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Higher dimensional Stokes structures are rare
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The purpose of this paper is to explore the geometry of the moduli of Stokes
torsors. Stokes torsors are algebraic structures encoding the Stokes phenomenon for
linear differential equations. By contrast to the Stokes matrices, Stokes torsors don’t
involve any choice and are available in any dimension. Moduli of local Stokes torsors
were constructed in dimension 1 by Babbit and Varadarajan [BV89] following a
method due to Deligne. In higher dimension, moduli of local Stokes torsors were
constructed in [Tey19]. Although the works of Martinet and Ramis [MR91] and
Loday-Richaud [Lod94] provide a concrete description of these moduli in dimension
1, very little is known in higher dimension. Our first result says that non trivial
local Stokes torsors are rare in dimension ą 1.

Theorem 1. Let N be a good split meromorphic flat bundle in a neighbourhood
of the origin in Cn for some n ě 2. Suppose that the pole locus D of N has at
least two components. Suppose that the eigenvalues of the monodromy of N along
the components of D are generic. Then, there are no non trivial torsors under the
Stokes sheaf of N .

Good meromorphic flat bundles are ubiquitous in the theory of linear systems of
differential equations. According to a fundamental result of Kedlaya [Ked10][Ked11]
and Mochizuki [Moc09][Moc11], any meromorphic flat bundle becomes good after
a pull-back by a suitable composition of blow-ups above the pole locus. Note that
Theorem 1 has no counterpart in dimension 1. In dimension 1 indeed, the moduli
of torsors under the Stokes sheaf of N does not depend on the monodromy of N .
From [Tey18, 2.2.1], we deduce the following rigidity theorem refining [Tey19, Th.
3]

Theorem 2. Let N be a good split meromorphic flat bundle in a neighbourhood
of the origin 0 in Cn for some n ě 2. Suppose that the pole locus D of N has at
least two components. Suppose that the eigenvalues of the monodromy of N along
the components of D are generic. Then, N itself is the only germ of meromorphic
flat bundle at 0 formally isomorphic to N at 0.

The local Stokes sheaf admits a global variant. In the global case, moduli of
Stokes torsors were constructed in any dimension in [Tey18]. In this note, we show
the following

Theorem 3. Let X be a smooth complex algebraic variety. Let D be a normal
crossing divisor in X. Let M be a rank 2 good meromorphic connection on X with
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poles along D. Then, the moduli of torsors under the Stokes sheaf of M along D
is an affine space.

As an application of Theorem 3, we construct non trivial examples of meromor-
phic connections with poles along the fibre of some abelian scheme. This answers
a question asked to the author by Y. André. In general, we give a conjectural
description of the global moduli of Stokes torsors predicting (at least in the case
where D is smooth) that they are affine spaces.
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1. Recollection on Stokes torsors

1.1. Torsors. Let M be a manifold. Let G be a sheaf of groups on M . We
recall that a torsor under G is a sheaf F on M endowed with a left action of G
such that there exists a cover U by open subsets of M such that for every U P U ,
there exists an isomorphism of sheaves F|U » G|U commuting with the action of
G, where G acts on itself by left multiplication. It is a standard fact that the
isomorphism classes of G-torsors are in bijection with H1pM,Gq, the set of non
abelian cohomology classes of G.

1.2. Geometric setup. Let X be a smooth complex algebraic variety of di-
mension n. Let D be a normal crossing divisor in X. For a quasi-coherent sheaf
F on X, we denote by F|D the sheaf of germs of sections of F along D. Let
D1, . . . , Dm be the irreducible components of D. For I Ă J1,mK, set

DI :“
č

iPI

Di and D˝I :“ DIz
ď

iRI

Di

1.3. Functions with asymptotic expansion along D. For i “ 1, . . . ,m, let
rXi ÝÑ X be the real blow-up of X along Di. Let p : rX ÝÑ X be the fibre product
of the rXi, i “ 1, . . . ,m above X. For every subset A Ă D, put BA :“ p´1pAq. Let
ιA : BA ÝÑ BD be the canonical inclusion.

Let A be the sheaf of functions on BD admitting an asymptotic expansion along
D [Sab00]. For a closed subset Z in D, let A

pZ be the completion of A along the
pull-back by p of the ideal sheaf of Z. Put AăZ :“ KerpA ÝÑ A

pZq. When Z “ D,
the sheaf AăD can be concretely described locally as follows (see proposition 1.1.11
from [Sab00] for a proof). Let px1, . . . , xnq be local coordinates centred at 0 P D
such that D is defined around 0 by x1 ¨ ¨ ¨xl “ 0 for some l P J1,mK. Then, the germ
of AăD at θ P B0 is given by those holomorphic functions u defined over the trace
on XzD of a neighbourhood Ω of θ in rX, and such that for every compact K Ă Ω,
for every N :“ pN1, . . . , Nlq P N

l, there exists a constant CK,N ą 0 satisfying

|upxq| ď CK,N |x1|
N1 ¨ ¨ ¨ |xl|

Nl for every x P K X pXzDq
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1.4. Stokes torsors and the functor of relative Stokes torsors. Let M
be a good meromorphic connection defined in a neighbourhood of D and with poles
along D. We set

BM “ Abp´1
D OX|D p

´1M

Let DX be the sheaf of differential operators on X. The sheaf A is endowed with an
action of p´1DX|D. Hence, so does BM. We can thus form the De Rham complex
of M with coefficients in A as

BM // BMbp´1OX|D p
´1Ω1

X|D
// ¨ ¨ ¨ // BMbp´1OX|D p

´1ΩnX|D

It is denoted by DR BM. Similarly, we denote by DRăDM the De Rham complex
of M with coefficients in AăD.

Let Z be a closed subset of D. Let StăZM be the subsheaf of H0 DR BEndM
of sections asymptotic to the Identity along Z, that is of the form Id`f where f
has coefficients in AăZ . The sheaf StăZM is a sheaf of complex unipotent algebraic
groups on BZ. This is the Stokes sheaf of M along Z. In particular, StăDM is a
sheaf on BD and for every point P P D, the sheaf StăPM is a sheaf on BP . The sheaf
StăPM will also be denoted by StM when there is no ambiguity on the point under
consideration. This abuse of language is done for consistency with the notations
from [Tey19].

Since StăZM is a sheaf of complex algebraic groups, for every R P C-alg, the
sheaf of R-points of StăZM is a well-defined sheaf of groups on BZ. It is denoted
by StăZM pRq. This is the Stokes sheaf of M along Z relative to R. Torsors under
StăZM pRq are the Stokes torsors along Z relative to R. For every subset A Ă Z, let
H1pBA,StăZM q be the functor

C-alg ÝÑ Set

R ÝÑ H1pBA,StăZM pRqq

From [Tey19, Th. 1], the functor H1pBP,StăPM q is an affine scheme of finite type
over C for every P P D. From [Tey18, Th. 6], the functor H1pBD,StăDM q is an
affine scheme of finite type over C.

From [Tey18, 1.6.2], the presheaf of functors R1p˚ StăDM defined as

OpenpDq ÝÑ Set

U ÝÑ H1pBU,StăDM q

is a sheaf of affine schemes of finite type over C. Its stalk at P P D is H1pBP,StăDM q.
As proved in [Tey18, 1.7.1], the sheaf R1p˚ StăDM is constructible. More precisely,
for every I Ă J1,mK, the sheaf R1p˚ StăDM is locally constant on D˝I .

2. The level filtration and applications

2.1. Geometric setup. In this section, we put X “ Cn and D is given by
x1 ¨ ¨ ¨xm “ 0. In particular, we have

rX » pr0,`8rˆS1qm ˆ Cn´m

and the map p : rX ÝÑ X reads

pprk, zkqk, yq ÝÑ pprkzkqk, yq
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In particular, T :“ B0 is a torus. Let i : T ÝÑ rX and j : XzD ÝÑ rX be the
canonical inclusions. Let π : Rm ÝÑ T be the canonical projection.

2.2. Irregular values and truncation. In this paragraph, we follow part
I, Chapter 2 from [Moc11]. We endow Zm with the order given by m ď m1

if and only if mi ď m1i for every i “ 1, . . .m. For a P OCnp˚Dq{OCn , we write
a “

ř

mPZm amz
m and denote by ord a the minimum of

tm P Zmď0 such that am ‰ 0u

when it exists. Let I be a good set of irregular values with poles contained in D.
By definition, I is a finite subset of OCn,0p˚Dq{OCn,0 such that

– For every non zero a P I, ord a exists and aord a is invertible in a neighbour-
hood of 0.

– For every distinct a, b P I, ord a ´ b exists and pa ´ bqord a´b is invertible in
a neighbourhood of 0.

– The set ΦpIq :“ tord a´ b, a, b P I distinctu is totally ordered.

The elements of ΦpIq are the levels of I. In particular, the set tord a, a P Iu is
totally ordered. Let mp0q P Zmď0 be its minimum. Let pmp0q, . . . ,mpLq,mpL` 1qq
be an auxiliary sequence for I. This means that mpi`1q “mpiq` p0, . . . , 1, . . . , 0q
with 1 located in position hi ď m, that ΦpIq Ă tmp0q, . . . ,mpL ` 1qu and that
mpL` 1q “ 0 by convention. We set for every a P I and every i “ 0, . . . , L` 1,

ξmpiqpaq :“
ÿ

nğmpiq

anz
n

and aěmpiq :“ a´ ξmpiqpaq.

2.3. Good unramified split bundle. For every a P I, set

Ea “ pOCn,0p˚Dq, d´ daq

We fix once for all a germ of split unramified good meromorphic flat bundle of rank
r with poles along D

N :“
à

aPI
Ea bRa

where the Ra are regular. For i “ 0, . . . , L` 1, we set Ipiq :“ ξmpiqpIq and

N piq :“
à

aPI
Eξmpiqpaq bRa

The levels of N piq belong to tmp0q, . . . ,mpi´ 1qu. For α P Ipiq, we set

Nα :“
à

aPI,ξmpiqpaq“α
Ea bRa

The levels of Nα belong to tmpiq, . . . ,mpL` 1qu.
For a P I, let LapN q be the local system of flat sections for Ra on CnzD. We

put rLapN q “ i˚j˚LapN q.
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2.4. The level filtration. In this subsection, we abuse notations by noting
StN for Stă0

N . We recall the definition of the level filtration on StN . It is a straight-
forward generalization of [BV89, II 3.2.1]. We include it for the reader’s conve-
nience due to a lack of reference in the higher dimensional case. For i “ 0, . . . , L`1,
let us set

StiN :“ tg P StN |e
apg ´ idq has rapid decay for every a with ord a ąmpi´ 1qu

The sheaf StiN is a sheaf of normal algebraic subgroups of StN . Let us define
three diagonal matrices M :“ Diagpea, a P Iq, Mď :“ Diagpeξmpiqpaq, a P Iq and
Mě :“ Diagpeaěmpiq , a P Iq. The sheaf StiN admits the following Stokes theoretic
description:

Lemma 2.4.1. The map

ϕ : StN piq ÝÑ StN

s ÝÑ eMěse´Mě

induces an isomorphism between StN piq and StiN .

Proof. The statement is local. Hence, it is enough to work on an open set S
contained in a product of strict open intervals. For such an open set, a choice of
fundamental matrix F of flat sections for

À

aPI Ra yields a commutative diagram
with injective arrows

(2.4.2) ΓpS,StN piqq
ϕ
//

rι
''

ΓpS,StN q

ι

��

GLr

where ι is given by s ÝÑ e´MF´1sFeM and where rι is given by s ÝÑ e´MďF´1sFeMď .
By definition, ιpΓpS,StN qq is the subgroup of elements g P GLr such that for every
a, b P I,

"

gaa “ id
gab “ 0 if a ‰ b and a ćS b

Hence, rιpΓpS,StN piqqq is the subgroup of elements of g P GLr such that for every
a, b P I,

$

&

%

gaa “ id
gab “ 0 if ξmpiqpaq ‰ ξmpiqpbq and ξmpiqpaq ćS ξmpiqpbq
gab “ 0 if a ‰ b and ξmpiqpaq “ ξmpiqpbq

Note that if a, b P I with ξmpiqpaq ‰ ξmpiqpbq, then

a ćS b if and only if ξmpiqpaq ćS ξmpiqpbq

Thus, rιpΓpS,StN piqqq is the subgroup of elements g P ιpΓpS,StN qq such that for
every a, b P I,

gab “ 0 if ξmpiqpaq “ ξmpiqpbq and a ‰ b

Let s P ΓpS,StiN q, and let a, b P I with a ‰ b. If ξmpiqpaq “ ξmpiqpbq, then

ιpsqab “ eb´aF´1
a sabFb “ F´1

a peběmpiq´aěmpiqsabqFb

By definition, eběmpiq´aěmpiqsab has rapid decay. Since Fa and Fb have moderate
growth at 0, we deduce that the constant matrix ιpsqab has rapid decay. Hence,
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ιpsqab “ 0. Thus StiN Ă ϕpStN piqq. On the other hand, let s P ϕpStN piqq and let c
with ord c ąmpi´ 1q. We have to show that for every a, b P I with a ‰ b,

ecsab “ ec`a´bFaιpsqabF
´1
b

has rapid decay. We can suppose ξmpiqpaq ăS ξmpiqpbq. In particular a ăS b.
Since the leading term of c ` a ´ b is the leading term of a ´ b, the exponential
ec`a´b has rapid decay on S. Thus, so does ecsab. Hence, s P StiN and we deduce
StiN “ ϕpStN piqq. �

2.5. Quotients of the level filtration.

Lemma 2.5.1. There is a split exact sequence of sheaves of algebraic groups

1 // StN piq
ϕ
// StN

ψ
//
ź

αPIpiq
StNα // 1

In particular, Gri StN :“ Sti`1
N {StiN »

ź

αPIpiq
StN pi`1qα

Proof. Let us define

ψ : StN ÝÑ
ź

αPIpiq
StNα

s ÝÑ ˆpsabqξmpiqpaq“α
ξmpiqpbq“α

From the local description of StN piq given in the proof of 2.4.1, we see that the only
a priori non obvious thing to prove is the fact that ψ is a group homomorphism.
Let S be an open set of T, let s, t P ΓpS,StN q, let α P Ipiq and let a, b P I such
that ξmpiqpaq “ ξmpiqpbq “ α. Let us denote by ψα the component of ψ associated
to α. Then

pψαpstqqab “
ÿ

cPI
sactcb “

ÿ

cPI
aďScďSb

sactcb

If ξmpiqpcq ‰ α, the leading coefficient of c ´ a is that of ξmpiqpcq ´ ξmpiqpaq “
ξmpiqpcq ´ α. Hence, a ďS c if and only if α ăS ξmpiqpcq. Similarly, c ďS b if and
only if ξmpiqpcq ăS α. Hence, for ξmpiqpcq ‰ α, the condition a ďS c ďS b is empty.
Thus

pψσpstqqab “
ÿ

cPI
ξmpiqpcq“α

sactcb “ pψαpsqψαptqqab

�

2.6. Action of the fundamental group in the local one level case. We
consider in this paragraph the case where N has a unique level m and we suppose
that N is not regular, that is m P Zmď0zt0u. Let ι : C ÝÑ Cn be a smooth curve
passing through 0 and not contained in D. Let rC be the real-blow up of C at 0.
Let S1

C be the boundary of rC. Following [Sab12, 8.b p120], the map ι lifts as a
map rι : rC ÝÑ rX. Let us suppose that the restricted map S1

C ÝÑ T is injective.
Let Hm be the hyperplane of Rm defined by

řm
i“1mixi “ 0. For an interval I of

S1
C , set TpH, Iq :“ πpHq ` I and

Tpm, Iq :“ TpHm, Iq

For x P T, the translation tx by x provides an isomorphism

π1pTpm, πp0qq, πp0qq ÝÑ π1pTpm, xq, xq
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Hence, π1pTpm, πp0qq, πp0qq acts on StNC » pStN q|S1
C

via the parallel transport.
We deduce that π1pTpm, πp0qq, πp0qq acts on H1pS1

C ,StNC q. To simplify notations,
we denote by H1pS1

C ,StNC q
π1 the invariants for this action.

Lemma 2.6.1. For every cover I of S1
C adapted to NC , the morphisms in the

commutative triangle

(2.6.2) H1pT,StN q
resC // H1pS1

C ,StNC q
π1

Z1pTpm, Iq,StN q

f

hh 55

are isomorphisms. In particular, H1pT,StN q is an affine space.

For a single level connection in dimension 1, an adapted cover is a finite cover
I by open intervals such that for I1, I2, I3 P I distinct, we have I1 X I2 X I3 “ H,
and such that for every I P I and every pair of distinct irregular values ta, bu, the
interval I contains exactly one Stokes direction associated to a´ b.

Proof. We first show that f is surjective. Let T P H1pT,StN q. Let x “
px1, . . . , xmq P πpHmq. If C is the curve t ÝÑ pc1ptq, . . . , cnptqq, let Cx be the curve
given by t ÝÑ px1c1ptq, . . . , xmcmptq, . . . , cnptqq. By construction S1

Cx
“ x ` S1

C .
Since N has only one level, the same holds for NCx . Since I is an adapted cover
for NC , the translated cover x` I is an adapted cover for NC . From [BV89], the
restriction Tx`S1

C
P H1px`S1

C ,StNCx q of T to x`S1
C admits a unique trivialisation

tIpxq on each x` I P I, and

(2.6.3) Z1pI,StNC q
„ // H1pS1

C ,StNC q

Since StN has no non trivial section on x` I for every x P πpHmq and every I P I,
the sections ptIpxqqxPπpHmq with I fixed glue into a section of T on Tpm, Iq. Hence,
the cocycle corresponding to TS1

C
via (2.6.3) extends uniquely into a cocycle for T

relative to the cover Tpm, Iq. In particular, f is surjective.
Let us consider the commutative diagram

(2.6.4) Z1pTpm, Iq,StN q
f
//

��

H1pT,StN q

��

Z1pI,StNC q
„ // H1pS1

C ,StNC q

Every section of StN on a connected open set is determined by its germ at a
point. Hence, the left vertical arrow of (2.6.4) is injective. We deduce that f is
bijective. Tautologically, the image of the left vertical arrow is formed by those
g P Z1pI,StNC q extending to Tpm, Iq. These are exactly the invariants under the
action of π1pTpm, πp0qq, πp0qq. Taking the invariants under π1pTpm, πp0qq, πp0qq
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thus yields a commutative diagram

(2.6.5) Z1pTpm, Iq,StN q
f
//

o
��

H1pT,StN q

resC

��

Z1pI,StNC q
π1

„ // H1pS1
C ,StNC q

π1

We deduce that resC is bijective. To conclude, we observe that StN being a sheaf
of unipotent algebraic groups, the scheme ΓpU,StN q is an affine space for every
open subset U Ă T. Since Z1pTpm, Iq,StN q is a product of such schemes, it is also
an affine space. �

2.7. Proof of Theorem 1. Let N be a good split meromorphic flat bundle
in a neighbourhood of the origin in Cn for some n ě 2 as in paragraph 2.3. Suppose
that the pole locus D of N has at least two components. Suppose that the eigen-
values of the monodromy of N along the components of D are generic. We want
to show that H1pT,StN q is reduced to the trivial torsor. We argue recursively on
the number of levels of N . The notations from section 2 will be in use. Suppose
that N has only one level m. Let ∆ be the diagonal curve of Cn. Let I be a
cover of S1

∆ adapted to N∆. Fix I1, I2 P I, put J “ I1 X I2 and suppose without
loss of generality that πp0q P J . Note that Tpm, Jq is homotopic to the product
of m ´ 1 circles. By assumption, m ą 1. Hence, π1pTpm, Jq, πp0qq is non trivial.
Pick γ P π1pTpm, Jq, πp0qq non trivial and let n “ pn1, . . . , nmq P Z

m be the coor-
dinates of γ in the canonical basis of π1pT, πp0qq. For a P I and i “ 1, . . . ,m, let
Σapiq be the set of eigenvalues for the monodromy of LapN q around Di. Then, the
eigenvalues for the monodromy of rLbpN q˚ b rLapN q along γ are the

t

m
ź

i“1

ˆ

λi
µi

˙ni

, λi P Σapiq, µi P Σbpiq, i “ 1, . . . ,mu

Since n ‰ 0, the zero locus of the polynomial
m
ź

i“1

xnii ´
m
ź

i“1

ynii

is a strict closed subset in C2m. Hence, for a generic choice of the Σapiq, the
restriction of rLbpN q˚ b rLapN q “ rLa´bpEndN q, a ‰ b to Tpm, Jq cannot have non
zero global sections. Hence, the Identity is the only section of StN on Tpm, Jq.
Thus, Theorem 1 in the one level case is a consequence of lemma 2.6.1.

Suppose that N has at least two levels. Let pmp0q, . . . ,mpLq,mpL ` 1qq be
an auxiliary sequence for I. Then, there is an index i such that N piq has only
one level and such that the number of levels of StNα is strictly less than number
of levels of N for every α P Ipiq. Since the Nα are direct summands of N , they
have generic monodromy eigenvalues along the irreducible components of D. By
recursion hypothesis applied to the Nα, we obtain that the right term in the exact
sequence of pointed sets

H1pT,StN piqq // H1pT,StN q //
ź

αPIpiq
H1pT,Nαq

deduced from lemma 2.5.1 is trivial. Hence H1pT,StN q » H1pT,StN piqq. Note
that the eigenvalues of the monodromy of N piq along the irreducible components of
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D are generic. Hence, the one level case treated above implies that H1pT,StN piqq
is a point. This finishes the proof of Theorem 1.

3. Moduli of Stokes torsors and the relative Stokes group

3.1. Roadmap. The goal of this section is to describe the global moduli of
Stokes torsors constructed in [Tey18] when the irregular values have only one level.
To do this, we compare a relative version of the Stokes group from [MR91][Lod94]
with the relative non abelian cohomology of the Stokes sheaf. For the problem
raised by this comparison in the multi-level case, we refer to the discussion in 3.6.
Note that over a smooth base (corresponding in this paper to the case where D is
smooth), relative Stokes groups appeared in the one level case in [JMU81] and in
more generality in [Boa02]. In particular, over a smooth base, they were already
considered in the multi-level case in [Boa14].

3.2. Loday-Richaud’s theorem. In this subsection, the notations from sec-
tion 1 will be in use and we will suppose that X is a neighbourhood of the origin
0 in the affine line. Let M be an unramified meromorphic connection on X with
poles at 0. Let I be the set of irregular values of M at 0. Let p : rX ÝÑ X be the
real blow-up of X at 0. For a, b P I, the function Ga,b :“ pa´ bq{|a´ b| induces a
C8-function BGa,b on B0. The anti-Stokes directions of pa, bq are the directions of
z P B0 such that BGa,bpzq P R´. Let Hă be the set of all anti-Stokes directions, for
a, b P I distinct. For z P Hă, we put

StoM,z “ tg P StM,z such that for every a, b P I distinct, gab “ 0 unless z P Hăabu

and
StoM :“

ź

zPHă

StoM,z

The group StoM is the Stokes group of M. For a possibly ramified connection
M, we define the Stokes group of M via Galois descent from the unramified case.
Note that an element of the Stokes group g “ pgzqzPHă induces a well-defined
Stokes torsor. To see this, let N ě 1 be an integer and let pziqiPZ{NZ be the anti-
Stokes directions of M ordered in an ascending order with respect to the clockwise
orientation on B0. Pick i P Z{NZ. Since StM is constructible, gzi extends into
a section rgzi of StM on a small interval szi ´ ε, zi ` εr for ε ą 0. At the cost of
shrinking ε, we can suppose that
(1) The intervals Ii “ pszi ´ ε, zi`1 ` εrqiPZ{NZ contain exactly two anti-Stokes

directions, namely zi and zi`1.

(2) We have Ii X Ij X Ik “ H for every i, j, k P Z{NZ distinct.
In particular, prgziqiPZ{NZ defines a 1-cocycle for StM with respect to the cover
pIiqiPZ{NZ. Let LR0pgq be the associated Stokes torsor on B0. It is independent
of ε for ε small enough. The following theorem is due to Loday-Richaud [Lod94,
II.2.1]

Theorem 4. The map

(3.2.1) LR0 : StoM ÝÑ H1pB0,StMq

is an isomorphism.
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3.3. Relative Stokes groups. In this subsection, we introduce a relative
version of the Stokes group. The notations from section 1 will be in use. Let X
be a smooth complex algebraic variety and let D be a normal crossing divisor in
X. Let M be a good meromorphic connection on X with poles along D. Let I
be the sheaf of irregular values of M. We first suppose that M is unramified. In
particular, I is a subsheaf of OXp˚Dq{OX . Let p : rX ÝÑ X be the real blow-up of
X along D. For a, b P I, the function Ga,b :“ pa´ bq{|a´ b| induces a C8-function
BGa,b on BD. The anti-Stokes hyperplanes of pa, bq are the irreducible components
of

Hăab :“ tz P BD such that BGa,bpzq P R´u
The set Hăab is a smooth C8-hypersurface in BD. Let Hă be the union of all the
Hăab, a, b P I distinct. Let Z be a closed subset of D. Let StoăZM be the sheaf on
BZ XHăD whose germ at z is

StoăZM,z “ tg P StăZM,z such that for every a, b P I distinct, gab “ 0 unless z P Hăabu

We call p˚StoăZM the relative Stokes group of M along Z. Note that when Z is
a point P P D, the sheaf StoăPM will also be denoted by StoM when there is no
ambiguity on the point under consideration.

For a possibly ramified connection M, we define the relative Stokes group of
M via Galois descent from the unramified case.

Lemma 3.3.1. If D is smooth, the sheaf p˚StoăDM is a local system on D.

Proof. For every a, b P I, the Stokes hyperplanes of pa, bq are parallel to the
anti-Stokes hyperplanes of pa, bq. Hence, Hăab does not meet any Stokes hyperplane
of pa, bq. Thus, for any z P BD and any g P StoăDM,z, the germ g extends uniquely
on a small product ∆ˆ I containing z, where ∆ is a disc in D centred at ppzq and
where I is an interval of S1. Both ∆ and I depend only on z and not on g. This
concludes the proof of lemma 3.3.1. �

3.4. Comparison over a point in the one level case.

Proposition 3.4.1. Let X be a smooth complex algebraic variety and let D
be a normal crossing divisor in X. Let P P D. Let M be a good meromorphic
connection on X with poles along D. Suppose that M has a single level. Then,
there is a canonical isomorphism

(3.4.2) LRP : ΓpBP,StoMq // H1pBP,StMq

Proof. By Galois descent, we can suppose that M is unramified. Let m P

Zmď0zt0u be the level of M. We are going to construct a cover of BP similar to
that used by Loday-Richaud in Theorem 4. Let px1, . . . , xnq be local coordinates
centred at P such that D is defined by x1 ¨ ¨ ¨xm “ 0 in a neighbourhood of P in
X. For a, b P I distinct, we have

a´ b “ fabx
m

with fabp0q ‰ 0. Put ´g´1
ab “ fab{|fab|. Then, the map BGa,b reads

(3.4.3) pprk, zkq1ďkďm, pxkqm`1ďkďnq ÝÑ ´gabprkzk, xkq
´1zm

If φm : BP ÝÑ S1 is the map z ÝÑ zm, then

Hăab X BP “ tz P BD with φmpzq “ gabp0qu
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Let us re-index the gab with Z{NZ in such a way that the pgip0qqiPZ{NZ are in an
ascending order with respect to the clockwise orientation on S1. Then, at the cost
of shrinking ε, the connected components of the

φ´1
m psgip0q ´ ε, gi`1p0q ` εrq, i P Z{NZ

form a cover S “ pSiqiPZ{N 1Z of BP by open multi-sectors such that
(1) The open set Si contains exactly two anti-Stokes hyperplanes.

(2) The open set Si X Si`1 contains exactly one anti-Stokes hyperplane for every
i P Z{N 1Z.

(3) We have Si X Sj X Sk “ H for every i, j, k P Z{N 1Z distinct.
At the cost of shrinking ε, a section g P ΓpBP,StoMq extends uniquely into a 1-
cocycle for StM with respect to the cover S. Taking the associated Stokes torsor
defines the map LRP from (3.4.2). We now have to show that this map is an
isomorphism.

Let C be a smooth curve passing through P and not contained in D. Then,
we have pStMq|S1

C
» StMC

and MC admits only one level. Thus, restriction to S1
C

provides a commutative diagram

(3.4.4) ΓpBP,StoMq //

LRP

��

ΓpS1
C ,StoMC

q

��

H1pBP,StMq // H1pS1
C ,StMC

q

From Loday-Richaud’s theorem, the right vertical map of (3.4.4) is an isomorphism.
Taking the invariants under the action of π1pTpm, πp0qq, πp0qq on the right part of
the diagram (3.4.4) gives a commutative diagram

(3.4.5) ΓpBP,StoMq
„ //

LRP

��

ΓpS1
C ,StoMC

qπ1

o
��

H1pBP,StMq resC
// H1pS1

C ,StMC
qπ1

From lemma 2.6.1, the map resC is an isomorphism. Hence, LRP is an isomor-
phism. This concludes the proof of proposition 3.4.1. �

3.5. Proof of Theorem 3. We are going to prove something slightly stronger
than Theorem 3, that is the following

Theorem 5. Let X be a smooth complex algebraic variety and let D be a
normal crossing divisor in X. Let M be a good meromorphic connection on X
with poles along D. Suppose that the Stokes hyperplanes of M don’t meet and that
locally along D, the connection M admits only one level. Then, H1pBD,StăDM q is
an affine space.

Proof. Let U be a cover of D by small enough open subsets of D on which
the level of M is defined. Since R1p˚ StăDM is a sheaf, we have

(3.5.1) H1pBD,StăDM q » lim
UPU

H1pBU,StăDM q
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Let U P U . Since M has locally only one level, if two distinct irregular values
a0, b0 P ΓpU, Iq are such that a0 ´ b0 does not have poles along every irreducible
component of U , then so does a´ b for every a, b P ΓpU, Iq distinct. Thus, StăDM is
trivial on U . So H1pBU,StăDM q is trivial. Hence the limit (3.5.1) can be taken over
the open subsets U P U for which for every a, b P ΓpU, Iq distinct, the difference a´b
has poles along every irreducible component of U . In particular we can suppose
that M is very good, that is for every open set V Ă D, for every a, b P ΓpV, Iq
distinct, the difference a´ b has poles along every irreducible component of V . In
that case, for every P P D, we have

(3.5.2) pStăDM q|BP » StăPM and pStoăDM q|BP » StoăPM

In that case, we show the following more precise result

Proposition 3.5.3. Let X be a smooth complex algebraic variety and let D be
a normal crossing divisor in X. Let M be a very good meromorphic connection on
X with poles along D. Suppose that the Stokes hyperplanes of M don’t meet and
that locally along D, the connection M admits only one level. Then, there is an
isomorphism of schemes

(3.5.4) ΓpBD,StoăDM q // H1pBD,StăDM q

In particular, H1pBD,StăDM q is an affine scheme.

Note that H1pBD,StăDM q is the global section space of the sheaf R1p˚ StăDM
and that ΓpBD,StoăDM q is the global section space of p˚StoăDM . Hence, it is enough
to prove that the sheaves R1p˚ StăDM and p˚StoăDM are isomorphic. We are going
to construct local isomorphisms between these sheaves and then observe that they
glue into a global isomorphism.

As recalled in paragraph 1.4, the sheaf R1p˚ StăDM is constructible. Hence, there
exists a cover U of D by open subsets of D such that for every U P U , there exists
a point P P U such that the restriction of torsors

(3.5.5) H1pBU,StăDM q // H1pBP,StăDM q

is an isomorphism of schemes. Let U P U and let P P U as above. Let px1, . . . , xnq
be local coordinates centred at P such that D is defined by x1 ¨ ¨ ¨xm “ 0 in U . At
the cost of shrinking U , we can suppose that M has a unique level m P Zmă0 on U .
For a, b P ΓpU, Iq distinct, we have

a´ b “ fabx
m

with fabp0q ‰ 0. Put ´g´1
ab “ fab{|fab|. Then, the map BGa,b reads

(3.5.6) pprk, zkq1ďkďm, pxkqm`1ďkďnq ÝÑ ´gabprkzk, xkq
´1zm

If φm : BU ÝÑ S1 is the map pprk, zkq1ďkďm, pxkqm`1ďkďnq ÝÑ zm, then

Hăab X BU “ tz P BU with φmpzq “ gabpzqu

Let us re-index the gab with Z{NZ in such a way that the pgip0qqiPZ{NZ are in an
ascending order with respect to the clockwise orientation on S1. Note that the gab
are continuous. Hence, at the cost of shrinking U , we can suppose that there exists
ε ą 0 such that gi maps BU into sgip0q´ ε, gip0q` εr for every i P Z{NZ. Since the
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Stokes hyperplanes of M don’t meet, the pgip0qqiPZ{NZ are distinct. Hence, at the
cost of shrinking ε, the connected components of the

φ´1
m psgip0q ´ ε, gi`1p0q ` εrq, i P Z{NZ

form a cover SpUq “ pSpUqiqiPZ{N 1Z of BU such that

(1) The open set SpUqi contains exactly two anti-Stokes hyperplanes.

(2) The open set SpUqiXSpUqi`1 contains exactly one anti-Stokes hyperplane for
every i P Z{N 1Z.

(3) We have SpUqi X SpUqj X SpUqk “ H for every i, j, k P Z{N 1Z distinct.

At the cost of shrinking ε, any section g P ΓpBU,StoăDM q extends uniquely into a
1-cocycle for StăDM with respect to the cover SpUq. Taking the associated Stokes
torsor defines a map

LRU : ΓpBU,StoăDM q ÝÑ H1pBU,StăDM q

The restriction to BP induces a commutative diagram

(3.5.7) ΓpBU,StoăDM q //

LRU

��

ΓpBP,StoăDM q

LRP

��

H1pBU,StăDM q // H1pBP,StăDM q

From our choice of cover, the bottom arrow in (3.5.7) is an isomorphism. At the
cost of refining the cover U , we can suppose that the top arrow in (3.5.7) is an
isomorphism. Since the relation (3.5.2) holds, proposition 3.4.1 implies that LRU

is an isomorphism.
If U,U 1 P U , observe that the trace of the covers SpUq and SpU 1q on BpU XU 1q

have a common refinement V such that the following diagram commutes

Z1pSpUq X BU 1,StăDM q

))

ΓpBpU X U 1q,StoăDM q

44

**

Z1pV,StăDM q

Z1pSpU 1q X BU,StăDM q

55

Hence, LRU and LRU 1 coincide on U XU 1 for every U,U 1 P U . Thus, the pLRU qUPU
glue into an isomorphism between p˚StoM and R1p˚ StăDM . This concludes the
proof of proposition 3.5.3.

�

3.6. A conjecture in the multi-level case. In this subsection, we restrict
to the case where D is smooth. The question whether R1p˚ StăDM and p˚StoăDM are
isomorphic is fruitful since it would imply that when D is smooth, the moduli of
Stokes torsors are affine spaces. We thus formulate the following
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Conjecture. Let X be a smooth complex algebraic variety. Let D be a smooth
divisor in X. Let M be a good meromorphic connection on X with poles along D.
Let p : rX ÝÑ X be the real blow-up of X along D. Then, the local systems
R1p˚ StăDM and p˚StoăDM are isomorphic.

In the several level case, the difficulty comes from the fact that the paral-
lel transports for R1p˚ StăDM and p˚StoăDM produce different cocycles that are not
equal on the nose, but might be cohomologous. The picture below illustrates this
phenomenon. The picture on the left features part of our initial element of the

Stokes group above P . In this situation, two anti-Stokes hyperplanes L1 and L2

intersect once along the path joining P to Q. Let us call x the intersection point.
Since the anti-Stokes hyperplanes are parallel to the Stokes hyperplanes, there is a
neighbourhood Ω of x in BD not meeting any Stokes line coming from the differ-
ences of irregular values giving rise to L1 and L2. In particular, g1 and g2 extend
uniquely into sections rg1 and rg2 of StăDM over Ω. When applying the parallel trans-
port for R1p˚ StăDM , we end up with the cocycle in the upper right picture. The
bottom right picture represents the effect of the parallel transport for p˚StoăDM .
Finally, one passes from one cocycle to the other by permuting rg1 and rg2. Since
the Stokes sheaf is not commutative, it is not a priori clear that these cocycles are
cohomologous.

4. Application

The role of this paragraph is to provide non trivial examples of meromorphic
connections with poles along the fibre of an abelian scheme over a curve. This
answers a question asked to the author by Y. André. Trivial examples would be
split connections, connections coming from the base curve and their tensor product
with regular singular connexions on our abelian scheme. We also want to exclude
Stokes structures coming from sub-connections of the previous form. We thus prove
the following

Proposition 4.0.1. Let C be a complex elliptic curve. Put A “ C ˆ A1
C and

let p : A ÝÑ A1
C be the second projection. Let A0 be the fibre of p above 0. Then,
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there exists a rank 4 meromorphic connection M defined in a neighbourhood of A0

and with poles along A0 such that
(1) The connection M is not of the form M1 b p˚M2 where M1 is a regular
connection on A with poles along A0 and where M2 is a meromorphic connection
on S with poles at 0.
(2) The connection M underlies a non trivial Stokes structure.
(3) The Stokes structure of any strict sub-connection of M is trivial.

Proof. Let pγ1, γ2q be a basis for the fundamental group of CpCq. Let γ3 be a
basis for the fundamental group of C˚. Let A1, A2 P GL2pCq be matrices such that
A1 has a unique eigenvalue λ1 and A2 has a unique eigenvalue λ2 with λ1 ‰ λ2 and
such that kerptA2 ´ A1q is one dimensional. For example, take z1, z2, z3, z4 non
zero complex numbers such that

A1 “

ˆ

z1 z3

z2 z4

˙

has a unique non zero eigenvalue distinct from z1, and put

A2 “

ˆ

z1 z2

0 z1

˙

For i “ 1, 2, let ρi : π1pAzA0pCqq ÝÑ GL2pCq be the representation associating Ai
to γ1 and γ2 and Id to γ3. Let Ri be the regular meromorphic connection on A
with poles along A0 induced by ρi. Let a P OA1

C
p˚0q with a pole of order d ą 0 at

0. Put

(4.0.2) N :“ p˚Ea bR1 ‘R2

Since R1 and R2 are non isomorphic, N satisfies the condition p1q. From Theorem
5, the moduli space H1pBA0,StăA0

N q is a complex affine space. From [Tey18, 2.4.4],
we have

dimH1pBA0,StăA0

N q “ dimH1pA0, Irr
˚
A0

EndN q
From our choice for R1 and R2, note that EndN contains p˚Ea and p˚E´a as
direct summands. Hence,

dimH1pBA0,StăA0

N q ě 2 dimH1pA0, Irr
˚
A0
p˚Eaq

ě 2 dimH1pA0, p
´1 Irr˚A0

Eaq

ě 2 dimH1pA0,C
dr´1sq

ě 2d

Hence, H1pBA0,StăA0

N q is a non trivial affine space. From [Tey18, 2.2.1], a point of
H1pBA0,StăA0

N q distinct form the trivial torsor gives rise to a germ of meromorphic
connection M with poles along A0 satisfying conditions p1q and p2q. Indeed, the
connection M satisfies p1q because N does, and by construction, M underlies a
non trivial Stokes structure.

We are left to show that M satisfies condition p3q. That is, for every strict
sub-connection M1 of M, we have

H1pBA0,StăA0

M1 q » 0

Let N 1 be the split formal model of M1 along A0. Then, N 1 identifies to a non
trivial strict sub-connection of N . For i “ 1, 2, let χi be the rank one connection
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on A corresponding to the character of π1pAzA0pCqq ÝÑ C˚ associating λi to γ1

and γ2, and 1 to γ3. Then, the non trivial strict sub-connections of N are

p˚Ea b χ1, χ2,R2, p
˚Ea bR1, p

˚Ea b χ1 ‘ χ2, p
˚Ea b χ1 ‘R2, p

˚Ea bR1 ‘ χ2

If N 1 is regular or is the twist of a regular connection by an exponential one, then
M1 does not underlie a non trivial Stokes structure. Hence, we can suppose that
N 1 is one of the three last connections given in the above list. From Theorem 5,
the moduli space H1pBA0,StăA0

M1 q is a complex affine space. Let us show that it is
trivial. From [Tey18, 2.4.4], we have

dimH1pBA0,StăA0

M1 q “ dimH1pA0, Irr
˚
A0

EndM1q

From [Sab17, 1.2], there is a non canonical isomorphism

Irr˚A0
EndM1 » Irr˚A0

EndN 1

Hence, we are left to show that

H1pA0, Irr
˚
A0

EndN 1q » 0

Since χ1 and χ2 are distinct, it is enough to show that for any non trivial character
χ : π1pA0pCqq ÝÑ C˚, we have

H1pA0, Irr
˚
A0
pp˚Ea b χqq » 0

where we abuse notation by denoting by χ the pull-back to A of the rank one
connection on A0 induced by χ. Let pA0 : rA ÝÑ A be the real blow-up of A along
A0. From [Sab17, 3.2], we have

Irr˚A0
pp˚Ea b χq » RpA0˚H0 DRăA0pp˚E´a b χ´1q

Thus, we have to show that for any non trivial character χ : π1pA0pCqq ÝÑ C˚, we
have

H1pBA0,H0 DRăA0pp˚Ea b χqq » 0

Let p0 : rC ÝÑ C be the real blow-up of C at 0. Observe that BA0 » A0ˆB0. Let U
be the open subset of B0 consisting in the directions along which ea has rapid decay
at 0. Note that F :“ B0zU is a union of closed intervals. Let j : A0 ˆ U ÝÑ BA0

and let i : A0 ˆF ÝÑ BA0 be the canonical inclusions. Let Lχ be the local system
on A0 induced by χ. Let Lχ be the pull-back of Lχ via BA0 ÝÑ A0. Then, we
have

H0 DRăA0pp˚Ea b χq » j!j
´1Lχ

Since χ is not trivial, the sheaf i´1Lχ does not have non trivial global sections.
Hence, the long exact sequence in cohomology induced by

0 // j!j
´1Lχ // Lχ // i˚i

´1Lχ // 0

gives rise to an injective morphism H1pBA0, j!j
´1Lχq ÝÑ H1pBA0,Lχq. We are

thus left to show that Lχ is acyclic. Note that

RΓpBA0,Lχq » RΓpB0, Rπ˚Lχq
where π : BA0 ÝÑ B0 is the natural projection. Hence, it is enough to prove that
Rπ˚Lχ is zero. By proper base change theorem, the fibres of Rπ˚Lχ identify with
RΓpA0, Lχq. We get the desired vanishing from the fact that non trivial rank 1
local systems on elliptic curves are acyclic.

�
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