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Higher dimensional Stokes structures are rare

Jean-Baptiste Teyssier

The purpose of this paper is to explore the geometry of the moduli of Stokes
torsors. Stokes torsors are algebraic structures encoding the Stokes phenomenon for
linear differential equations. By contrast to the Stokes matrices, Stokes torsors don’t
involve any choice and are available in any dimension. Moduli of local Stokes torsors
were constructed in dimension 1 by Babbit and Varadarajan [BV89] following a
method due to Deligne. In higher dimension, moduli of local Stokes torsors were
constructed in [Tey19]. Although the works of Martinet and Ramis [MR91] and
Loday-Richaud [Lod94]| provide a concrete description of these moduli in dimension
1, very little is known in higher dimension. Our first result says that non trivial
local Stokes torsors are rare in dimension > 1.

THEOREM 1. Let N be a good split meromorphic flat bundle in a neighbourhood
of the origin in C" for some n > 2. Suppose that the pole locus D of N has at
least two components. Suppose that the eigenvalues of the monodromy of N along

the components of D are generic. Then, there are no non trivial torsors under the
Stokes sheaf of N.

Good meromorphic flat bundles are ubiquitous in the theory of linear systems of
differential equations. According to a fundamental result of Kedlaya [Ked10][Ked11]
and Mochizuki [Moc09|[Moc11]|, any meromorphic flat bundle becomes good after
a pull-back by a suitable composition of blow-ups above the pole locus. Note that
Theorem 1 has no counterpart in dimension 1. In dimension 1 indeed, the moduli
of torsors under the Stokes sheaf of A/ does not depend on the monodromy of N.
From [Tey18, 2.2.1], we deduce the following rigidity theorem refining [Tey19, Th.
3

THEOREM 2. Let N be a good split meromorphic flat bundle in a neighbourhood
of the origin 0 in C" for some n = 2. Suppose that the pole locus D of N has at
least two components. Suppose that the eigenvalues of the monodromy of N along
the components of D are generic. Then, N itself is the only germ of meromorphic
flat bundle at 0 formally isomorphic to N at 0.

The local Stokes sheaf admits a global variant. In the global case, moduli of
Stokes torsors were constructed in any dimension in [Tey18]. In this note, we show
the following

THEOREM 3. Let X be a smooth complex algebraic variety. Let D be a normal
crossing divisor in X. Let M be a rank 2 good meromorphic connection on X with
1
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poles along D. Then, the moduli of torsors under the Stokes sheaf of M along D
is an affine space.

As an application of Theorem 3, we construct non trivial examples of meromor-
phic connections with poles along the fibre of some abelian scheme. This answers
a question asked to the author by Y. André. In general, we give a conjectural
description of the global moduli of Stokes torsors predicting (at least in the case
where D is smooth) that they are affine spaces.
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1. Recollection on Stokes torsors

1.1. Torsors. Let M be a manifold. Let G be a sheaf of groups on M. We
recall that a torsor under G is a sheaf F on M endowed with a left action of G
such that there exists a cover U by open subsets of M such that for every U € U,
there exists an isomorphism of sheaves F|y ~ G|y commuting with the action of
G, where G acts on itself by left multiplication. It is a standard fact that the
isomorphism classes of G-torsors are in bijection with H'(M,G), the set of non
abelian cohomology classes of G.

1.2. Geometric setup. Let X be a smooth complex algebraic variety of di-
mension n. Let D be a normal crossing divisor in X. For a quasi-coherent sheaf
F on X, we denote by F|p the sheaf of germs of sections of F along D. Let
Dy, ..., Dy, be the irreducible components of D. For I < [1,m], set

Dy := (| D; and Dj := D,\|_JD;
iel i¢l

1.3. Functions with asymptotic expansion along D. Fori=1,...,m,let
X, —> X be the real blow-up of X along D;. Let p : X — X be the fibre product
of the )N(i, i=1,...,m above X. For every subset A = D, put 0A := p~1(A). Let
L4 : 0A — 0D be the canonical inclusion.

Let A be the sheaf of functions on ¢D admitting an asymptotic expansion along
D [Sab00|. For a closed subset Z in D, let A5 be the completion of A along the
pull-back by p of the ideal sheaf of Z. Put A~% := Ker(A — A;). When Z = D,
the sheaf A<P can be concretely described locally as follows (see proposition 1.1.11
from [SabO00] for a proof). Let (x1,...,z,) be local coordinates centred at 0 € D
such that D is defined around 0 by 2 - - - 2; = 0 for some [ € [1,m]. Then, the germ
of A<P at 6 € 00 is given by those holomorphic functions u defined over the trace
on X\D of a neighbourhood 2 of 6 in X , and such that for every compact K < ),
for every N := (Ny,...,N;) € N', there exists a constant Cx y > 0 satisfying

lu(x)| < Crn|zi|N* - |2 [N for every z € K n (X\D)
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1.4. Stokes torsors and the functor of relative Stokes torsors. Let M
be a good meromorphic connection defined in a neighbourhood of D and with poles
along D. We set

_ -1
oM = A®p510X\D p—M

Let Dx be the sheaf of differential operators on X. The sheaf A is endowed with an
action of p_IDX|D. Hence, so does 0 M. We can thus form the De Rham complex
of M with coefficients in A as

oM —— oM ®p710X|D p—lQﬁqD — i —— S OM ®p710x\0 p—lgr;{lD

It is denoted by DR dM. Similarly, we denote by DR<? M the De Rham complex
of M with coefficients in A<P.

Let Z be a closed subset of D. Let St37 be the subsheaf of #° DR d End M
of sections asymptotic to the Identity along Z, that is of the form Id + f where f
has coefficients in A<%. The sheaf Stj,lz is a sheaf of complex unipotent algebraic
groups on 0Z. This is the Stokes sheaf of M along Z. In particular, Stj,lD is a
sheaf on 0D and for every point P € D, the sheaf Stf/lp is a sheaf on 0P. The sheaf
Stj/lp will also be denoted by Sta when there is no ambiguity on the point under
consideration. This abuse of language is done for consistency with the notations
from [Tey19].

Since Stf,lz is a sheaf of complex algebraic groups, for every R € C-alg, the
sheaf of R-points of Stj/lz is a well-defined sheaf of groups on 0Z. It is denoted
by St37(R). This is the Stokes sheaf of M along Z relative to R. Torsors under
Stj/lz (R) are the Stokes torsors along Z relative to R. For every subset A ¢ Z, let
H'(0A,St37) be the functor

C-alg — Set
R — H'(0A,St3Z(R))

From |Tey19, Th. 1], the functor H'(0P, Stf\,lp ) is an affine scheme of finite type
over C for every P € D. From [Teyl8, Th. 6], the functor Hl(ﬁD,SthlD) is an
affine scheme of finite type over C.

From [Tey18, 1.6.2], the presheaf of functors R'p, StjAD defined as

Open(D) — Set
U — HYU,St3)

is a sheaf of affine schemes of finite type over C. Its stalk at P € D is H* (0P, Stj,[D).
As proved in [Tey18, 1.7.1], the sheaf Rlp, Stf,lD is constructible. More precisely,
for every I < [1,m], the sheaf R'p, Stj,lD is locally constant on DY.

2. The level filtration and applications

2.1. Geometric setup. In this section, we put X = C™ and D is given by
1+ Ty = 0. In particular, we have

X ~ ([0, +0[xSH)™ x €™
and the map p : X — X reads

(e, 26) k5 y) — (k288> Y)
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In particular, T := 00 is a torus. Let ¢ : T —> X and j:X\D — X be the
canonical inclusions. Let 7w : R™ — T be the canonical projection.

2.2. Irregular values and truncation. In this paragraph, we follow part
I, Chapter 2 from [Mocll]. We endow Z™ with the order given by m < m’
if and only if m; < m} for every ¢ = 1,...m. For a € Ogn(+D)/O¢n, we write
a = ezm 0mz™ and denote by ord a the minimum of

{m e ZZ such that a,, # 0}

when it exists. Let Z be a good set of irregular values with poles contained in D.
By definition, Z is a finite subset of O¢n o(*D)/Ogn ¢ such that

— For every non zero a € Z, ord a exists and arq 4 is invertible in a neighbour-
hood of 0.

— For every distinct a,b € Z, orda — b exists and (@ — b)ord o—p s invertible in
a neighbourhood of 0.

— The set ®(Z) := {orda — b, a,b € T distinct} is totally ordered.

The elements of ®(Z) are the levels of Z. In particular, the set {orda,a € I} is
totally ordered. Let m(0) € ZZ, be its minimum. Let (m(0),...,m(L), m(L + 1))
be an auxiliary sequence for Z. This means that m(i +1) = m(¢) + (0,...,1,...,0)
with 1 located in position h; < m, that ®(Z) < {m(0),...,m(L + 1)} and that
m(L + 1) = 0 by convention. We set for every a € Z and every ¢ =0,...,L+ 1,

Em(i (@) := Z anz™
n}m(i)

and zm(i) = a — {mei)(a).

2.3. Good unramified split bundle. For every a € Z, set
&% = (O¢n o(xD),d — da)

We fix once for all a germ of split unramified good meromorphic flat bundle of rank
r with poles along D

N = @5“®Ra

ael
where the R, are regular. For i =0,..., L + 1, we set Z(i) := {m(;)(Z) and
N(i) =P Emi (M @R,

ael

The levels of N (i) belong to {m(0),...,m(i — 1)}. For a € Z(i), we set

N, = P E* PR,

aezxfm(i) (a) =«

The levels of NV, belong to {m(3),...,m(L + 1)}.
For a € Z, let L,(N) be the local system of flat sections for R, on C"\D. We

put Lo(N) = i*ju Lo (N).
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2.4. The level filtration. In this subsection, we abuse notations by noting
Star for Stffo. We recall the definition of the level filtration on Stxr. It is a straight-
forward generalization of [BV89, II 3.2.1]. We include it for the reader’s conve-
nience due to a lack of reference in the higher dimensional case. Fori =0,..., L+1,
let us set

Sty := {g € St [e"(g — id) has rapid decay for every a with orda > m(i — 1)}
The sheaf St'i/\/' is a sheaf of normal algebraic subgroups of Stxs. Let us define
three diagonal matrices M := Diag(e®,a € I), Mg := Diag(efm®(®) g € T) and
M := Diag(e®>m®, a € 7). The sheaf St}, admits the following Stokes theoretic
description:

LEMMA 2.4.1. The map

(Y2 Stj\/(i) —> StN

6M> M

s — zse =

induces an isomorphism between Styr;y and Stjv.

PrOOF. The statement is local. Hence, it is enough to work on an open set S
contained in a product of strict open intervals. For such an open set, a choice of
fundamental matrix F' of flat sections for @ ,.; R, yields a commutative diagram
with injective arrows

(2.4.2) (S, Starsy) —— T(S, St)

|

GL,

where ¢ is given by s — e F~1sFeM and where 7is given by s — e " M<F~lsFeMs<,
By definition, ¢(I'(S, Star)) is the subgroup of elements g € GL, such that for every
a,bel,

Jaa = id
gab =0 ifa#banda<sh
Hence, 7(I'(S, Star(;))) is the subgroup of elements of g € GL, such that for every
a,bel,
Jaa = id
gab =0 if En(i)(a) # Emiy (b) and Emiy(a) €5 Emi) (D)
gab =0 if a # b and gm(z) (a) = Em(z) (b)

Note that if a,b € T with &y ;)(a) # Emeiy(b), then
a £s b if and only if {my(a) €5 &mei) (D)

Thus, 7(I'(S, Star(;y)) is the subgroup of elements g € «(I'(S,Star)) such that for
every a,beZ,

gap = 0 if gm(z) (a) = fm(z)(b) and a # b
Let s e T'(S, Stj\/), and let a,b € Z with a # b. If {5(5)(a) = Em(s)(b), then
1(s)ap = e"TUF Y5y Fy = F; H(ebem T0=mn 5 )

By definition, eb>m~%>m@) s, has rapid decay. Since F, and F, have moderate
growth at 0, we deduce that the constant matrix ¢(s)q, has rapid decay. Hence,
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1(8)ap = 0. Thus St} = ¢(Star(;)). On the other hand, let s € ¢(Stpr ;) and let ¢
with ord ¢ > m(i — 1). We have to show that for every a,b € Z with a # b,

€Sy = ec+a_bFaL(s)abef !

has rapid decay. We can suppose &miy(a) <s &meiy(b). In particular a <s b.
Since the leading term of ¢ + a — b is the leading term of a — b, the exponential
e“+te=? has rapid decay on S. Thus, so does es,;,. Hence, s € St and we deduce

Sti: = ¢(Stai))- O
2.5. Quotients of the level filtration.

LEMMA 2.5.1. There is a split exact sequence of sheaves of algebraic groups

1*>StN(i)L>StNL>H Stay, ——1

a€Z(i)
In particular, Gr' Sty := Stﬁl/Stj\/ ~ HaeI(i) StAr(i+1)a

PROOF. Let us define

Sty — Haem) Sta,
s — X(Sab)ﬁm(i)(a)=o<
Em(i)(b)=a

From the local description of Str(;) given in the proof of 2.4.1, we see that the only
a priori non obvious thing to prove is the fact that ¢ is a group homomorphism.
Let S be an open set of T, let s,t € I'(S,Sty), let o € Z(4) and let a,b € T such
that &m(i)(a) = Emeiy(b) = . Let us denote by 1, the component of ¢ associated

to a. Then
(wa(St))ab = Zsactcb = Z Sacteb
cel cel
a<sc<sb

If &Emi)(c) # a, the leading coefficient of ¢ — a is that of £u()(c) — Emay(a) =
{m(i)(c) — a. Hence, a <s c if and only if a <gs &m(i)(c). Similarly, ¢ <s b if and
only if £,i)(¢) <s a. Hence, for {n;)(c) # a, the condition a <s ¢ <s b is empty.
Thus

(Vo (5t))ab = Z Sacteb = (Va(8)Va(t))ab

ceL
Em(i)(c)=a

O

2.6. Action of the fundamental group in the local one level case. We
consider in this paragraph the case where A/ has a unique level m and we suppose
that A is not regular, that is m € ZZ\{0}. Let ¢ : C — C” be a smooth curve

passing through 0 and not co~ntained in D. Let C be the real-blow up of C' at 0.
Let S& be the boundary of C. Following [Sab12, 8.b p120|, the map ¢ lifts as a
map 7 : C —> X. Let us suppose that the restricted map St — T is injective.
Let Hy be the hyperplane of R™ defined by > ;" | m;xz; = 0. For an interval I of
St set T(H,I):=n(H)+ I and

T(m,I) :=T(Hpm,I)
For x € T, the translation ¢, by x provides an isomorphism

m1(T(m, (0)), 7(0)) — m1(T(m, z), z)
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Hence, 71 (T(m,7(0)),7(0)) acts on Sty >~ (Sta)|sy, via the parallel transport.
We deduce that 1 (T (m, 7(0)), 7(0)) acts on H'(SE, Star.). To simplify notations,
we denote by H'(SE, Sty )™ the invariants for this action.

LEMMA 2.6.1. For every cover I of Sé adapted to N¢, the morphisms in the
commutative triangle

resc

(2.6.2) HY(T, Str) HY(SL, Star,)™

T~

Z'(T(m, I), Sty)

are isomorphisms. In particular, H*(T,Sty) is an affine space.

For a single level connection in dimension 1, an adapted cover is a finite cover
I by open intervals such that for I, I, I3 € I distinct, we have Iy n I, n I3 = F,
and such that for every I € I and every pair of distinct irregular values {a, b}, the
interval I contains exactly one Stokes direction associated to a — b.

PROOF. We first show that f is surjective. Let 7 € H'(T,Sty). Let x =
(1,...,2m) € T(Hpm). If C is the curve t —> (c1(t), ..., cn(t)), let C,, be the curve
given by t — (z1¢1(t), ..., ZmCm(t), ..., ca(t)). By construction S¢, = x4+ S¢.
Since N has only one level, the same holds for N¢,. Since [ is an adapted cover
for Mg, the translated cover x + I is an adapted cover for M. From [BV89], the
restriction 7, g1 € H' (24 Sk, Stae, ) of T to 2+ St admits a unique trivialisation
tr(x) on each x + I € I, and

(2.6.3) ZMI, St ) —— HY (S, Stae)

Since St has no non trivial section on z + I for every x € n(Hyy,) and every I € I,
the sections (t7())zex(m,,) With I fixed glue into a section of 7 on T(m, I). Hence,
the cocycle corresponding to Eé via (2.6.3) extends uniquely into a cocycle for T
relative to the cover T(m, I). In particular, f is surjective.

Let us consider the commutative diagram

(2.6.4) ZY(T(m, I), Stpr) —2—s H'(T, St

J J

Zl(l7Sth) %Hl(scl}’ast/\/c)

Every section of Sty on a connected open set is determined by its germ at a
point. Hence, the left vertical arrow of (2.6.4) is injective. We deduce that f is
bijective. Tautologically, the image of the left vertical arrow is formed by those
g € Z1(1,Stpr,) extending to T(m, ). These are exactly the invariants under the
action of 71 (T(m,w(0)),n(0)). Taking the invariants under 71 (T(m,w(0)),7(0))
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thus yields a commutative diagram

(2.6.5) ZN(T(m, I), Strr) —— H'(T, Sty

{ bm

ZMI, Sty )™ ——— H' (S, Sty )™

We deduce that resc is bijective. To conclude, we observe that Sty being a sheaf
of unipotent algebraic groups, the scheme T'(U,Stys) is an affine space for every
open subset U < T. Since Z!(T(m, I), Stxr) is a product of such schemes, it is also
an affine space. (I

2.7. Proof of Theorem 1. Let N be a good split meromorphic flat bundle
in a neighbourhood of the origin in C™ for some n > 2 as in paragraph 2.3. Suppose
that the pole locus D of N has at least two components. Suppose that the eigen-
values of the monodromy of N along the components of D are generic. We want
to show that H!(T, Sty ) is reduced to the trivial torsor. We argue recursively on
the number of levels of N. The notations from section 2 will be in use. Suppose
that N has only one level m. Let A be the diagonal curve of C*. Let [ be a
cover of Si adapted to Na. Fix Iy, I, € I, put J = I; n I, and suppose without
loss of generality that w(0) € J. Note that T(m, J) is homotopic to the product
of m — 1 circles. By assumption, m > 1. Hence, 71 (T (m, J),7(0)) is non trivial.
Pick v € m1(T'(m, J), 7(0)) non trivial and let n = (nq,...,n,) € Z™ be the coor-
dinates of v in the canonical basis of 71 (T, 7(0)). Fora e Z and i = 1,...,m, let
Y. (%) be the set of eigenvalues for the monodromy of £, (AN) around D;. Then, the

eigenvalues for the monodromy of L,(N)* ® L4 (N) along ~ are the

QT(2)" v ezt @i = 1)
i=1 \Hi

Since n # 0, the zero locus of the polynomial

m m

Uz g
[ e =] 1u
i=1 i=1

is a strict closed subset in C?™. Hence, for a generic choice of the ¥,(i), the
restriction of £,(N)* ® Lo(N) = La—p(EndN), a # b to T(m, J) cannot have non
zero global sections. Hence, the Identity is the only section of Sty on T(m,J).
Thus, Theorem 1 in the one level case is a consequence of lemma 2.6.1.

Suppose that N has at least two levels. Let (m(0),...,m(L),m(L + 1)) be
an auxiliary sequence for Z. Then, there is an index 4 such that A(i) has only
one level and such that the number of levels of Sty is strictly less than number
of levels of A/ for every o € Z(i). Since the A, are direct summands of A/, they
have generic monodromy eigenvalues along the irreducible components of D. By
recursion hypothesis applied to the N, we obtain that the right term in the exact
sequence of pointed sets

HY(T, Str(s)) — HY(T,Sty) —— [ | )Hl(T,Na)

a€eZ(i

deduced from lemma 2.5.1 is trivial. Hence H'(T,Sty) ~ H'(T, Sty ;). Note
that the eigenvalues of the monodromy of A/ (¢) along the irreducible components of
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D are generic. Hence, the one level case treated above implies that H!(T, Stari))
is a point. This finishes the proof of Theorem 1.

3. Moduli of Stokes torsors and the relative Stokes group

3.1. Roadmap. The goal of this section is to describe the global moduli of
Stokes torsors constructed in [Tey18| when the irregular values have only one level.
To do this, we compare a relative version of the Stokes group from [MR91]|[Lod94]
with the relative non abelian cohomology of the Stokes sheaf. For the problem
raised by this comparison in the multi-level case, we refer to the discussion in 3.6.
Note that over a smooth base (corresponding in this paper to the case where D is
smooth), relative Stokes groups appeared in the one level case in [JMU81] and in
more generality in [Boa02|. In particular, over a smooth base, they were already
considered in the multi-level case in [Boal4].

3.2. Loday-Richaud’s theorem. In this subsection, the notations from sec-
tion 1 will be in use and we will suppose that X is a neighbourhood of the origin
0 in the affine line. Let M be an unramified meromorphic connection on X with
poles at 0. Let Z be the set of irregular values of M at 0. Let p: X — X be the
real blow-up of X at 0. For a,b € Z, the function G, := (a — b)/|a — b| induces a
C*-function 0G,, on 00. The anti-Stokes directions of (a,b) are the directions of
z € 00 such that 0G,,(z) € R™. Let H= be the set of all anti-Stokes directions, for
a,b e 7T distinct. For z € H<, we put

Stoam,» = {g € St such that for every a,b € Z distinct, gq, = 0 unless z € H

and
Stoa = 1_[ Stom, -
zeH<

The group Stoaq is the Stokes group of M. For a possibly ramified connection
M, we define the Stokes group of M via Galois descent from the unramified case.
Note that an element of the Stokes group g = (g.).em< induces a well-defined
Stokes torsor. To see this, let NV > 1 be an integer and let (z;);ez/nz be the anti-
Stokes directions of M ordered in an ascending order with respect to the clockwise
orientation on 00. Pick ¢ € Z/NZ. Since St is constructible, g., extends into
a section g,, of Sty on a small interval |z; — €, 2; + €[ for € > 0. At the cost of
shrinking €, we can suppose that

(1) The intervals I; = (]z; — €,2i41 + €[)icz/Nz contain exactly two anti-Stokes
directions, namely z; and z;1.

(2) We have I; n I; n I, = F for every 1, j, k € Z/NZ distinct.
In particular, (gs,);ez/nz defines a 1-cocycle for Sty with respect to the cover
(Ii)iez/nz- Let LRo(g) be the associated Stokes torsor on 00. It is independent

of € for e small enough. The following theorem is due to Loday-Richaud [Lod94,
I1.2.1]

THEOREM 4. The map
(3.2.1) LRy : Stop — H'(00, St )

is an isomorphism.
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3.3. Relative Stokes groups. In this subsection, we introduce a relative
version of the Stokes group. The notations from section 1 will be in use. Let X
be a smooth complex algebraic variety and let D be a normal crossing divisor in
X. Let M be a good meromorphic connection on X with poles along D. Let 7
be the sheaf of irregular values of M. We first suppose that M is unramified. In
particular, Z is a subsheaf of Ox (*D)/Ox. Let p: X — X be the real blow-up of
X along D. For a,b € Z, the function G, := (a —b)/|a — b| induces a C*-function
0Gqp on 0D. The anti-Stokes hyperplanes of (a,b) are the irreducible components
of

HZ = {z € 0D such that 0G,,(z) e R}
The set H3 is a smooth C*-hypersurface in dD. Let H= be the union of all the
HZ, a,b e T distinct. Let Z be a closed subset of D. Let StojAZ be the sheaf on
0Z n H<P whose germ at z is

Sto?, = {g € St37. such that for every a,b e T distinct, go, = 0 unless z € H3
M,z M,z ab

We call p,Stoi? the relative Stokes group of M along Z. Note that when Z is
a point P € D, the sheaf Stoj/lp will also be denoted by Stoas when there is no
ambiguity on the point under consideration.

For a possibly ramified connection M, we define the relative Stokes group of
M via Galois descent from the unramified case.

LEMMA 3.3.1. If D is smooth, the sheafp*StojAD 1s a local system on D.

PROOF. For every a,b € Z, the Stokes hyperplanes of (a,b) are parallel to the
anti-Stokes hyperplanes of (a,b). Hence, H; does not meet any Stokes hyperplane
of (a,b). Thus, for any z € 0D and any g € Stoﬁfz, the germ ¢ extends uniquely
on a small product A x I containing z, where A is a disc in D centred at p(z) and
where I is an interval of S'. Both A and I depend only on z and not on g. This
concludes the proof of lemma 3.3.1. O

3.4. Comparison over a point in the one level case.

PRrROPOSITION 3.4.1. Let X be a smooth complex algebraic variety and let D
be a mormal crossing divisor in X. Let P € D. Let M be a good meromorphic
connection on X with poles along D. Suppose that M has a single level. Then,
there is a canonical isomorphism

(3.4.2) LRp : [(0P, Stop) — H' (0P, St )

Proor. By Galois descent, we can suppose that M is unramified. Let m €
7'Z,\{0} be the level of M. We are going to construct a cover of dP similar to
that used by Loday-Richaud in Theorem 4. Let (x1,...,2,) be local coordinates
centred at P such that D is defined by z;1 ---x,, = 0 in a neighbourhood of P in
X. For a,b e T distinct, we have

a—b= fabxm

with fu,(0) # 0. Put —ga_b1 = fab/|fab|- Then, the map 0G,; reads

(3.4.3) (1, 21) 1<b<m (Tk)ms1<hen) — —Gab(Trzr, Tp) 2™

If ¢, : 0P —> S' is the map z —> 2™, then
N OP = {z€dD with ¢, (2) = gup(0)}
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Let us re-index the g,y with Z/NZ in such a way that the (g;(0));ez/nz are in an
ascending order with respect to the clockwise orientation on S'. Then, at the cost
of shrinking e, the connected components of the

b (19:(0) — €,i+1(0) + €),i € Z/NZ
form a cover § = (S;);ez/n'z of OP by open multi-sectors such that

(1) The open set S; contains exactly two anti-Stokes hyperplanes.

(2) The open set S; N S;1+1 contains exactly one anti-Stokes hyperplane for every
1€ Z/N'Z.

(3) We have S; n'S; n S, = J for every 1,4,k € Z/N'Z distinct.

At the cost of shrinking e, a section g € T'(0P,Stor) extends uniquely into a 1-
cocycle for St with respect to the cover §. Taking the associated Stokes torsor
defines the map LRp from (3.4.2). We now have to show that this map is an
isomorphism.

Let C' be a smooth curve passing through P and not contained in D. Then,
we have (Staq)sy, ~ Stam and Mc admits only one level. Thus, restriction to S&
provides a commutative diagram

(3.4.4) (0P, Stor) %F(Sé,StOMC)

e | |

Hl(aP, StM) %Hl(Sé,StMC)

From Loday-Richaud’s theorem, the right vertical map of (3.4.4) is an isomorphism.
Taking the invariants under the action of 71 (T (m, 7w(0)), 7(0)) on the right part of
the diagram (3.4.4) gives a commutative diagram

(3.4.5) T(0P,Stoy) —— T(Sk, Stop,. )™

LRPl |

Hl(aP, StM) —_— Hl(Sé, StMc)m

resc

From lemma 2.6.1, the map resc is an isomorphism. Hence, LRp is an isomor-
phism. This concludes the proof of proposition 3.4.1. O

3.5. Proof of Theorem 3. We are going to prove something slightly stronger
than Theorem 3, that is the following

THEOREM 5. Let X be a smooth complex algebraic variety and let D be a
normal crossing divisor in X. Let M be a good meromorphic connection on X
with poles along D. Suppose that the Stokes hyperplanes of M don’t meet and that
locally along D, the connection M admits only one level. Then, Hl(aD,Stf\,lD) 18
an affine space.

PrOOF. Let U be a cover of D by small enough open subsets of D on which
the level of M is defined. Since R!p, StjAD is a sheaf, we have

(3.5.1) HY(0D, St3P) ~ lim H'(oU, St3P)
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Let U € U. Since M has locally only one level, if two distinct irregular values
ag,bp € T'(U,Z) are such that ag — by does not have poles along every irreducible
component of U, then so does a — b for every a,b € T'(U,Z) distinct. Thus, Stf\,lD is
trivial on U. So H'(0U, St} ) is trivial. Hence the limit (3.5.1) can be taken over
the open subsets U € U for which for every a,b € I'(U, Z) distinct, the difference a—b
has poles along every irreducible component of U. In particular we can suppose
that M is very good, that is for every open set V' < D, for every a,b € T'(V,7)
distinct, the difference a — b has poles along every irreducible component of V. In
that case, for every P € D, we have

(3.5.2) (Stie)jop ~ Stit and (Stoxf)jop ~ Stoxs
In that case, we show the following more precise result

PROPOSITION 3.5.3. Let X be a smooth complex algebraic variety and let D be
a normal crossing divisor in X. Let M be a very good meromorphic connection on
X with poles along D. Suppose that the Stokes hyperplanes of M don’t meet and
that locally along D, the connection M admits only one level. Then, there is an
isomorphism of schemes

(3.5.4) I'(0D,StoxP) — H'(0D,Stxy)
In particular, H' (0D, Stf\,lD) s an affine scheme.

Note that H'(0D,Stxs) is the global section space of the sheaf R'py St3’
and that I'(0D, StojAD ) is the global section space of p*Stof\,lD . Hence, it is enough
to prove that the sheaves Rlp, Stj,lD and p*StojAD are isomorphic. We are going
to construct local isomorphisms between these sheaves and then observe that they
glue into a global isomorphism.

As recalled in paragraph 1.4, the sheaf R'p, Stf\,tD is constructible. Hence, there
exists a cover U of D by open subsets of D such that for every U € U, there exists
a point P € U such that the restriction of torsors

(3.5.5) HY(0U,St3P) — H' (0P, St37)
is an isomorphism of schemes. Let U € U and let P € U as above. Let (z1,...,2,)

be local coordinates centred at P such that D is defined by 1 -+, = 01in U. At
the cost of shrinking U, we can suppose that M has a unique level m € Z7;, on U.
For a,b e I'(U,Z) distinct, we have

a—b= fabfm

with fa(0) # 0. Put —g;bl = fab/|fab|- Then, the map 0G, ; reads

(3.5.6) ((Tk» 2k)1<k<m, (Tk)my1<k<n) — —Jab(Tk 2k, xk)flzm

If gy : OU —> S' is the map ((rk, 2k)1<k<m, (Tk)m+1<k<n) — 2™, then

H35 noU = {z € 0U with ¢ (2) = gap(2)}
Let us re-index the g,y with Z/NZ in such a way that the (g;(0));cz/nz are in an
ascending order with respect to the clockwise orientation on S'. Note that the g,

are continuous. Hence, at the cost of shrinking i/, we can suppose that there exists
e > 0 such that g; maps oU into ]g;(0) — ¢, g;(0) + ¢[ for every i € Z/NZ. Since the
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Stokes hyperplanes of M don’t meet, the (g;(0));ez/nz are distinct. Hence, at the
cost of shrinking €, the connected components of the

b (19:(0) = €,9i41(0) + €[),i € Z/NZ
form a cover S(U) = (S(U)i)iez/nz of OU such that
(1) The open set S(U); contains exactly two anti-Stokes hyperplanes.

(2) The open set S(U); nS(U);4+1 contains exactly one anti-Stokes hyperplane for
every i € Z/N'Z

(3) We have S(U); n S(U); n S(U)x = I for every i, 4,k € Z/N'Z distinct.
At the cost of shrinking e, any section g € I'(0U,Stoxs’) extends uniquely into a

1-cocycle for StjAD with respect to the cover S(U). Taking the associated Stokes
torsor defines a map

LRy : T(0U, Stox?) — H'(0U, St3f)
The restriction to ¢P induces a commutative diagram

(3.5.7) I'(2U, StoxP) — T'(@P, StoxP)

LRU\L JLRP

HY(0U,St3f) —— H*(0P,St3))

From our choice of cover, the bottom arrow in (3.5.7) is an isomorphism. At the
cost of refining the cover U, we can suppose that the top arrow in (3.5.7) is an
isomorphism. Since the relation (3.5.2) holds, proposition 3.4.1 implies that LRy
is an isomorphism.

If U, U’ € U, observe that the trace of the covers S(U) and S(U’) on o(U nU")
have a common refinement V such that the following diagram commutes

(U nU"),StoxP)

\

Hence, LRy and LRy coincide on U n U’ for every U, U’ € U. Thus, the (LRy)vey
glue into an isomorphism between p,Stors and R!p, Stf\,[D . This concludes the
proof of proposition 3.5.3.

LV, St5P)

S(U") n aU, St

O

3.6. A conjecture in the multi-level case. In this subsection, we restrict
to the case where D is smooth. The question whether Rlp,. St< and py StoM are
isomorphic is fruitful since it would imply that when D is smooth, the moduli of
Stokes torsors are affine spaces. We thus formulate the following
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CONJECTURE. Let X be a smooth complex algebraic variety. Let D be a smooth
divisor in X. Let M be a good meromorphic connection on X with poles along D.
Let p : X —> X be the real blow-up of X along D. Then, the local systems
Rlp, Stf\,lD and p*StojAD are isomorphic.

In the several level case, the difficulty comes from the fact that the paral-
lel transports for R'p Stf\,tD and py StojAD produce different cocycles that are not
equal on the nose, but might be cohomologous. The picture below illustrates this
phenomenon. The picture on the left features part of our initial element of the

g2 \

P Q

Stokes group above P. In this situation, two anti-Stokes hyperplanes L; and Lo
intersect once along the path joining P to ). Let us call x the intersection point.
Since the anti-Stokes hyperplanes are parallel to the Stokes hyperplanes, there is a
neighbourhood 2 of z in 0D not meeting any Stokes line coming from the differ-
ences of irregular values giving rise to L1 and Ls. In particular, g; and go extend
uniquely into sections g7 and gz of Stj,[D over ). When applying the parallel trans-
port for R'p, Stf,tD , we end up with the cocycle in the upper right picture. The
bottom right picture represents the effect of the parallel transport for p*Stof\,[D .
Finally, one passes from one cocycle to the other by permuting g1 and g>. Since
the Stokes sheaf is not commutative, it is not a priori clear that these cocycles are
cohomologous.

4. Application

The role of this paragraph is to provide non trivial examples of meromorphic
connections with poles along the fibre of an abelian scheme over a curve. This
answers a question asked to the author by Y. André. Trivial examples would be
split connections, connections coming from the base curve and their tensor product
with regular singular connexions on our abelian scheme. We also want to exclude
Stokes structures coming from sub-connections of the previous form. We thus prove
the following

PROPOSITION 4.0.1. Let C be a complex elliptic curve. Put A = C x A{, and
let p: A —> Al be the second projection. Let Ay be the fibre of p above 0. Then,
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there exists a rank 4 meromorphic connection M defined in a neighbourhood of Ay
and with poles along Ay such that

(1) The connection M is not of the form My ® p* Ms where My is a regular
connection on A with poles along Ay and where My is a meromorphic connection
on S with poles at 0.

(2) The connection M underlies a non trivial Stokes structure.

(8) The Stokes structure of any strict sub-connection of M is trivial.

PROOF. Let (y1,72) be a basis for the fundamental group of C(C). Let v3 be a
basis for the fundamental group of C*. Let Ay, As € GL2(C) be matrices such that
A has a unique eigenvalue A1 and As has a unique eigenvalue Ao with A1 # As and
such that ker(*Ay — A;) is one dimensional. For example, take z1, 22, 23, 24 non
zero complex numbers such that

Ay = <21 Z3>
22 24

has a unique non zero eigenvalue distinct from z;, and put

N 2T
A2 - <0 Zl)
For i = 1,2, let p; : m1 (A\Ap(C)) —> GL2(C) be the representation associating A;
to 71 and 5 and Id to 3. Let R; be the regular meromorphic connection on A
with poles along Ag induced by p;. Let a € OM(*O) with a pole of order d > 0 at
0. Put ‘
(4.0.2) N :=p*€"@R1 DR

Since Ry and Ry are non isomorphic, A satisfies the condition (1). From Theorem
5, the moduli space H'(0.Ay, StEAO) is a complex affine space. From [Tey18, 2.4.4],
we have

dim H'(0.Ay, St/f/Ao) = dim H"'( Ay, Irr%y, End )

From our choice for R; and R2, note that End A/ contains p*£¢ and p*E~% as
direct summands. Hence,

dim H' (A, StffA") > 2dim H* (Ao, Iy, p*EY)
2dim H' (Ag,p~ " Irr¥y, £%)
2dim H' (A, C¥[-1])

2d

\ARR\VARR\Y

Hence, H'(0.Ao, Stﬁ/‘o) is a non trivial affine space. From [Tey18, 2.2.1], a point of
H(0 Ay, St;/AO) distinct form the trivial torsor gives rise to a germ of meromorphic
connection M with poles along Ay satisfying conditions (1) and (2). Indeed, the
connection M satisfies (1) because N does, and by construction, M underlies a
non trivial Stokes structure.

We are left to show that M satisfies condition (3). That is, for every strict
sub-connection M’ of M, we have

H* (0 Ao, St3i) ~ 0

Let A be the split formal model of M’ along Ag. Then, N’ identifies to a non
trivial strict sub-connection of A. For ¢ = 1,2, let ; be the rank one connection
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on A corresponding to the character of 71 (A\Ay(C)) — C* associating A; to v
and 72, and 1 to v3. Then, the non trivial strict sub-connections of A are

P*E ® X1, X2, R2, P*E @R, p*E @ X1 ® X2, 0" E* @ x1 D R2,p*E @ R1 @ X2

If A is regular or is the twist of a regular connection by an exponential one, then
M’ does not underlie a non trivial Stokes structure. Hence, we can suppose that
N is one of the three last connections given in the above list. From Theorem 5,
the moduli space H'(0.Ay, Stfvl“‘,‘“) is a complex affine space. Let us show that it is
trivial. From [Tey18, 2.4.4], we have

dim H"(0.A, St;f,‘”) = dim H' (A, Irry  End M’)

From [Sab17, 1.2], there is a non canonical isomorphism

Irr%, End M’ ~ Ity End V'
Hence, we are left to show that

H' (Ao, Irr¥  End V') ~ 0

Since x1 and y3 are distinct, it is enough to show that for any non trivial character
X : m1(Ag(C)) — C*, we have

H' (Ao, Ity (p*E*® X)) ~ 0

where we abuse notation by denoting by X the pull-back to A of the rank one
connection on Ag induced by x. Let p4, : A —> A be the real blow-up of A along
Ap. From [Sab17, 3.2], we have

I (p*E€* ® X) ~ Rpag H' DR (p*e " @y )

Thus, we have to show that for any non trivial character x : m1(Ag(C)) — C*, we
have

HY(0A0, H* DR~ (p*E° @ x)) ~ 0

Let pg : C —> C be the real blow-up of C at 0. Observe that 0Ay ~ Ag x 00. Let U
be the open subset of d0 consisting in the directions along which e® has rapid decay
at 0. Note that F':= 00\U is a union of closed intervals. Let j : Ag x U — 0.4
and let 7 : Ag x F' — 0Ap be the canonical inclusions. Let L, be the local system
on Ap induced by x. Let £, be the pull-back of L, via 049 — Ao. Then, we
have

7'[0 DR<A0 (p*Sa ® X) ~ j!jilﬁx
Since y is not trivial, the sheaf i~1£, does not have non trivial global sections.
Hence, the long exact sequence in cohomology induced by

0——jij 1Ly —— Ly, ——ixi 1L, ——0

gives rise to an injective morphism H'(0Ag,jij~'Ly) — H'(0Ao, Ly). We are
thus left to show that £, is acyclic. Note that

RT(0Ag, Ly) ~ RT(00, Ry Ly,)

where 7 : 049 — 00 is the natural projection. Hence, it is enough to prove that
Rmy L, is zero. By proper base change theorem, the fibres of R, L, identify with
RT'(Ag, Ly). We get the desired vanishing from the fact that non trivial rank 1
local systems on elliptic curves are acyclic.

O
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