 to
extending the good formal model ofM across the point 0 under study. In section 6, we
show that the sought-after extension exists provided that the moduli of Stokes torsors
associated to a resolution of the turning point 0 for M satis�es suitable geometric
conditions. Finally, we show that these geometric conditions are always satis�ed when
the hypothesis of Theorem 1 are satis�ed, thus concluding the proof of Theorem 1.
Section 7 is devoted to the proof of Theorem 2. We collect in an appendix some
elementary facts about torsors and Stokes �ltered local systems. Note that our use of
Stokes �ltered local systems in this paper is a purely technical detour to obtain the
triviality criterion 8.4.1.
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1. The Stokes sheaf. Global aspects

1.1. Geometric setup. � In this subsection, we introduce basic notations. In this
paper, a regular pair pX,Dq will be the data of a smooth complex algebraic variety
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X and of a strict normal crossing divisor D in X. For a quasi-coherent sheaf F on
X, we denote by F|D the sheaf of germs of sections of F along D. Let D1, . . . , Dm

be the irreducible components of D. For I � J1,mK, set

DI :�
£
iPI

Di and D
�
I :� DIz

¤
iRI

Di

1.2. Functions with asymptotic expansion along D. � For i � 1, . . . ,m, letrXi ÝÑ X be the real blow-up of X along Di. Let pD : rX ÝÑ X be the �bre product

of the rXi, i � 1, . . . ,m above X. For every subset A � D, put BA :� p�1
D pAq. Let

ιA : BA ÝÑ BD be the canonical inclusion.
Let A be the sheaf of functions on BD admitting an asymptotic expansion along

D [Sab00]. For a closed subset Z in D, let A
pZ be the completion of A along the

pull-back by pD of the ideal sheaf of Z. Put A Z :� KerpA ÝÑ A
pZq. When Z � D,

the sheaf A D can be concretely described locally as follows (see [Sab00, II 1.1.11]
for a proof). Let px1, . . . , xnq be local coordinates centred at 0 P D such that D is
de�ned around 0 by x1 � � �xl � 0 for some l P J1,mK. Then, the germ of A D at
Q P B0 is given by those holomorphic functions u de�ned over the trace on XzD of

a neighbourhood Ω of Q in rX, and such that for every compact K � Ω, for every
pN1, . . . , Nlq P N

l, there exists a constant CK,N ¡ 0 satisfying

(1.2.1) |upxq| ¤ CK,N |x1|
N1 � � � |xl|

Nl for every x P K X pXzDq

From the formula (1.2.1), we deduce the following elementary lemma.

Lemma 1.2.2. � Let ρ : Y ÝÑ X be a cyclic Galois cover of X rami�ed along D.

Put E � ρ�1pDq. Let rρ : rY ÝÑ rX be the map induced by ρ at the level of the real
blow-up. Then, the canonical map A D ÝÑ rρ�A E induces an isomorphism between
A D and the sheaf of invariants of rρ�A E under the Galois group of ρ.

1.3. Good formal structure. � Let pX,Dq be a regular pair. Meromorphic
connections in this paper will be supposed to be �at. Let P be a point in D. An
elementary local model at P denotes a meromorphic connection N of the form

N �
à
aPIP

Ea bRa

where IP is a �nite set in OX,P p�Dq, where Ea � pOX,P p�Dq, d�daq and where Ra is
a regular singular meromorphic connection on X with poles along D. If furthermore
the following conditions are satis�ed

(1) For an element a in IP , if a does not belong to OX,P , then the divisor of a is
anti-e�ective with support in D,
(2) For an element a, b in IP , if a � b does not belong to OX,P , then the divisor of
a� b is anti-e�ective with support in D,

we say that N is a good elementary local model at P . Let M be a meromorphic
connection on X with poles along D. Let Y be the stratum of D containing P .
Following [Ked10, 6.2.3], we say that M has an elementary local model at P if at
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the cost of shrinking X, there exists an elementary local model N at P and an
isomorphism of connections

(1.3.1) O
zX|Y

bOX M � O
zX|Y

bOX N

If furthermore N is a good elementary local model at P , we say that M has a good
elementary local model at P . We say that M has a good formal structure at P if there
exists a cyclic Galois cover of some neighbourhood of P , rami�ed along D, on which
the pull-back of M admits a good elementary local model at some inverse image of
P . If this is true for every point P in D, we say that M has a good formal structure.

1.4. Irregular values. � Let pX,Dq be a regular pair. Let M be a meromorphic
connection on X with poles along D. If M has a good elementary local model at
every point P in D, the images by OXp�Dq ÝÑ OXp�Dq{OX of the �nite sets IP
appearing in 1.3 organize into a subsheaf of OXp�Dq{OX on D. This is the sheaf of
irregular values of M. Let us denote it by I. We say that I is very good if for every
point P in D, the di�erence of any two distinct elements of IP has poles along every
component of D passing through P . These de�nitions extend in a straighforward way
to the case where M has good formal structure. See [Sab12, 9.c] for details.

1.5. Mochizuki's de�nition of good formal structure and its use in the
paper. � As pointed out in [Ked10, 4.3.3], there is a small discrepancy between
the notion of good formal structure in [Ked10] and that from [Moc11b]. Mochizuki
further requires that the sets IP appearing in the decomposition (1.3.1) satisfy the
extra assumption that the OX -modules generated by the di�erences a�b, a, b P IP not
lying in OX are totally ordered under containment. If M has good formal structure
in the sense of Mochizuki, then M has good formal structure in the sense of Kedlaya.
Due to [Ked10, 4.3.1], if M and EndM have good formal structure in the sense of
Kedlaya, then M has good formal structure in the sense of Mochizuki.

Note that these notions coincide when D is smooth. Hence, this discrepancy is
invisible in the statement of Theorem 1. However, the notion of goodness used in
Theorem 3, Theorem 5 and Theorem 6 is that of Mochizuki. It will be needed to
ensure that for every point P in D, there exists a component Z of D passing through
P such that for every a, b P IP distinct, a � b has poles along Z. If not explicitly
mentioned otherwise, good formal structure will be taken in the sense of Kedlaya.

1.6. The Stokes sheaf. � Let pX,Dq be a regular pair. Let M be a meromorphic
connection de�ned on X with poles along D. Suppose that M has good formal
structure. We set

BM � Abp�1
D OX|D p

�1
D M

and

BM
pD � A

pD bp�1
D OX|D p

�1
D M

Let DX be the sheaf of di�erential operators on X. The sheaf A is endowed with an
action of p�1

D DX|D. Hence, so does BM. We can thus form the De Rham complex of
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M with coe�cients in A as

BM // p�1
D Ω1

X|D bp�1
D OX|D BM // � � � // p�1

D ΩnX|D bp�1
D OX|D BM

It is denoted by DR BM. Similarly, we denote by DR DM the De Rham complex of
M with coe�cients in A D.

Let Z be a closed subset of D. Let St ZM be the subsheaf of H0 DR BEndM of
sections asymptotic to the Identity along Z, that is of the form Id�f where f has
coe�cients in A Z . The sheaf St ZM is a sheaf of complex unipotent algebraic groups
on BZ. This is the Stokes sheaf of M along Z. For every C-algebra R, the sheaf of
R-points of St ZM is a sheaf of groups on BZ. It is denoted by St ZM pRq. This is the
Stokes sheaf of M along Z relative to R.

1.7. The Stokes locus. � Let pX,Dq be a regular pair. Let pD : rX ÝÑ X be the
real blow-up of X along D. Let M be a meromorphic connection de�ned on X with
poles along D. Suppose that M has a good elementary local model at every point of
D. Let I be the sheaf of irregular values of M. Let P be a point in D. Let a, b P IP
distinct. Put Fa,b :� Repa � bq|x� ordpa�bq| where px1, . . . , xnq are local coordinates
centred at P such that D is given by x1 � � �xm � 0. By de�nition, the Stokes locus
of pa, bq is de�ned as Fa,b � pD � 0. The Stokes locus of M is the union of the loci
of the form Fa,b � pD � 0, where a, b are as above. If M is rami�ed, then at the cost
of shrinking X, there exists a cyclic Galois cover ρ : Y ÝÑ X rami�ed along D such

that ρ�M is unrami�ed. Let rρ : rY ÝÑ rX be the map induced by ρ at the level of
the real blow-up. Then the Galois group G of ρ acts on I. Hence, the action of G onrY preserves the Stokes locus of ρ�M. Thus, the Stokes locus of ρ�M descends to
a closed subset in BD, called the Stokes locus of M. This locus depends only on M
and not on the choice of ρ.

1.8. Some facts on the Stokes sheaf. � Let pX,Dq be a regular pair. Let M
be a meromorphic connection on X with poles along D. Suppose that M has good
formal structure. As a consequence of lemma 1.2.2, we have the following

Lemma 1.8.1. � Let ρ : Y ÝÑ X be a cyclic Galois cover of X rami�ed along

D. Put E � ρ�1pDq. Let rρ : rY ÝÑ rX be the map induced by ρ at the level of the

real blow-up. Then, rρ�1 St DM � St Eρ�M and the canonical map St DM ÝÑ rρ� St Eρ�M
induces an isomorphism between St DM and the sheaf of invariants of rρ� St Eρ�M under
the Galois group of ρ.

Lemma 1.8.2. � The Stokes sheaf of M is constructible with respect to the
strati�cation of BD induced by the Stokes locus of M.

Proof. � From lemma 1.8.1, we can suppose that M is unrami�ed. The question is
local on BD. From Mochizuki's asymptotic development theorem [Sab12, 12.5], we
can further suppose that M is a good elementary local model at a point P . In that
case, let us write

M �
à
aPI

Ea bRa



MODULI OF STOKES TORSORS AND SINGULARITIES OF DIFFERENTIAL EQUATIONS 9

where I is a good set of irregular values at P , where Ea � pOXp�Dq, d � daq and
where Ra is regular with poles along D. Let ia : Ea b Ra ÝÑ N be the canonical
inclusion and let pa : N ÝÑ Ea bRa be the canonical projection. Sections of St DM
on an open set S are automorphisms of M on S X pXzDq of the form Id�f where
pafib � 0 unless

(1.8.3) ea�b P ΓpS,A Dq

Lemma 1.8.2 then follows from the observation that the condition (1.8.3) is constant
on each stratum of the strati�cation of BD induced by the Stokes locus of pa, bq.

Lemma 1.8.4. � Let pX,Dq be a germ of regular pair at a point P . Let D1, . . . , Dm

be the components of D. Let M be a meromorphic connection on X with poles along
D. Suppose that M has good formal structure. Let ρ : Y ÝÑ X be a cyclic Galois
cover of X rami�ed along D such that ρ�M is unrami�ed. Suppose that the di�erence
of any two distinct irregular values for M at P has poles along ρ�1pDmq. Put I �
J1,m� 1K. Then, the adjunction morphism

(1.8.5) ι�1
DI

St DM
// ι�1
DI
ιD�

I�
ι�1
D�
I

St DM

is an isomorphism.

Proof. � From lemma 1.8.1, we can suppose that M is unrami�ed. Injectivity is
obvious, so we are left to prove surjectivity at a point Q in BP . This is a local question
around Q. From Mochizuki's asymptotic development theorem [Sab12, 12.5], we can
thus suppose that M is a good elementary local model. Let us write

M �
à
aPI

Ea bRa

where I is a good set of irregular values at P , where Ea � pOXp�Dq, d�daq and where
Ra is regular with poles along D. Let ia : Ea bRa ÝÑ N be the canonical inclusion
and let pa : N ÝÑ Ea bRa be the canonical projection. Let S be a neighbourhood
of Q in BX of the form

pr0, rr�I1q � � � � � pr0, rr�Imq �∆

where r ¡ 0, where ∆ is a ball in Cn�m centred at 0 and where I1, . . . , Im are closed
intervals in S1. To prove the surjectivity of (1.8.5) at Q, it is enough to show that at
the cost of shrinking S, the restriction morphism

ΓpS X BD,St DM q ÝÑ ΓpS X BD�
I ,St DM q

is a bijection. Sections of St DM on S X BD are automorphisms of M on S X pXzDq
of the form Id�f where pafib � 0 unless

(1.8.6) ea�b P ΓpS X BD,A Dq

Sections of St DM on

S X BD�
I � pt0u � I1q � � � � � pt0u � Im�1q � ps0, rr�Imq �∆

are automorphisms of M on S X pXzDq of the form Id�f where pafib � 0 unless

(1.8.7) ea�b P ΓpS X BD�
I ,A Dq
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We thus have to show that for every distinct a, b P I, the conditions (1.8.6) and (1.8.7)
are equivalent for a small enough choice of S. A change of variable reduces the problem
to the case where a� b � 1{xα1

1 � � �xαmm where pα1, . . . , αmq P N
m�1 �N�. Note that

condition (1.8.6) trivially implies condition (1.8.7). Suppose that e1{x
α1
1 ���xαmm lies in

ΓpS X BD�
I ,A Dq. At the cost of shrinking S, we can suppose that there exists a

constant C ¡ 0 such that for every

px1, . . . , xnq P ps0, rr�I1q � � � � � ps0, rr�Im�1q � pr
r

2
, rr�Imq �∆

we have
|e1{x

α1
1 ���xαmm | ¤ C|x1| � � � |xm�1|

Writing xi � pri, θiq for i � 1, . . . ,m, this means

ecospα1θ1�����αmθmq{r
α1
1 ���rαmm ¤ Cr1 � � � rm�1

In particular, αi ¡ 0 for i � 1, . . . ,m � 1 and cospα1θ1 � � � � � αmθmq   0 for every
pθ1, . . . , θmq P I1 � � � � � Im. At the cost of shrinking S further, there exists c ¡ 0
such that cospα1θ1 � � � � � αmθmq   �c on I1 � � � � � Im. Then, we have

|e1{x
α1
1 ���xαmm | ¤ e�c{|x1|

α1 ���|xm|
αm

on S. Since αi ¡ 0 for i � 1, . . . ,m, we deduce that (1.8.7) holds. This proves
the equivalence between conditions (1.8.6) and (1.8.7) and thus �nishes the proof of
lemma 1.8.4.

2. Stokes torsors

2.1. Why moduli of Stokes torsors?� Let us explain in this subsection how the
moduli of Stokes torsors were found to be relevant to the proof of Theorem 1. We use
the notations from the introduction and work in dimension 2. We suppose that 0 P D
lies in the smooth locus of pSolMq|D and pSol EndMq|D, and we want to prove that
0 is a good formal structure point for M.

From a theorem of Kedlaya [Ked10][Ked11] and Mochizuki [Moc09][Moc11b],
our connection M acquires good formal structure at any point after pulling-back by a
suitable sequence of blow-ups above D. To test the validity of the conjecture [Tey13,
15.0.5], a natural case to consider was the case where only one blow-up is needed.
Using results of André [And07], it was shown in [Tey14] that the conjecture reduces
in this case to the following

Question. � Given two good meromorphic connections M and N with poles along
the coordinate axis in C2 and formally isomorphic at 0, is it true that

(2.1.1) dimpH1 Sol EndMq0 � dimpH1 Sol EndN q0 ?

It turns out that each side of (2.1.1) appeared as dimensions of moduli spaces of
Stokes torsors constructed by Babbitt-Varadarajan in [BV89]. These moduli were
associated with germs of meromorphic connections in dimension 1. Babbitt and
Varadarajan proved that they are a�ne spaces. This suggested the existence of a
moduli X with two points P,Q P X such that the left-hand side of (2.1.1) would be
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dimTPX and the right-hand side of (2.1.1) would be dimTQX . The equality (2.1.1)
would then follow from the smoothness and connectedness of the putative moduli.
This is what led to [Tey19], but the question of smoothness and connectedness was
left open. In the meantime, a positive answer to the above question was given by
purely analytic means by C. Sabbah in [Sab17].

2.2. Relation with [Tey19]. � In [Tey19], a moduli for local Stokes torsors
was constructed in any dimension. This moduli su�ers two drawbacks in view of
the proof of Theorem 1. First, the Stokes sheaf used in [Tey19] only makes sense
at a neigbourhood of a point, whereas our situation will be global as soon as we
apply Kedlaya-Mochizuki's resolution of turning points. Second, the relation between
Irregularity and the tangent spaces of the moduli from [Tey19] only holds in particular
cases. To convert the hypothesis on Irregularity appearing in Theorem 1 into a
geometric statement pertaining to moduli of torsors, we need to replace the Stokes
sheaf StM of a connection M by a subsheaf denoted by St DM . We will abuse

terminology be also calling the torsors under St DM Stokes torsors. The sheaf St DM
has the advantage of being globally de�ned when M is globally de�ned. Along the
smooth locus of D, the sheaf St DM is the usual Stokes sheaf. The only di�erence

between StM and St DM appears at a singular point of D.

2.3. The functor of relative Stokes torsors. � We use the notations from 1.6.
Let R be a C-algebra. Torsors under St ZM pRq are the Stokes torsors along Z relative

to R. For every subset A � Z, let H1pBA,St ZM q be the functor

C-alg ÝÑ Set

R ÝÑ H1pBA,St ZM pRqq

From [Tey19, Th. 1], the functor H1pBP,St PM q is an a�ne scheme of �nite type over
C for every point P in D.

Lemma 2.3.1. � Let P be a point in D. Torsors under St PM on BP have no non
trivial automorphisms.

Proof. � The lemma 2.3.2 was proved in [Tey19, 1.8.1] in the case whereM is a good
elementary local model. An inspection of the proof, relying on Babbitt-Varadarajan
representability theorem in dimension 1 as well as Malgrange-Sibuya theorem, shows
that it carries over verbatim to the case of an arbitrary connection with good formal
structure.

Lemma 2.3.2. � Let A be a subset in D. Torsors under St DM on BA have no non
trivial automorphisms.

Proof. � Let P be a point in A. It is enough to show that torsors under St DM on BP

have no non trivial automorphisms. Let T be a St DM -torsor on BP . Let φ : T ÝÑ T
be an automorphism of St DM -torsors. Since A D is a subsheaf of A P , there is an

injection ι : St DM ÝÑ St PM . To show that φ is the identity of T amounts to show that

the push-forward ι�φ : ι�T ÝÑ ι�T is the identity of the St PM -torsor ι�T . This last
assertion is a consequence of lemma 2.3.1. This �nishes the proof of lemma 2.3.2.
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As a straighforward consequence of lemma 2.3.2, we deduce the following

Corollary 2.3.3. � Let A be a subset in D. We endow A with the topology induced
by D. Then, the presheaf of functors R1pA� St DM de�ned as

OpenpAq ÝÑ Set

U ÝÑ H1pBU,St DM q

is a sheaf of functors. That is, for every cover U of A by open subsets, the �rst arrow
in the following diagram of pointed functors

H1pBA,St DM q //
±
UPU H

1pBU,St DM q //
// ±

U,V PU H
1pBU X BV,St DM q

is an equalizer.

Remark 2.3.4. � Observe that the sheaf condition in corollary 2.3.3 is still satis�ed
if one takes instead of a cover by open subsets in A a cover K by compact subsets K P K
such that the associated family of open subsets

�
K form a cover of A.

As a consequence of 1.8.1, 2.3.4 and 8.1.1, we have the following

Corollary 2.3.5. � Let pX,Dq be a regular pair. Let ρ : Y ÝÑ X be a cyclic Galois
cover of X rami�ed along D. Let G be the Galois group of ρ. Put E � ρ�1pDq. Let
A be a subset in D. Let M be a meromorphic connection on X with poles along D.
Suppose that M has good formal structure. Then, the canonical morphism of functors

H1pBA,St DM q ÝÑ H1pBρ�1pAq,St Eρ�MqG

is an isomorphism.

2.4. Dévissage of the sheaf of relative Stokes torsors. � The goal of this
subsection is to relate Stokes torsors on a stratum with Stokes torsors on a suitably
chosen stratum which is less deep. This will be done in proposition 2.4.2.

Lemma 2.4.1. � Let pX,Dq be a germ of regular pair at a point P . Let D1, . . . , Dm

be the components of D. Let M be a meromorphic connection on X with poles along
D. Suppose that M has good formal structure. Let I be a subset in J1,mK. For every
element T in H1pBD�

I ,St DM q, the sheaf ιD�
I�
T is a ιD�

I�
ι�1
D�
I

St DM -torsor on BD.

Proof. � Let Q be a point in BD. From lemma 8.1.2, we have to show the existence

of a neighbourhood S of Q in rX such that the Stokes torsors on S X BD�
I are trivial.

To do this, we can suppose that Q lies in BP . Let ρ : Y ÝÑ X be a cyclic Galois

cover of X rami�ed along D such that ρ�M is unrami�ed. Let rρ : rY ÝÑ rX be the
Galois cover induced by ρ at the level of the real blow-up. Let U be a neighbourhood
of Q that decomposes rρ. By pulling-back the situation to a connected component
of rρ�1pUq, we reduce to the case where M is unrami�ed. Since we are working in
a neighbourhood of Q, Mochizuki's asymptotic development theorem [Sab12, 12.5]
reduces the proof of lemma 2.4.1 to the case where M is a good elementary local
model. Then, lemma 2.4.1 is a consequence of the triviality criterion 8.4.1.
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Proposition 2.4.2. � Let pX,Dq be a germ of regular pair at a point P . Let
D1, . . . , Dm be the components of D. Let M be a meromorphic connection on X
with poles along D. Suppose that M has good formal structure. Let ρ : Y ÝÑ X be
a cyclic Galois cover of X rami�ed along D such that ρ�M is unrami�ed. Suppose
that the di�erence of any two distinct irregular values for M at P has poles along
ρ�1pDmq. Put I � J1,m� 1K. Then, the restriction morphism

(2.4.3) H1pBDI ,St DM q // H1pBD�
I ,St DM q

is an isomorphism of functors.

Proof. � From lemma 2.4.1 and lemma 1.8.4, the functor ι�1
DI
ιD�

I�
induces a well-

de�ned morphism H1pBD�
I ,St DM q ÝÑ H1pBDI ,St DM q, providing an inverse for

(2.4.3).

2.5. The stalks of the sheaf of Stokes torsors. �

Lemma 2.5.1. � Let pX,Dq be a regular pair. Let D1, . . . , Dm be the irreducible
components of D. Let M be a meromorphic connection on X with poles along D.
Suppose that M has good formal structure. Let I, J be subsets in J1,mK with J � I.
Let Z be a manifold in D�

I . Then Z admits a fundamental system of neighbourhood
U in DJ such that the restriction morphism

(2.5.2) H1pBU,St DM q ÝÑ H1pBZ,St DM q

is an isomorphism.

Proof. � Let I be the sheaf of irregular values of M. It is enough to prove that
Stokes torsors on BZ and their morphisms extend uniquely over a neighbourhood
of Z in DJ depending only on I. To do this, we can suppose that Z is a point P
and that pX,Dq is a germ of regular pair at P . Similarly as in [Tey19, 1.9.1], the

constructibility of St DM allows to construct a ball U in DJ of radius r ¡ 0 centred at
P and a cover V of BU by subsets V depending only on I, of the form

¹
iPJ

pt0u � Iiq �
¹
iRJ

pr0, rr�Iiq �∆

where I1, . . . , Im are closed intervals in S1, where ∆ is the ball of radius r centred at
0, and such that V trivializes every torsor under St DM . At the cost of shrinking V,
the constructibility of St DM further allows to suppose that for every V,W P V, the
maps

ΓpV,St DM q ÝÑ ΓpV X BP,St DM q

and

ΓpV XW, St DM q ÝÑ ΓpV XW X BP,St DM q

are bijective. For the above choice of ball U , the bijectivity of (2.5.2) follows.
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Corollary 2.5.3. � Let pX,Dq be a regular pair. Let M be a meromorphic
connection on X with poles along D. Suppose that M has good formal structure. Let
I be a subset in J1,mK. Let iZ : Z ÝÑ D�

I be a manifold in D�
I . Then, the canonical

morphism

i�1
Z R1pD� St DM ÝÑ R1pZ� St DM

is an isomorphism.

Proof. � By de�nition, the sheaf i�1
Z R1pD� St DM is the sheaf associated to the

presheaf

FZ : Open(Z) ÝÑ Set

V ÝÑ limÝÑ
U�V

ΓpU,R1pD� St DM q

By taking J to be the empty set in lemma 2.5.1, we observe that the above inductive
limit identi�es canonically with H1pBV,St DM q � ΓpV,R1pZ� St DM q. Hence, we have

FZ � R1pZ� St DM

From lemma 2.3.3, the presheaf R1pZ� St DM is a sheaf. Corollary 2.5.3 thus follows.

Corollary 2.5.4. � Let pX,Dq be a regular pair. Let M be a meromorphic
connection on X with poles along D. Suppose that M has good formal structure. Let
P be a point in D. Then, the stalk of R1pD� St DM at P is canonically identi�ed with

H1pBP,St DM q.

2.6. Constructibility of the sheaf of Stokes torsors. �

Theorem 5. � Let pX,Dq be a regular pair. Let D1, . . . , Dm be the irreducible
components of D. Let M be a meromorphic connection on X with poles along D.
Suppose that M has good formal structure in the sense of Mochizuki. Then, the sheaf
R1pD� St DM is constructible on D. More precisely, for every subset I � J1,mK, the
restriction of R1pD� St DM to D�

I is locally constant.

Proof. � The statement is local along D. Hence, we can suppose that pX,Dq is a
germ of regular pair at a point P and that I � J1,mK. From lemma 2.3.5, we can
suppose that M is unrami�ed. We argue recursively on m. The case where m � 1
will be treated last. Suppose that m ¥ 2. Since R1pD� St DM is a sheaf, to prove that
its restriction to D�

I � DI is a local system, it is enough to �nd a connected open
neighbourhood UI of P in D�

I � DI such that any point Q in UI admits a fundamental
system of connected open neighbourhoods VI such that

ΓpUI , R
1pD� St DM q ÝÑ ΓpVI , R

1pD� St DM q

is an isomorphism. From corollary 2.5.3, we have to �nd a connected open
neighbourhood UI of P in D�

I � DI such that any point Q in UI admits a
fundamental system of connected open neighbourhoods VI such that

H1pBUI ,St DM q ÝÑ H1pBVI ,St DM q
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is an isomorphism. Since M has good formal structure in the sense of Mochizuki, we
can suppose that the di�erence of any two distinct irregular values of M at P has
poles along Dm. Put J � J1,m�1K. Let UI be a small ball in DI centred at P . From
lemma 2.5.1, we can choose a ball U in DJ centred at P and containing UI such that

H1pBU,St DM q ÝÑ H1pBUI ,St DM q

is an isomorphism. Let Q be a point in UI . Let VI be a ball in UI centred at Q. From
lemma 2.5.1 again, we can choose a ball V in DJ centred at Q with VI � V � UI and
such that the morphism

H1pBV,St DM q ÝÑ H1pBVI ,St DM q

is an isomorphism. Put U�
J � U XD�

J and V �
J � V XD�

J . Then, we are left to prove
that the middle vertical arrow in the commutative diagram

(2.6.1) H1pBUI ,St DM q

��

H1pBU,St DM q

��

�oo // H1pBU�
J ,St DM q

��

H1pBVI ,St DM q H1pBV,St DM q
�oo // H1pBV �

J ,St DM q

is an isomorphism. From lemma 2.4.2, the right horizontal arrows in (2.6.1) are
isomorphisms. Hence, we are left to prove that the right vertical arrow in (2.6.1) is

an isomorphism. By recursion assumption, the restriction of R1pD� St DM to D�
J is a

local system. We observe that the map V �
J ÝÑ U�

J is a product of the inclusion of two
discs ∆�

1 � ∆�
2 punctured at 0 with the inclusion of two balls B1 � B2 in Cn�m. In

particular, V �
J ÝÑ U�

J is a homotopy equivalence. Hence the right vertical arrow in
(2.6.1) is an isomorphism. This concludes the reduction of the proof of Theorem 5 to
the case where D is smooth. We now treat the case where D is smooth. The question
is again local on D. Hence, we can suppose that pX,Dq is a germ of smooth divisor
at a point P . From lemma 2.3.5, we can suppose that M is unrami�ed. This case
was treated in [Sab02, II 6.3]. Alternatively, since D is smooth, the sheaf of irregular
values for M is very good. Hence, lemma 8.3.2 reduces the proof of Theorem 5 with
D smooth to the analogous statement for marked Stokes �ltered local systems. This
case follows from Mochizuki's extension Theorem 4.13 in [Moc11a].

3. The geometry of the moduli of Stokes torsors

3.1. Representability by a scheme. � The �rst goal of this section is to prove
the following representability Theorem:

Theorem 6. � Let pX,Dq be a regular pair. Let M be a meromorphic connection
on X with poles along D. Suppose that M has good formal structure in the sense of
Mochizuki 1.5. Then, the functor H1pBD,St DM q is representable by an a�ne scheme
of �nite type over C.

Proof. � The idea is to analyse separately the contributions coming from each
stratum of D. Let D1, . . . , Dm be the components of D. We argue by recursion
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on the depth of the deepest stratum of D. The case where D is smooth will be
treated last. Let Z be the deepest stratum of D. From lemma 2.5.1, there is an open
neighbourhood U of Z in BD such that the restriction morphism

H1pBU,St DM q // H1pBZ,St DM q

is an isomorphism. Put V � DzZ. From corollary 2.3.3, we have

H1pBD,St DM q � H1pBU,St DM q �H1pBpUXV q,St DM q H
1pBV,St DM q

By recursion assumption, the functors H1pBV,St DM q and H1pBpU X V q,St DM q are

a�ne schemes of �nite type over C. Hence, we are left to prove that H1pBZ,St DM q is
an a�ne scheme of �nite type over C. To do this, we can suppose that Z is connected.
Hence, at the cost of shrinking the situation to a small enough open neighbourhood of
a connected component of Z, we can suppose that Z is D�

I � DI for I � J1,mK. From
lemma 2.5.3, H1pBD�

I ,St DM q is the space of sections of the sheaf R1pD� St DM on BD�
I .

From Theorem 5, the restriction of R1pD� St DM to D�
I is a local system. Hence, if B

is a small ball in D�
I centred at point P , the functor H1pBD�

I ,St DM q is the functor

of invariants for the action of π1pD
�
I , P q on H1pBB, St DM q. That is, if pγ1, . . . , γN q

denotes a set of generators for π1pD
�
I , P q, the following diagram of functors

(3.1.1) H1pBD�
I ,St DM q //

��

H1pBB, St DM q

pId,γ1,...,γN q

��

H1pBB, St DM q
Diagonal

// H1pBB, St DM qN�1

is cartesian. To prove Theorem 6, we are thus left to prove that H1pBB, St DM q is an
a�ne scheme of �nite type over C. In particular, we can suppose that pX,Dq is a
germ of regular pair at P . Since M is good in the sense of Mochizuki, the conditions
of proposition 2.4.2 are satis�ed. Put J � J1,m � 1K. From lemma 2.5.1, there is a
small ball U in DJ centred at P such that

H1pBU,St DM q ÝÑ H1pBB, St DM q

is an isomorphism. Hence we are left to prove that H1pBU,St DM q is an a�ne scheme
of �nite type over C. Hence, if we put U�

J � U XD�
J , proposition 2.4.2 implies that

the restriction morphism

H1pBU,St DM q ÝÑ H1pBU�
J ,St DM q

is an isomorphism. By recursion assumption, the functor H1pBU�
J ,St DM q is an a�ne

scheme of �nite type over C. This concludes the reduction of Theorem 6 to the case
where D is smooth. If D is smooth, we reduce using (3.1.1) and corollary 2.5.1 to

prove that for a point P in D, the functor H1pBP,St DM q is a scheme of a�ne type over

C. Let i : C ÝÑ X be a smooth curve in X transverse to D at P . Let ι : rC ÝÑ rX be
the morphism induced by C at the level of the real blow-up. Observe that ι induces
an isomorphism above P . Since ι�1 St DM � St Pi�M, we deduce that

H1pBP,St DM q � H1pBP,St Pi�Mq
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Hence, we are left to prove Theorem 6 in the one dimensional case. This case was
treated by Babbit-Varadarajan [BV89]. This �nishes the proof of Theorem 6.

Remark 3.1.2. � Note that in the case where M has rank two, the moduli of Stokes
torsors whose existence is asserted by Theorem 6 is known to be an a�ne space
[Tey20].

The diagram (3.1.1) in the proof of Theorem 6 gives the following

Proposition 3.1.3. � Let pX,Dq be a regular pair. Let M be a meromorphic
connection on X with poles along D. Suppose that M has good formal structure
in the sense of Mochizuki 1.5. Let D1, . . . , Dm be the components of D. Let I be a
subset of J1,mK. Suppose that D�

I is connected. Let P be a point in D�
I . Then, the

natural morphism

H1pBD�
I ,St DM q // H1pBP,St DM q

is a closed immersion.

We store the following immediate corollary of proposition 3.1.3 for later use.

Corollary 3.1.4. � Let pX,Dq be a regular pair. Let M be a meromorphic
connection on X with poles along D. Suppose that M has good formal structure in
the sense of Mochizuki 1.5. Let D1, . . . , Dm be the components of D. Let I be a
subset of J1,mK. Let U � V � D�

I be non empty open subsets in D�
I such that V is

connected. Then, the natural morphism

H1pBV,St DM q // H1pBU,St DM q

is a closed immersion.

Proof. � Choose a point P in U . Then, there is a factorization

H1pBV,St DM q

((

// H1pBU,St DM q

��

H1pBP,St DM q

From proposition 3.1.3, the diagonal arrow is a closed immersion between a�ne
schemes. Hence, the horizontal arrow is a closed immersion.

3.2. Passing from one stratum to an other stratum is a closed immersion.
� The next proposition is the technical core of this paper.

Proposition 3.2.1. � Let pX,Dq be a germ of regular pair at a point P . Let
D1, . . . , Dm be the components of D. Put I � J1,mK. Let i P I. Then, for a small
enough ball ∆ in Di centred at P , the morphism of schemes

(3.2.2) H1pBP,St DM q // H1pB∆�,St DM q

is a closed immersion, where ∆� � ∆z
�
jPIztiuDj � D�

i .



18 J.-B. TEYSSIER

Proof. � Let us �rst construct the morphism (3.2.2). From lemma 2.5.1, for a small
enough ball ∆ in Di centred at P , the restriction morphism

H1pB∆,St DM q ÝÑ H1pBP,St DM q

is an isomorphism. Then, the morphism (3.2.2) is de�ned as the composition

H1pBP,St DM q H1pB∆,St DM q //�oo H1pB∆�,St DM q

Note that both functors appearing in (3.2.2) are a�ne schemes as a consequence of
Theorem 6. Let j : B∆� ÝÑ BD be the canonical inclusion. The sheaf of algebraic
groups ι�1

Di
St DM is distinguished in St DiM . We thus have an exact sequence of sheaves

of algebraic groups on BDi

1 // ι�1
Di

St DM
ι // St DiM

// Q // 1

There is an adjunction morphism

(3.2.3) ι�1
P St DiM

// ι�1
P j�j

�1 St DiM � ι�1
P j�j

�1 St DM

Hence, there is a factorization

(3.2.4) H1pBP,St DM q

((

ι�
// H1pBP,St DiM q

��

H1pB∆�,St DM q

From a similar argument to that in lemma 1.8.4, the adjunction morphism (3.2.3) is an
isomorphism of sheaves on BP . Hence, the vertical arrow in (3.2.4) is an isomorphism

of functors. Hence, H1pBP,St DiM q is an a�ne scheme of �nite type over C and to
prove proposition 3.2.1, it is enough to prove that

ι� : H1pBP,St DM q // H1pBP,St DiM q

is a closed immersion. From [Fre57, I.2], there is an exact sequence of pointed functors

(3.2.5) H0pBP,Qq // H1pBP,St DM q
ι�
// H1pBP,St DiM q // H1pBP,Qq

Let us prove that H0pBP,Qq is trivial. The complex of sheaves

St DiM
// BEndM

pD
// BEndM

xDi

induces a sequence of sheaves

(3.2.6) Q �
�

// BEndM
pD

// BEndM
xDi

By applying pD� and then looking at the germs at P , we deduce from [Sab00, p44]
the following sequence

(3.2.7) 0 // H0pBP,Qq // EndM
pD,P

// EndM
xDi,P
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By �atness of EndM over OX , the second map in (3.2.7) is injective. Hence,
H0pBP,Qq is trivial. Thus, the following diagram of functors

(3.2.8) H1pBP,St DM q

ι�

��

// �

��

H1pBP,St DiM q // H1pBP,Qq

is cartesian, where � denotes the trivial Q-torsor. If we knew that H1pBP,Qq is a
scheme, we would directly obtain that ι� is a closed immersion. This question does
not seem to follow from the use of skeletons in [Tey19]. We will circumvent this
problem with a group theoretic argument.

From lemma 1.8.2, the sheaf St DiM is constructible with respect to the strati�cation
of BD induced by the Stokes locus of M. Hence, the same argument as in [Tey19,
1.9.1] applies. In particular, there exists a cover U of BP by open subsets such that
the morphism of a�ne schemes

(3.2.9) Z1pU ,St DiM q // H1pBP,St DiM q

is surjective at the level of R-points for every C-algebra R. From [BV89, 2.7.3], the
morphism (3.2.9) admits a section. Composing this section with

Z1pU ,St DiM q // Z1pU ,Qq

gives rise to a commutative triangle of functors

(3.2.10) H1pBP,St DiM q //

''

H1pBP,Qq

Z1pU ,Qq

OO

The algebraic group

GU :�
¹

UPU
ΓpU,Qq

acts on Z1pU ,Qq. Let
(3.2.11) GU ÝÑ Z1pU ,Qq
be the morphism of schemes obtained by restricting the action of GU to the trivial
cocycle. Since H0pBP,Qq � 0, the morphism (3.2.11) is a monomorphism. There is a
commutative diagram

(3.2.12) H1pBP,St DM q

ι�

��

GU

��

// �

��

H1pBP,St DiM q // Z1pU ,Qq // H1pBP,Qq

We would like to reduce the problem of proving that ι� is a closed immersion to the
problem of proving that (3.2.11) is a closed immersion. To do this, we would like to
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�ll the left diagram in (3.2.12) into a cartesian square. Note that the right square
in (3.2.12) may not be cartesian since there may be cocycles in Z1pU ,Qq that are
cohomologous to the trivial cocycle only after passing to a re�nement of U . To treat
this problem, we argue by using the universal torsor under St DM on BP .

Let T univ be the universal torsor under St DM on BP . Let A be the ring of functions

of H1pBP,St DM q. From the commutativity of (3.2.10), the image γ of T univ in
Z1pU ,QpAqq induces the trivial QpAq-torsor. Hence, there exists a re�nement V
of U such that γ|V is cohomologous to the trivial cocycle, that is, such that γ|V lies in

the image of GVpAq ÝÑ Z1pV,QpAqq. Hence, there is a commutative square

(3.2.13) H1pBP,St DM q //

ι�

��

GV

��

H1pBP,St DiM q // Z1pV,Qq

This square is cartesian. Indeed, let F be the �bre product of H1pBP,St DiM q with
GV over Z1pV,Qq. By de�nition, there is a commutative diagram of functors

(3.2.14) H1pBP,St DM q //

ι�
((

F

��

H1pBP,St DiM q

Since the right vertical arrow in (3.2.13) is a monomorphism, F is a sub-functor of

H1pBP,St DiM q. Hence, all maps in (3.2.14) are inclusions of functors. We are thus left

to prove that F is a sub-functor of H1pBP,St DM q. This is an immediate consequence

of the fact that H1pBP,St DM q is the functor of torsors T P H1pBP,St DiM q inducing
the trivial Q-torsor.

Hence, to prove that ι� is a closed immersion, we are left to show that (3.2.11) for
V is a closed immersion. From the general theory of algebraic group actions, the map
(3.2.11) factors as

GV
α // O

β
// Z1pV,Qq

where α is faithfully �at, where O is the orbit of the trivial cocycle under GV and
where β is an immersion of schemes. Since smoothness is a local property for the fppf
topology [SPD, 05B5], the smoothness of GV implies that O is smooth. By de�nition,
α is an isomorphism at the level of C-points. Hence, α is an isomorphism of varieties.
We are thus left to show that O is closed in Z1pV,Qq. It is enough to show that O is
closed in Z1pV,Qqred. From Kostant-Rosenlicht theorem [Bor91, I 4.10], it is enough
to show that GV is a unipotent algebraic group, which is a consequence of the fact
that the Stokes sheaves are sheaves of unipotent algebraic groups. This concludes the
proof of proposition 3.2.1.
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3.3. Proof of Theorem 3. � Let U � V � D be non empty open subsets in D
such that V is connected. We want to show that the natural morphism

(3.3.1) H1pBV,St DM q // H1pBU,St DM q

is a closed immersion of a�ne schemes of �nite type over C. Let A be the set of open
subsets U 1 in V containing U and such that the natural morphism

H1pBU 1,St DM q ÝÑ H1pBU,St DM q

is a closed immersion. We want to show that A contains V . Note that A is not empty
since it contains U . Let A1 be a subset of A which is totally ordered for the inclusion.
Let R be the ring of functions of H1pBU,St DM q. For U 1 P A1, let IU 1 be the ideal

of functions of H1pBU 1,St DM q in H1pBU,St DM q. By assumption on A1, the family of
ideals pIU 1qU 1PA1 is totally ordered for the inclusion. Hence, I :�

�
U 1PIU1

is an ideal

in R. Since R is noetherian, there exists U 1
0 P A

1 such that I � IU 10 . In particular,

IU 1 � IU 10 for every U 1 P A1 containing U 1
0. Set V

1 :�
�
U 1PA1 U

1. From lemma 2.3.3,
we deduce

H1pBV 1,St DM q � lim
U 1PA1

H1pBU 1,St DM q

� lim
U 1PA1,U 10�U

1
H1pBU 1,St DM q

� H1pBU 1
0,St DM q

Thus, V 1 P A. From Zorn lemma, we deduce that A admits a maximal element W . If
W is closed in V , then we have W � V by connectedness of V . Suppose now that W
is not closed in V . Let P PW zW and let B be a small ball in V containing P and such

that H1pBB, St DM q ÝÑ H1pBP,St DM q is an isomorphism. Set W 1 :� W Y B � V .
We are going to show that W 1 P A, which contradicts the fact that W is maximal in
A. From the factorization

(3.3.2) H1pBW 1,St DM q // H1pBW, St DM q // H1pBU,St DM q

we are left to show that the �rst arrow in (3.3.2) is a closed immersion. From lemma
2.3.3, the following diagram

(3.3.3) H1pBW 1,St DM q //

��

H1pBB, St DM q

��

H1pBW, St DM q // H1pBpW XBq,St DM q

is cartesian. Hence, it is enough to show that the right vertical arrow in (3.3.3) is a
closed immersion. Let pPnqnPN be a sequence of points in W converging to P . Since
W is open, the sequence pPnqnPN can be supposed to lie in some D�

i for i P J1,mK. Let
∆ � B be a small enough neighbourhood of P in Di. Set ∆� � ∆z

�
jPIztiuDj � D�

i .

From our choice for i, the open set W X ∆� is not empty. We have the following
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commutative diagram

(3.3.4) H1pBB, St DM q //

��

H1pB∆�,St DM q

��

H1pBpW XBq,St DM q // H1pBpW X∆�q,St DM q

From proposition 3.2.1, the top horizontal arrow in (3.3.4) is a closed immersion. From
corollary 3.1.4, the right vertical arrow in (3.3.4) is a closed immersion. Hence, the
left vertical arrow in (3.3.4) is a closed immersion. Hence, W 1 P A, which contradicts
the fact that W is maximal in A. Thus, W � V P A, which �nishes the proof of
Theorem 3.

4. Stokes torsors and marked connections

4.1. Notations. � For a morphism of smooth complex varieties π : Y ÝÑ X, we
denote by π� the inverse image functor for D-modules and by π� the direct image
functor for D-modules. For precise de�nitions, let us refer to [HTT00].

In this section, pX,Dq will denote a regular pair. Let M be a connection on X
with poles along D. Suppose that M has good formal structure.

4.2. De�nition of marked connections and relation with Stokes torsors. �
Let us recall that a M-marked connection is the data of a pair pM, isoq where M is
a germ of meromorphic connection with poles along D de�ned in a neighbourhood
of D in X, and where iso : M

pD ÝÑ M
pD is an isomorphism of formal connections.

We denote by IsomisopM,Mq the St DM pCq-torsor of isomorphisms between BM and
BM which are asymptotic to iso along D. The proof of the following statement was
suggested to me by T. Mochizuki. I thank him for kindly sharing it. When D is
smooth, it was known to Malgrange [Mal83a]. See also [Sab02, II 6.3].

Lemma 4.2.1. � The map associating to every isomorphism class of M-marked
connection pM, isoq the St DM pCq-torsor IsomisopM,Mq is bijective.

Proof. � Let us construct an inverse. Take T P St DM pCq and let g � pgijq be a
cocycle for T associated to a cover pUiqiPI of BD. Let L be the Stokes �ltered local
system on BD associated to M. Set Li :� L|Ui . Then, g allows to glue the Li into
a Stokes �ltered local system LT on BD independent of the choice of g. From the
irregular Riemann-Hilbert correspondence [Moc11a, 4.11], LT is the Stokes �ltered
local system associated to a unique (up to isomorphism) good meromorphic connection
MT de�ned in a neighbourhood of D and with poles along D. By construction, the
isomorphism LT |Ui ÝÑ L|Ui corresponds to an isomorphism BMT |Ui ÝÑ BM|Ui .
We thus obtain a formal isomorphism isoi : BMT , pD|Ui, ÝÑ BM

pD|Ui
. On Uij , the

discrepancy between isoi and isoj is measured by the asymptotic of gij along D.
By de�nition, this asymptotic is Id. Hence, the isoi glue into a globally de�ned
isomorphism BMT , pD ÝÑ BM

pD. Applying pD� thus yields an isomorphism iso :
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MT , pD ÝÑ M
pD. It is then standard to check that the map T ÝÑ pMT , isoq is the

sought-after inverse.

4.3. Proof of Theorem 4. � We are now in position to prove Theorem 4. Let X
be a germ of smooth algebraic variety around a point 0. Let D be a germ of divisor
passing through 0. Let M be a germ of meromorphic connection at 0 with poles
along D. Let C be a smooth curve passing through 0 and not contained in any of the
irreducible components of D. Let pM1, iso1q and pM2, iso2q be M-marked connections
such that

pM1, iso1q|C � pM2, iso2q|C

We want to show that pM1, iso1q and pM2, iso2q are isomorphic in a neighbourhood
of 0. Let π : Y ÝÑ X be a resolution of turning points for M around 0. Such
a resolution exists by works of Kedlaya [Ked11] and Mochizuki [Moc11b]. Set
E :� π�1pDq. At the cost of blowing up further, we can suppose that the strict
transform C 1 of C is transverse to E at a point P in the smooth locus of E. Note that
E is connected. From lemma 4.2.1, the π�M-marked connections pπ�M1, π

� iso1q

and pπ�M2, π
� iso2q de�ne two C-points of H

1pBE,St Eπ�Mq. For i � 1, 2, the cone of
the canonical comparison morphism

(4.3.1) π�π
�Mi ÝÑMi

is supported on D. Note that the right-hand side of (4.3.1) is localized along D.
From [Meb04, 3.6-4], the left-hand side of (4.3.1) is localized along D. Hence, the
morphism (4.3.1) is an isomorphism. Thus

pπ�π
�Mi, π�π

� isoiq � pMi, isoiq

Hence, it is enough to show pπ�M1, π
� iso1q � pπ�M2, π

� iso2q. By assumption,

pπ�M1, π
� iso1q|C1 � pM1, iso1q|C

� pM2, iso2q|C

� pπ�M2, π
� iso2q|C1

Hence, pπ�M1, π
� iso1q|C1 and pπ�M2, π

� iso2q|C1 de�ne the same C-point in

H1pBP,St Ppπ�Mq|C1
q. Let ι : �C 1 ÝÑ rY be the morphism induced by C 1 ÝÑ Y at the

level of the real blow-up. Observe that ι induces an isomorphism above P . Since
ι�1 St Eπ�M � St Ppπ�Mq|C1

, we have

H1pBP,St Ppπ�Mq|C1
q � H1pBP,St Eπ�Mq

Hence, the image of pπ�M1, π
� iso1q and pπ

�M2, π
� iso2q by the restriction map

(4.3.2) H1pBE,St Eπ�Mq // H1pBP,St Eπ�Mq

are the same. From Theorem 3, the map (4.3.2) is a closed immersion. Hence,
pπ�M1, π

� iso1q � pπ�M2, π
� iso2q, which concludes the proof of Theorem 4.
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4.4. Obstruction theory and tangent space. � We use the notations
from 4.1. Let us compute the obstruction theory of H1pBD,St DM q at a point

T0 P H
1pBD,St DN pCqq. We �x a morphism of in�nitesimal extensions of C-algebras

R1 ÝÑ R ÝÑ C, I :� KerR1 ÝÑ R

such that I is annihilated by KerR1 ÝÑ C. In particular, I2 � 0 and I is endowed
with a structure of C-vector space, which we suppose to be �nite dimensional. Let
T P H1pBD,St DM pRqq lifting T0. Choose a cover U � pUiqiPK of BD such that T comes

from a cocycle g � pgijqi,jPK . Set LipRq :� Lie St DM pRq|Ui . The identi�cations

LipRq|Uij
�
ÝÑ LjpRq|Uij

M ÝÑ g�1
ij Mgij

allow to glue the LipRq into a sheaf of R-Lie algebras over BD denoted by

Lie St DM pRqT and depending only on T and not on g. For t � ptijkq P

Č2pU ,Lie St DM pRqT q, we denote by sijk the unique representative of tijk in
ΓpUijk, LipRqq. Then

pdtqijkl � tjkl � tikl � tijl � tijk

� rgijsjklg
�1
ij � sikl � sijl � sijks

We have the following

Lemma 4.4.1. � There exists

obpT q P I bC Ȟ2pBD,Lie St DM pCqT0q

such that obpT q � 0 if and only if T lifts to H1pBD,St DM pR1qq.

Proof. � For every i, j P K, let hij P ΓpUij ,St DM pR1qq be an arbitrary lift of gij
to R1. We can always choose the hij to satisfy hii � Id and hijhji � Id. Since

Lie St DM pR1q is locally free,

I � Lie St DM pR1q � I bR1 Lie St DM pR1q � I bC Lie St DM pCq

We will use both descriptions without mention. We set

sijk :� hijhjkhki � Id P ΓpUijk, I � Lie St DM pR1qq

We see sijk as a section of I bC LipCq over Uijk and denote by rsijks its class in

IbCLie St DM pCqT0 . We want to prove that the rsijks de�ne a cocycle. As seen above,

this amounts to prove the following equality in ΓpUijk, I bC Lie St DM pCqq

(4.4.2) gijp0qsjklg
�1
ij p0q � sikl � sijl � sijk � 0
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Where gijp0q is the image of gij by R ÝÑ C. We have

gijp0qsjklg
�1
ij p0q � hijhjkhklhljhji � Id

� phijhjk � hik � hikqhklhljhji � Id

� phijhjk � hikqgklp0qgljp0qgjip0q � hikhklhljhji � Id

� phijhjk � hikqgkip0q � hikhklhljhji � Id

� phijhjk � hikqhki � hikhklhljhji � Id

� hijhjkhki � hikhklhljhji � 2 Id

We now see how the second term of the last line above interacts with the second term
of the left-hand side of (4.4.2).

hikhklhljhji � sikl � hikhklhljhji � hikhklhli � Id

� hikhklphljhji � hliq � Id

� gikp0qgklp0qphljhji � hliq � Id

� gilp0qphljhji � hliq � Id

� hilhljhji

Hence,

gijp0qsjklg
�1
ij p0q � sikl � sijl � sijk � hilhljhji � hijhjlhli � 2 Id

� phijhjlhliq
�1 � hijhjlhli � 2 Id

� phijhjlhliq
�1pphijhjlhliq

2 � 2hijhjlhli � Idq

� phijhjlhliq
�1s2

ijl

� 0

where the last equality comes from I2 � 0. Hence, the rsijks de�ne a cocycle of

I bC Lie St DM pCqT0 . An other choice of lift gives rise to homologous cocycles. We

denote by obpT q the class of prsijksqijk in Ȟ2pBD, IbCLie St DM pCqT0q. It is standard
to check that obpT q has the sought-after property.

Corollary 4.4.3. � Let pM, isoq be a M-marked connection. Then, the space

H2pD, Irr�D EndMqq is an obstruction theory for H1pBD,St DM q at IsomisopM,Mq.

Proof. � Set T :� IsomisopM,Mq. As observed in [Tey19, 5.2], the canonical
identi�cation

H0 DR D EndM � // Lie St DM pCqT

induces

ȞipBD,Lie St DM pCqT q � HipBD,Lie St DM pCqT q

� HipBD,H0 DR D EndMq

� HipBD,DR D EndMq

� HipD, Irr�D EndMq
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The second identi�cation comes from the fact [Hie09, Prop. 1] that DR D EndM
is concentrated in degree 0. The third identi�cation comes from [Sab17, 2.2]. Then,
corollary 4.4.3 follows from lemma 4.4.1.

Reasoning exactly as in [Tey19, 5.2.1], we prove the following

Lemma 4.4.4. � For every M-marked connection pM, isoq, the tangent space of

H1pBD,St DM q at pM, isoq identi�es canonically with H1pD, Irr�D EndMq.

5. Reduction of Theorem 1 to extending the formal model

5.1. Reduction to the dimension 2 case. � In this subsection, we reduce the
proof of Theorem 1 to the dimension 2 case. The main tool is André's goodness
criterion [And07, 3.4.3] in terms of Newton polygons. This reduction does not seem
super�uous. Of crucial importance for the sequel of the proof will be indeed the fact
that when X is an algebraic surface and D a smooth divisor in X, then for every point
0 P D and every meromorphic connection M on X with poles along D, the formal
model of M splits on a small enough punctured disc around 0. This fact is speci�c to
dimension 2, since it pertains to the property that turning points in dimension 2 are
isolated.

Lemma 5.1.1. � The converse inclusion in Theorem 1 is true in any dimension if
it is true in dimension 2.

Proof. � Take n ¡ 2. We argue recursively by supposing that Theorem 1 holds in
dimension strictly less than n and we prove that Theorem 1 holds in dimension n.
Let X be a smooth complex algebraic variety of dimension n. Let D be a smooth
divisor in X. Let M be an algebraic meromorphic connection on X with poles along
D. Let 0 P D and suppose that Irr�DM and Irr�D EndM are local systems in a
neighbourhood of 0. If j : XzD ÝÑ X and i : D ÝÑ X are the canonical inclusions,
we have a distinguished triangle

j!L // SolM // i� Irr�DM

where L is a local system on the complement of D. Hence, the characteristic cycle of
SolM is supported on the union of T�XX with T�DX. From a theorem of Kashiwara
and Schapira [KS90, 11.3.3], so does the characteristic cycle of M. Hence, any
smooth hypersurface transverse to D and passing through 0 is non characteristic with
respect to M in a neighbourhood of 0. Let us choose such a hypersurface Z and let
iZ : Z ÝÑ X be the canonical inclusion. From [And07, 3.4.3], the turning locus
of M is a closed subset of D which is either empty or purely of codimension 1 in
D. Since n ¡ 2, the hypersurface Z can consequently be chosen such that M and
EndM have good formal structure generically along Z X D. The connection i�ZM
is a meromorphic connection with poles along Z X D. It satis�es the hypothesis of
Theorem 1 at the point 0. Indeed by Kashiwara's restriction theorem [Kas95],

Irr�ZXD i
�
ZM � pSol i�ZMq|ZXD � pSolMq|ZXD
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and similarly for EndM. Hence, Irr�ZXD i
�
ZM and Irr�ZXD End i�ZM are local systems

in a neighbourhood of 0 in Z X D. By recursion hypothesis, i�ZM is good at 0. In
particular, the Newton polygon of i�ZM at 0 (which is also the Newton polygon of
M at 0) is the generic Newton polygon of i�ZM along Z XD. From our choice for Z,
the generic Newton polygon of i�ZM along Z XD is the generic Newton polygon of
M along D. Hence, the Newton polygon of M at 0 is the generic Newton polygon of
M along D, and similarly with EndM. By a theorem of André [And07, 3.4.1], we
deduce that M has good formal structure at 0, which proves lemma 5.1.1.

5.2. Setup and recollections. � From now on, we restrict the situation to
dimension 2. We use coordinates px, yq on A2

C and set Dx :� ty � 0u, Dy :� tx � 0u.
Let D be a neighbourhood of 0 in Dx and let CrDs be the coordinate ring of D. Set
D� :� Dzt0u.

Let M be an algebraic meromorphic �at bundle on a neighbourhood of D in A2
C

with poles along D. In algebraic terms, M
pD de�nes a CrDsppyqq-di�erential module.

At the cost of shrinking D if necessary, we can suppose that the restriction M� of
M to a neighbourhood of D� has good formal structure at every point of D�.

There is a rami�cation v � y1{d, d ¥ 1 and a �nite Galois extension L{Cpxq such
that the set I of generic irregular values for M lies in FracLpvq. If p : DL ÝÑ D is
the normalization of D in L, the generic irregular values of M are thus meromorphic
functions on DL �A

1
v. We have

(5.2.1) Lppvqq bM �
à
aPI

Ea bRa

where the Ra are regular. Following [And07, 3.2.4], we recall the following

De�nition 5.2.2. � We say that M is semi-stable at P P D if

(1) We have I � CrDLsP ppvqq.
(2) The decomposition (5.2.1) descends to CrDLsP ppvqq bM.

In this de�nition, CrDLsP denotes the localization of CrDLs above P . This is a
semi-local ring. Let πa P Lppvqq bEndM be the projector on the factor EabRa. As
explained in [And07, 3.2.2], the point P is stable if and only if the generic irregular
values of M and the coe�cients of the πa in a basis of EndM belong to CrDLsP ppvqq.
Since M has good formal structure at any point of D�, the generic irregular values
of M and the coe�cients of the πa in a basis of EndM belong to CrDLsP ppvqq for
every P P D�. Hence, they belong CrD�

Lsppvqq where D
�
L :� Dzp�1p0q. Thus

(5.2.3) CrD�
Lsppvqq bM � CrD�

Lsppvqq bN �
L

where

N �
L �
à
aPI

Ea bRa

is a germ of meromorphic connection de�ned on a neighbourhood of D�
L in DL �A

1
v

and with poles along D�
L. The action of

GalpL{Cpxqq �Z{dZ
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on the left-hand side of (5.2.3) induces an action on N �
L . Taking the invariants yields

a meromorphic �at bundle N � de�ned on a neighbourhood Ω of D� in A2
C. By Galois

descent, (5.2.3) descents to an isomorphism iso� between the formalizations of M�

and N � along D�.

5.3. Reduction to the problem of extending the formal model. � The
goal of this subsection is to show that Theorem 1 reduces to prove that the M�-
marked connection pN �, iso�q de�ned in 5.2 extends into a M-marked connection in
a neighbourhood of 0. To do this, we need three preliminary lemmas. The notations
and constructions from 5.2 are in use.

Lemma 5.3.1. � Suppose that N � extends into a meromorphic �at bundle N
de�ned in a neighbourhood of D in A2

C and with poles along D. Then, N is
semi-stable at 0.

Proof. � It is enough to treat the case where K � Cpxq and d � 1. In that case,
discussion 5.2 shows that on a neighbourhood Ω of D� in A2

C, we have

N � �
à
aPI

N �
a

where N �
a is a meromorphic connection on Ω with poles along D� and with single

irregular value a. The open D�A1
C retracts on the small neighbourhood on which N

is de�ned. Since N is smooth away from D, we deduce that N extends canonically
into a meromorphic connection on D �A1

C with poles along D.
Let a P I. The restriction of the projector πa to the complement of D� in Ω is

a �at section of EndN . Since D� � A1
C retracts on Ω, parallel transport allows to

extend πa canonically with D� � A1
C. We still denote by πa this extension. Hence,

N �
a extends into a meromorphic connection on D� � A1

C with poles along D�. Let
γ be a small loop in Ω going around the axis Dy. By assumption, the monodromy
of N along γ is trivial. Thus, πa is invariant under the monodromy of EndN along
γ. Hence, πa extends canonically to pD �A1

Cqzt0u. By Hartog's property, it extends
further into a section $a of EndN on D �A1

C.
Set Na :� $apN q � N for every a P I. We have $2

a � $a and
°
aPI $a � IdN

because these equalities hold on a non empty open set. Hence, N � `aPINa. Since
$a is �at, the connection on N preserves each Na. Let us prove that the Na are
locally free as OD�A1

C
p�Dq-modules.

Let E be a Deligne-Malgrange lattice [Mal96] for N . Since we work in dimension
2, we know from [Mal96, 3.3.2] that E is a vector bundle. We observe that $a

stabilizes E away from 0. By Hartog's property, we deduce that $a stabilizes E.
Hence, $apEq is a direct factor of E. So $apEq is a vector bundle. Thus,

Na � $apN q � $apEp�Dqq � p$apEqqp�Dq

is a locally free OD�A1
C
p�Dq-module of �nite rank with connection extending N �

a . To

prove lemma 5.3.1, we are thus left to consider the case where I � tau.
If I � tau, then [And07, 3.3.1] implies a P CrDsppyqq. Hence, R :� E�abN

pD is a
formal meromorphic connection with poles along D. By assumption, R is generically
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regular alongD. From [Del70, 4.1], we deduce thatR is regular. Hence, N
pD � EabR

with R regular, which concludes the proof of lemma 5.3.1.

Lemma 5.3.2. � Let N be a meromorphic �at connection with poles along D.
Suppose that N is semi-stable at 0 and that Irr�DN and Irr�D EndN are local systems
in a neighbourhood of 0. Then, N has good formal structure at 0.

Proof. � Let I be the set of irregular values of N at 0. There is a rami�cation
v � y1{d, d ¥ 1 and a �nite Galois extension L{Cpxq such that I � Lppvqq. Let
DL ÝÑ D be the normalization of D in L. At the cost of shrinking D, we can
suppose that every point of D is semi-stable for N . Hence, I � CrDLsppvqq and

CrDLsppvqq bN �
à
aPI

Ea bRa

where the connections Ra are regular. As seen in the proof of lemma 5.1.1,
the assumption on Irr�D implies that any smooth curve transverse to D is non
characteristic for N . Taking the axis Dy yields

dimH1 Irr�0 N|Dy � dimpH1 Irr�DN q0 �
¸
aPI

pordy aq rkRa

On the other hand, choose a point P P DL above 0. Then, the irregular values of
N|Dy are the apP q, a P I. Thus,

H1 Irr�0 N|Dy �
¸
aPI

ordy apP q rkRa

Hence, ordy apP q � ordy a for every a P I. In particular, the coe�cient function of
the highest power of 1{v contributing to a P I does not vanish at P . Arguing similarly
for EndN , we obtain that N has good formal structure at 0.

Lemma 5.3.3. � Suppose that Irr�DM is a local system. For every M-marked
connection pN , isoq, the complex Irr�DN is a local system.

Proof. � From [Meb90], the complex Irr�DN is perverse. To prove that it is a
local system, it is thus enough to prove that the local Euler Poincaré characteristic
χpD, Irr�DN q : D ÝÑ Z of Irr�DN is constant. From the local index theorem
[Kas73][Mal81], the local Euler Poincaré characteristic of Irr�DN depends only on
the characteristic cycle of N . Since the characteristic cycle of N depends only on N
via N

pD, we have

χpD, Irr�DN q � χpD, Irr�DMq

By assumption, χpD, Irr�DMq is constant. Hence, χpD, Irr�DN q is constant, which
�nishes the proof of lemma 5.3.3.

Proposition 5.3.4. � Let D be an open neighbourhood of 0 in an hyperplane of A2
C.

Let M be an algebraic meromorphic �at bundle on a neighbourhood of D with poles
along D. Set D� � Dzt0u and let M� be the restriction of M to a neighbourhood
of D�. Let pN �, iso�q be the M�-marked connection constructed in 5.2. Suppose
that Irr�DM and Irr�D EndM are local systems in a neighbourhood of 0. Then, if
pN �, iso�q extends into a M-marked connection, M has good formal structure at 0.
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Proof. � Let pN , isoq be a M-marked connection extending pN �, iso�q. From lemma
5.3.1, the extension N is semi-stable at 0. From lemma 5.3.3, we know that Irr�DN
and Irr�D EndN are local systems in a neighbourhood of 0. From lemma 5.3.2, we
deduce that N has good formal structure at 0. Hence, so does M.

6. Extension via moduli of Stokes torsors

6.1. A geometric extension criterion. � In this subsection, we relate the
moduli of Stokes torsors to the problem of extending marked connections. Let D
be an open subset of a hyperplane in A2

C. Pick P P D. Set D� :� DztP u. Let
M be an algebraic meromorphic �at bundle in a neighbourhood U of D in A2

C and
with poles along D. Let M� be the restriction of M to UztP u. Let π : Y ÝÑ A2

C

be a resolution of the turning point P for M. Such a resolution exists by works of
Kedlaya [Ked10] and Mochizuki [Moc09]. Let ∆ be an open disc of D containing
P . Set ∆� � ∆ztP u. Set E :� π�1p∆q and pick Q P ∆�. Let

Φ : H1pBE,St Eπ�Mq // H1pBQ,St ∆
M q

be the restriction morphism of Stokes torsors.

Lemma 6.1.1. � Let pN �, iso�q be a M�-marked connection such that pN �
Q, iso

�
Qq

lies in the image of Φ. Then, pN �, iso�q extends into an M-marked connection.

Proof. � From lemma 4.2.1, any C-point of H1pBE,St Eπ�Mq comes from a unique

π�M-marked connection. Hence, there exists pN 1, iso1q P H1pBE,St Eπ�Mq such that
ΦpN 1, iso1q � pN �

P , iso
�
P q. From [Meb04, 3.6-4], the D-module N :� π�N 1 is a

meromorphic connection de�ned in a neighbourhood of ∆ and and with poles along
∆. By �at base change

N
p∆ � O

{A2
C
|∆
bRπ�pDXÑA2

C
bN 1q

� Rπ�pOzX|E bDXÑA2
C
bN 1q

� Rπ�pDXÑA2
C
bN 1
pE
q

� π�N 1
pE

and similarly M
p∆ � π�pπ

�Mq
pE . Hence, iso :� π� iso1 de�nes an isomorphism

between N
p∆ and M

p∆. So pN , isoq is a M-marked connection in a neighbourhood of

∆. By de�nition, the germ of pN , isoq at Q is pN �
Q, iso

�
Qq. Since R1p∆� St ∆�

M is a

local system on ∆�, we deduce

pN , isoq|∆� � pN �, iso�q|∆�

Hence, the gluing of pN , isoq with pN �, iso�q provides the sought-after extension of
pN �, iso�q into an M-marked connection. So lemma 6.1.1 is proved.

Let us now give a su�cient condition for the surjectivity of Φ in terms of the
irregularity complex.
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Proposition 6.1.2. � With the notations from 6.1, suppose furthermore that the
perverse complex Irr�D EndM is a local system on ∆. Then Φ induces an isomorphism

between each irreducible component of H1pBE,St Eπ�Mq and H1pBQ,St ∆
M q.

Proof. � From [BV89], we know that H1pBQ,St ∆
M q is an a�ne space. Since a�ne

spaces in characteristic 0 have no non trivial �nite étale covers, it is enough to prove
that Φ is �nite étale. From Theorem 3, the morphism Φ is a closed immersion. We
are thus left to show that Φ is étale.

Etale morphisms between smooth schemes of �nite type over C are those morphisms
inducing isomorphisms on the tangent spaces. Hence, we are left to prove that
H1pBE,St Eπ�Mq is smooth and that Φ induces isomorphisms on the tangent spaces.
Let pM, isoq be a π�M-marked connection. From corollary 4.4.3, an obstruction
theory to lifting in�nitesimally the Stokes torsor of pM, isoq is given by

(6.1.3) H2pE, Irr�E EndMq � H2p∆, Irr�D π� EndMq � 0

The �rst identi�cation expresses the compatibility of irregularity with proper
push-forward. Furthermore, from lemma 5.3.3 applied to the EndM-marked
connection pπ� EndM,π� isoq, the perverse complex Irr�D π� EndM is a local system

concentrated in degree 1. This implies the vanishing (6.1.3). Hence, H1pBE,St Eπ�Mq

is smooth at pM, isoq. From lemma 4.2.1, any C-point of H1pBE,St Eπ�Mq is of

the form pM, isoq. Thus, H1pBE,St Eπ�Mq is smooth. Furthermore, we have a
commutative diagram

TpM,isoqH
1pBE,St Eπ�Mq //

o
��

TpMQ,isoQqH
1pBQ,St ∆

M q

o
��

H1pE, Irr�E EndMq //

o
��

pH1 Irr�D EndMqQ

|

��

H1p∆, Irr�D π� EndMq //

o
��

pH1 Irr�D EndMqQ

|

��

H0p∆,H1 Irr�D π� EndMq // pH1 Irr�D EndMqQ

The �rst vertical maps are isomorphisms by lemma 4.4.4. As already seen,
Irr�D π� EndM is a local system concentrated in degree 1. Hence, the last vertical
and the bottom arrows are isomorphisms. Thus, the tangent map of Φ at pM, isoq is
an isomorphism. This �nishes the proof of proposition 6.1.2.

6.2. Proof of Theorem 1. � Let X be a smooth complex algebraic variety. Let
D be a smooth divisor in X. Let M be an algebraic meromorphic connection with
poles along D.

We �rst prove the direct inclusion in Theorem 1. Suppose that M has good formal
structure at a closed point P P D. Since the good formal structure locus of M is
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open in D [And07], we can suppose at the cost of restricting the situation that M
has good formal structure along D. By Mebkhout's theorem [Meb90], the complexes
Irr�DM and Irr�D EndM are perverse. To prove that they are local systems on D, it is
thus enough to prove that their local Euler Poincaré characteristic is constant. From
the local index theorem [Kas73][Mal81], the local Euler Poincaré characteristic of
Irr�DM depends only on the characteristic cycle of M. Since the characteristic cycle
ofM depends only onM viaM

pD, we are reduced to treat the case whereM � EabR
where a P OXp�Dq is good and where R is a regular singular meromorphic connection
with poles along D. Since Irr�D is exact, we can suppose further that the rank of R is
one. In that case, a standard computation shows that the characteristic cycle of M
is supported on the union of T�XX with T�DX. Hence, any smooth transverse curve
to D is non-characteristic for M. Let P P D and let C be a smooth transverse curve
to D passing through P . From [Kas95], we have

pIrr�DMqP � Irr�P M|C � CordD ar�1s

Hence, the local Euler-Poincaré characteristic of Irr�DM is constant and similarly for
Irr�D EndM. This �nishes the proof of the direct inclusion in Theorem 1.

We now prove the converse inclusion in Theorem 1. From lemma 5.1.1, we can
suppose that X is a surface. Let P P D such that Irr�DM and Irr�D EndM are local
systems in a neighbourhood of P in D. At the cost of taking local coordinates around
P , we can suppose thatD is an open subset of a hyperplane inA2

C. PutD
� :� DztP u.

Let M� be the restriction of M to a small neighbourhood of D� in X. Let pN �, iso�q
be the M�-marked connection de�ned in 5.2. Such a connection exists at the cost
of replacing X by a small enough neighbourhood of P in X. From proposition 5.3.4,
we are left to show that pN �, iso�q extends into a M-marked connection. Let ∆ be
a small enough disc in D containing P such that Irr�DM and Irr�D EndM are local
systems on ∆. Put ∆� :� ∆ztP u. Let π : Y ÝÑ X be a resolution of turning points
for M at P . Set E :� π�1p∆q and pick Q P ∆�. Let

Φ : H1pBE,St Eπ�Mq // H1pBQ,St ∆
M q

be the restriction morphism of Stokes torsors. From lemma 6.1.1, to prove that
pN �, iso�q extends into a M-marked connection, it is enough to prove that pN �

Q, iso
�
Qq

lies in the image of Φ. This is indeed the case by lemma 6.1.2, which �nishes the proof
of Theorem 1.

7. A boundedness theorem for turning points

7.1. Nearby slopes. � Let X be a smooth complex algebraic variety and let
M be an holonomic DX -module. Let f P OX be a non constant function. Let
ψf be the nearby cycle functor associated to f [Kas83][Mal83b][Meb89][MM04].
Following [Tey16], we recall that the nearby slopes of M associated to f are the
rational numbers r P Q¥0 such that there exists a germ N of meromorphic connection
at 0 P A1

C with slope r such that

(7.1.1) ψf pMb f�Nq � 0
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We denote by Slnb
f pMq the set of nearby slopes of M associated to f . In dimension 1,

the nearby slopes of M associated to a local coordinate centred at a point 0 are the
usual slopes of M at 0. See [Tey16, 3.3.1] for a proof. In general, the set Slnb

f pMq is

�nite [Del07]. If M is a meromorphic connection, an explicit bound for Slnb
f pMq is

given in [Tey16] in terms of a resolution of turning points of M. This bound behaves
poorly with respect to restriction. We will need a sharper bound in the case where f
is a smooth morphism. It will be provided by the following more general proposition.

Proposition 7.1.2. � Let M be a germ of meromorphic connection at 0 P An with
poles along the divisor D given by f :� x1 � � �xd � 0. Let ri be the highest generic
slope of M along xi � 0. Put rDpMq � Maxtr1, . . . , rdu. Then,

Slnb
f pMq � r0, rDpMqs

Proof. � To prove proposition 7.1.2, take r ¡ rDpMq and let N be a germ of
meromorphic connection at 0 P A1

C with slope r. We want to show the vanishing
(7.1.1) in a neigbourhood of 0. By a standard Galois argument, one reduces to the
case where r and the ri, i � 1, . . . , d are integers. Since ψf is a formal invariant, we can

further suppose that N � tαE1{tr where α P C. Let us accept for a moment that M
is generated as a DX -module by a coherent OX -submodule F stable by frDpMqxiBxi ,
i � 1, . . . , d and such that M � F p�Dq. Let pe1, . . . , eN q be a generating family for
F in a neighbourhood of 0. Then, the fαe1{frei, i � 1, . . . , N generate M b f�N
as a DX -module. Let ι : Cn ÝÑ Cn � Ct be the graph of f . Set δ :� δpt � fq.
Then, the si � fαe1{freiδ, i � 1, . . . , N generate ι�pM b f�Nq. To show that
the germ of ψf pM b f�Nq at 0 vanishes, we are thus left to prove that si belongs
to V�1pDCn�Ctqι�F for every i � 1, . . . , N , where VpDCn�Ctq is the Kashiwara-
Malgrange �ltration on DCn�Ct . For i � 1, . . . , N , we have

frDpMqx1Bx1si � frDpMqpα�
r

fr
qsi �

ḑ

j�1

gjsj � frDpMq�1Btsi, gj P OX

Hence,

rsi � αtrsi � tr�rDpMq
ḑ

j�1

gjsj � frx1Bx1si � fr�1Btsi

Since r ¡ rDpMq, we have

tr�rDpMq
ḑ

j�1

gjsj P V�1pDCn�Ctqι�F

Note furthermore that

frx1Bx1si � x1Bx1f
rsi � rfrsi � trpx1Bx1 � rqsi P V�1pDCn�Ctqsi

and that

fr�1Btsi � Btt
r�1si � pr � 1qtrsi � trtBtsi P V�1pDCn�Ctqsi

Hence, si P V�1pDCn�Ctqι�F , which proves the sought-after vanishing. We are thus
left to prove the lemma 7.1.3 below.
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Lemma 7.1.3. � Let M be a germ of meromorphic connection at 0 P AnC with poles
along the divisor D given by f :� x1, � � �xd � 0. Let ri be the highest generic slope of
M along xi � 0. Suppose that the ri are integers and put rDpMq � Maxtr1, . . . , rdu.
Then, M is generated as a DX-module by a coherent OX-submodule F stable by
frDpMqxiBxi for every i � 0, . . . , d and such that M � F p�Dq.

Proof. � Let E be a lattice in M as constructed by Malgrange in [Mal96]. By
construction, M � Ep�Dq. Since holonomic DX -modules are noetherian, M �
DXf�kE for k big enough. Let us show that F � f�kE �ts our purpose. For
m P E, we have

frDpMqxiBxipf
�kmq � �kfrDpMqpf�kmq � f�kpfrDpMqxiBximq

Hence, it is enough to show that E is stable by frDpMqxiBxi , i � 0, . . . , d. Since
OXan,x is faithfully �at over OX,x for every x P D, we have E � M X Ean in Man.

Hence, it is enough to show that Ean is stable by frDpMqxiBxi , i � 0, . . . , d. Let
j : U ÝÑ Xan be the complement in X of the union of the singular locus of D with
the turning locus of M. By construction of the Deligne-Malgrange lattices, a section
of M belongs to Ean if and only if its restriction to U belongs to Ean

|U . Hence, we can

suppose that D is smooth and that M has good formal structure along D. We can
further suppose that M is unrami�ed along D. Since OXan, pD is faithfully �at over

OXan,D, we can suppose that M is a good elementary local model, that is

M �
à

aPOXan prDpMqDq

Ea bRa

where the Ra are regular meromorphic connections with poles along D. In that case,
E is by de�nition a direct sum of the form

À
Ea where Ea is a Deligne lattice [Del70]

in Ra. In that case, the sought-after stability is obvious. This �nishes the proof of
lemma 7.1.3.

Remark 7.1.4. � The bound for nearby slopes proved in proposition 7.1.2 was
suggested by the `-adic picture [HT21]. In loc. it. indeed, a similar bound was
obtained for `-adic nearby slopes of smooth morphisms [Tey15]. In that setting, the
main tools are Beilinson's and Saito's work on the singular support [Bei16] and the
characteristic cycle [Sai17] for `-adic sheaves, as well as semi-continuity properties
[HY17][Hu17] for various rami�cation invariants produced by Abbes and Saito's
rami�cation theory [AS02]. From this perspective, proposition 7.1.2 is a positive
answer to a local variant for di�erential equations of a conjecture in [Lea16] on the
rami�cation of the étale cohomology groups for local systems on the generic �ber of a
strictly semi-stable pair. See Conjecture 5.8 from [HT21] for a precise statement.

7.2. Boundedness of the turning locus in the case of smooth proper relative
curves. � This subsection is devoted to the proof of Theorem 2. Let S be a smooth
complex algebraic curve. Let p : C ÝÑ S be a relative smooth proper curve of genus
g. Let M be a meromorphic connection of rank r on C with poles along the �bre
C0. Let ZpMq be the subset of points in C0 at which M does not have good formal
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structure (that is, the turning locus of M). Let irrC0
M be the generic irregularity of

M along C0. Let rDpMq be the highest generic slope of M along C0. We put

K :� pSolMq|C0
r1s ` pSol EndMq|C0

r1s

Then, K is a complex of C-vector spaces on C0 with constructible cohomology. It is
concentrated in degree 0 and 1. The generic rank of K is

rK � irrC0 M� irrC0 EndM
¤ rrDpMq � r2rDpEndMq

¤ 2r2rDpMq

where the last inequality comes from rDpEndMq ¤ rDpMq. The Euler-Poincaré
characteristic formula [Lau87, Th. 2.2.1.2] applied to K gives

χpC0,Kq � p2� 2gqrK �
¸

xPSingK

prK � dimH0Kxq � dimH1Kx

where SingK denotes the singular locus of K, that is the subset of points in C0 in
the neighbourhood of which K is not a local system concentrated in degree 0. From
Mebkhout perversity theorem [Meb90], the complex K is perverse. In particular,
H0K does not have sections with punctual support. Thus,

rK � dimH0Kx ¥ 0

for every x P SingK. From perversity again [Tey13, 13.1.6], the local Euler-Poincaré
characteristic of K at x P SingK di�ers from its generic value rK . Hence, for x P
SingK, the quantity

prK � dimH0Kxq � dimH1Kx

is positive and non zero. It is thus strictly positive. Hence, we have a bound

| SingK| ¤ p2� 2gqrK � χpC0,Kq

From Theorem 1, the singular points of K are exactly the points in C0 at which M
does not have good formal structure. Hence

|ZpMq| ¤ 2rK � |χpC0,Kq|

We are now left to bound χpC0,Kq. Since the irregularity complex is compatible with
proper push-forward [Meb04, 3.6-6], we have

|χpC0, pSolMq|C0
q| � |χp0, Rp�pSolMq|C0

q|

� |χp0, pSol p�Mq|0q|

� |
¸
i

p�1qi irr0 Hip�M|

¤
¸
i

irr0 Hip�M

¤
¸
i

rkHip�M�Max Slnb
t pHip�Mq

¤
¸
i

rkHip�M�Max Slnb
t pp�Mq
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Since nearby slopes are compatible with proper push-forward [Tey16, Th. 3 piiq], we

have Slnb
t pp�Mq � Slnb

p pMq. Since p is smooth, proposition 7.1.2 yields

|χpC0, pSolMq|C0
q| ¤ rDpMq

¸
i

rkHip�M

For a generic point s P S, we have furthermore¸
i

rkHip�M �
¸
i

dimpSolHip�Mqs

�
¸
i

dimpHi Sol p�Mqs

�
¸
i

dimpRip� SolMqs

�
¸
i

dimHipCs,Lq

where L denotes the local system of solutions of M|Cs . Then H
ipCs,Lq � 0 for every

i � 0, 1, 2 and we have

dimH0pCs,Lq ¤ rkL � rkM|Cs � r

From Poincaré-Verdier duality, we have

dimH2pCs,Lq � dimH0pCs,L�q ¤ rkL� � rkM|Cs � r

Finally,

dimH1pCs,Lq � �χpCs,Lq � dimH0pCs,Lq � dimH2pCs,Lq
� �χpCs,Cq rkL� dimH0pCs,Lq � dimH2pCs,Lq
¤ 2rpg � 1q

Putting everything together yields

|ZpMq| ¤ 8r2pg � 1qrDpMq

This �nishes the proof of Theorem 2.

8. Appendix

8.1. Torsors. � In this subsection, we collect elementary facts and de�nitions on
torsors under a sheaf of groups.

Let X be a topological space. Let G be a sheaf of groups on X. We recall that
a torsor under G is a sheaf F on X endowed with a left action of G such that there
exists a cover U by open subsets of X such that for every U P U , there exists an
isomorphism of sheaves F|U � G|U commuting with the action of G, where G acts on
itself by multiplication on the left. We denote by TorspX,Gq the category of G-torsors
on X. It is a standard fact that isomorphism classes of G-torsors are in bijection with
H1pX,Gq, the set of non abelian cohomology classes of G.

The following lemma is due to Babbit-Varadarajan [BV89, 1.3.3].
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Lemma 8.1.1. � Let p : Y ÝÑ X be a Galois �nite covering of compact metric
spaces with Galois group G. Let G be a sheaf of groups on X. Suppose that the
p�G-torsors have no non trivial automorphisms. Then, the canonical morphism

H1pX,Gq ÝÑ H1pY, p�GqG

is bijective.

In [BV89, 1.3.3], the condition on p�G is expressed in terms of the triviality of
the set of global sections of the twist [BV89, 1.3] of p�G by a p�G-torsor T . Observe
that this set is also the set of automorphisms of T .

Lemma 8.1.2. � Let p : Y ÝÑ X be a morphism of topological spaces. Let G be a
sheaf of groups on Y . Let T be a G-torsor on Y . Suppose that X admits a cover U
by open subsets such that for every U P U , the torsor T is trivial on p�1pUq. Then
p�T is a p�G-torsor on X.

8.2. Recollections on Stokes �ltered local systems. � The goal of this
subsection is to recall the notion of Stokes �ltered local systems. Note that our use of
Stokes �ltered local systems in this paper is a purely technical detour to obtain the
triviality criterion 8.4.1. Hence, we don't claim for completeness in these recollections
and they can be omitted in a �rst reading. For more background material, let us
refer to [Moc11a] and [Sab12].

We �x a germ of regular pair pX,Dq at a point P and denote by pD : rX ÝÑ X the
real blow-up of X along D. Let I be a good sheaf of irregular values in OXp�Dq{OX .
Let us recall the following fact [Moc11a, 3.5].

Fact 8.2.1. � For every point Q in BD, there is an open neighbourhood UQ of Q in
BD such that for every point Q1 in UQ, the induced map

pIpDpQq,¤Qq ÝÑ pIpDpQ1q,¤Q1q

is well-de�ned and order preserving.

The following de�nition appears in the absolute case in [Moc11a, 3.6].

De�nition 8.2.2. � Let R be a ring. Let U be a locally connected subset in BD.
An I-Stokes �ltered local system on U is the data of a local system L of projective R-
modules of �nite type on U , and for every point Q in U , a split pIpDpQq,¤Qq-�ltration
L¤,Q on LQ by projective submodules. We further require the following compatibility
conditions when Q varies. For every point Q in U , for every neighbourhood UQ of Q
as in 8.2.1 such that UQ X U is connected, the �ltration L¤,Q1 on LQ1 is induced by
that on LQ via pIpDpQq,¤Qq ÝÑ pIpDpQ1q,¤Q1q.

Remark 8.2.3. � Let U be a locally connected subset in BD. Put Z � pDpUq
and suppose that I|Z is constant. Then, the notion of I|Z-graded local system on U
makes sense. Observe that any I|Z-graded local system on U gives rise to an I|Z-
Stokes �ltered local system on U . On the other hand, the grading operation Gr from
[Moc11a, 3.6] is a well de�ned functor converting I|Z-Stokes �ltered local systems on
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U into I|Z-Stokes graded local systems on U . The case of interest to us will be the
case where Z lies in a stratum of BD or when I is very good.

The following is a relative variant of Proposition 3.16 from [Moc11a] which can
easily be deduced from it.

Proposition 8.2.4. � Let pX,Dq be a germ of regular pair at a point P . Let
D1, . . . , Dm be the components of D. Let I be a subset in J1,mK. Let I � OXp�Dq{OX

be a good sheaf of irregular values. Let Q be a point in BP . Let S be a neighbourhood

of Q in rX of the form
m¹
i�1

pr0, rr�Iiq �∆

where r ¡ 0, where I1, . . . , Im are closed intervals in S1, and where ∆ is a ball in
Cn�m centred at 0. We have

S X BD�
I �
¹
iPI

pt0u � Iiq �
¹
iRI

ps0, rr�Iiq �∆

Let R be a ring. Then, at the cost of shrinking S, every I-Stokes �ltered local system
on S X BD�

I relative to R comes from an I-Stokes graded local system on S X BD�
I .

The relationship between Stokes �ltered local systems and Stokes torsors will be
made via the notion of marked Stokes �ltered local systems, that we now introduce.

De�nition 8.2.5. � Let U be a locally connected subset in BD. Put Z � pDpUq
and suppose that I|Z is constant. Let R be a ring. Let pL,L¤q be an I-Stokes �ltered
local system on U relative to R. A pL,L¤q-marked Stokes �ltered local system on U
is the data of a pair ppL,L¤q, isoq where pL,L¤q is an I-Stokes �ltered local system
on U and where iso is an isomorphism between GrL and GrL.

8.3. Relation with Stokes torsors. � Let pX,Dq be a germ of regular pair at a
point P . Let D1, . . . , Dm be the components of D. Let I be a subset in J1,mK. Let
M be a good elementary local model on X with poles along D, that is

M �
à
aPI

Ea bRa

where I is a good set of irregular values at P , where Ea � pOXp�Dq, d � daq and
where Ra is a regular singular meromorphic connection on X with poles along D.
For a P I, we denote by ξIpaq the truncation of a which consists in keeping only the
monomials in a having poles along every component Di, i P I. Put

MpIq �
à
aPI

EξIpaq bRa

With the help of proposition 8.2.4, the lemma 8.3.1 that follows allows to transfer
splitting statements for Stokes �ltered local systems to triviality statements for Stokes
torsors.
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Lemma 8.3.1. � Let pL,L¤q be the Stokes �ltered local system on BD associated
to MpIq. Let U be a locally connected subset in BD�

I . Let R be a C-algebra.
Let pLpRq, LpRq¤q be the Stokes �ltered local system relative to R induced by

pL,L¤q. Then, there is a canonical bijection between H1pU,St DM pRqq and the
set of isomorphisms classes of pLpRq, LpRq¤q-marked Stokes �ltered local systems

on U . Via this identi�cation, the trivial torsor under St DM pRq corresponds to
ppLpRq, LpRq¤q, idq.

Proof. � Observe that the restriction of St DM to BD�
I is the sheaf St DMpIq. Hence, we

are left to construct a bijection betweenH1pU,St DMpIqpRqq and the set of isomorphisms

classes of pLpRq, LpRq¤q-marked Stokes �ltered local systems on U . Note that the
sheaf ξIpIq of irregular values of MpIq is very good on D�

I . Then, lemma 8.3.1 is
consequence of the next lemma 8.3.2.

Lemma 8.3.2. � Let pX,Dq be a germ of regular pair at a point P . Let M be
a meromorphic connection on X with poles along D. Suppose that M has a good
elementary local model at every point. Suppose that the sheaf of irregular values of
M is very good. Let pL,L¤q be the Stokes �ltered local system on BD associated to
M. Let U be a locally connected subset in BD. Let R be a C-algebra. Then, there is
a canonical bijection between H1pU,St DM pRqq and the set of isomorphism classes of
pLpRq, LpRq¤q-marked Stokes �ltered local systems on U . Via this identi�cation, the

trivial torsor under St DM pRq corresponds to ppLpRq, LpRq¤q, idq.

Proof. � Let ppL,L¤q, isoq be a pLpRq, LpRq¤q-marked Stokes �ltered local
system on U . Consider the sheaf IsomisopL, LpRqq on U whose sections on an
open subset V in U is the set of isomorphisms of Stokes �ltered local systems
f : pL,L¤q ÝÑ pLpRq, LpRq¤q on V such that Gr f � iso. Since L is locally
isomorphic to the Stokes �ltered local system associated to GrL, and similarly with
L, the sheaf IsomisopL, LpRqq is a torsor for the action of St DM pRq on IsomisopL, LpRqq
by post-composition. On the other hand, let T be an element in H1pU,St DM pRqq.
Choose a cover V � pViqiPK of U such that T comes from a cocycle g � pgijqi,jPK . Set
Li :� LpRq|Ui . The identi�cations gij : Li|Uij ÝÑ Lj|Uij allow to glue the Li into a

Stokes �ltered local system pL,L¤q on U . Since the gij lie in St DM pRq, the graded of
the identity morphisms Li ÝÑ LpRq|Ui glue into an isomorphism iso : GrL ÝÑ GrL.
Hence, ppL,L¤q, isoq de�nes an pLpRq, LpRq¤q-marked Stokes �ltered local systems
on U whose isomorphism class does not depend on any choice. It is then a standard
check to verify that the two constructions above are mutually inverse bijections.

8.4. Trivialization of Stokes torsors. � As a consequence of the relationship
8.3.1 between Stokes �ltered local systems and Stokes torsors, the variant 8.2.4 of
Mochizuki's splitting criterion gives the following triviality criterion for torsors under
the Stokes sheaf of a good elementary local model.

Lemma 8.4.1. � Let pX,Dq be a germ of regular pair at a point P . Let D1, . . . , Dm

be the components of D. Let I be a subset in J1,mK. Let M be a good elementary local
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model on X with poles along D. Let Q be a point in BP . Let S be a neighbourhood of

Q in rX of the form
m¹
i�1

pr0, rr�Iiq �∆

where r ¡ 0, where I1, . . . , Im are closed intervals in S1, and where ∆ is a ball in
Cn�m centred at 0. We have

S X BD�
I �
¹
iPI

pt0u � Iiq �
¹
iRI

ps0, rr�Iiq �∆

Then, at the cost of shrinking S, Stokes torsors on S X BD�
I are trivial.

Proof. � We use the notations from 8.3. Let pL,L¤q be the ξIpIq-Stokes �ltered
local system on BD associated with MpIq. From lemma 8.3.1, we are left to show
that at the cost of shrinking S, the pL,L¤q-marked Stokes �ltered local systems on
S X BD�

I are trivial. To do this, it is enough to show that at the cost of shrinking
S, the ξIpIq-Stokes �ltered local systems on S X BD�

I come from ξIpIq-graded local
systems on S X BD�

I . Then, lemma 8.4.1 is a consequence of proposition 8.2.4.
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