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Abstract. The goal of this paper is to build a theory of Stokes structures in an abstract
∞-categorical context and to show that Stokes structures coming from flat bundles form a
locally geometric derived stack of finite presentation. This generalizes existing geometricity
results on Stokes structures in four different directions : our result applies in any dimension,
∞-categorical coefficients are allowed, derived structures on moduli spaces are considered and
more general spaces than those arising from flat bundles are permitted.
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1. Introduction

Let (E,∇) be a rank n algebraic flat bundle on a smooth complex algebraic variety X. Then,
analytic continuation of the solutions of the differential system ∇ = 0 gives rise to a representation
ρ : π1(X)→ GLn(C) called the monodromy representation. If favourable conditions are imposed,
the data of ρ and (E,∇) are equivalent. In that case (E,∇) is called regular singular [13] and
this case is characterized by the fact that the formal solutions to ∇ = 0 automatically converge.
In general, the monodromy representation is not enough to capture all the analytic information
contained in (E,∇). As already seen by Stokes on the Airy equation [48], formal solutions to
∇ = 0 may not converge any more, but their interplay with analytic solutions is highly structured
and gives rise to what is nowadays called a Stokes structure or a Stokes filtered local system
[14, 3, 44]. To picture it, let us suppose that X is the affine line and let S1

∞ be the circle of
directions emanating from ∞. Then, the flat bundle (E,∇) has good formal structure at ∞,
meaning roughly that when restricted to a formal neighbourhood of ∞, it decomposes as a direct
sum of regular flat bundles twisted by rank one bundles. The theory of asymptotic developments
[46] then ensures the existence of a finite set St(E,∇) ⊂ S1

∞ of Stokes directions such that for
every d /∈ St(E,∇), any formal solution f̂ to ∇ = 0 at ∞ lifts to an analytic solution f in some
small enough sector S containing d. We also say that f̂ is the asymptotic development of f .
By Cauchy’s theorem, f admits an analytic continuation to any sector obtained by rotating S.
However, the asymptotic development is not preserved under the analytic continuation procedure
and may jump when crossing a Stokes line. This is the Stokes phenomenon. In practice, these
jumps are measured by matrices (one for each Stokes direction) called Stokes matrices. Note that
Stokes matrices are subjected to choices of basis. To get a more intrinsic presentation, let L be
the local system of solutions to ∇ = 0 on S1

∞. Then Deligne and Malgrange observed in [14] that
the Stokes phenomenon is recorded by a filtration of L by constructible subsheaves indexed by
OP1,∞(∗∞)/OP1,∞. Concretely for a ∈ OP1,∞(∗∞)/OP1,∞, we put

L≤a = {f ∈ L such that e−af has moderate growth ∞} .

Although this filtration is indexed by an infinite dimensional parameter space, only a finite number
of elements, called irregular values of (E,∇) contribute in a non trivial way.

On the other hands, representations of the fundamental group naturally form an algebraic
variety, the character variety. It is thus a natural question to ask whether Stokes structures
also form an algebraic variety. This question was answered in [8, 9, 28] in the curve case via
GIT methods. See also [6] for a stacky variant in the curve case. In dimension ≥ 2, several
major obstacles arise. The first one is that good formal structures breaks down. Still, Sabbah
conjectured [43] that good formal structure can be achieved at the cost of enough blow-up above
the divisor at infinity. This problem was solved independently by Kedlaya [29, 30] and Mochizuki
[37, 35]. Furthermore, given a smooth compact algebraic variety X and a simple normal crossing
divisor D, Mochizuki attached to every flat bundle (E,∇) on U := X \ D with good formal
structure along D a Stokes filtered local system (L,L≤) on the real blow-up π : X̃ → X along the
components of D, and showed that the data of (E,∇) and (L,L≤) are equivalent. Once strapped
in this setting, a second major obstacle in dimension ≥ 2 pertains to the stratified nature of good
formal structure. To explain it, suppose that X = C2, let D1, D2 be the coordinate axis and
let D be their union. Then, very roughly, good formal structure holds separately on the formal
neighbourhoods of 0, D1 \ {0} and D2 \ {0}. In dimension 1, the points at infinity are isolated so
their contributions to the moduli of Stokes structures don’t interact and can thus be analysed
separately. In higher dimension, the contributions of D1 \ {0}, D2 \ {0} and 0 are necessarily
intricated. This in particular makes it unclear how to use the moduli of Stokes torsors from [49]
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as smooth atlases in global situations. In this paper, we generalize all known construction of the
moduli of (possibly ramified) Stokes filtered local systems in four different ways:

(1) our result applies in any dimension;

(2) ∞-categorical coefficients are allowed;

(3) derived structures on moduli spaces are considered;

(4) more general spaces than those arising from flat bundles are permitted.
For representability results along these lines in the De Rham side see [38]. Before presenting

our main theorem, let us explain how stratified homotopy theory enters the game.

Let X be a complex manifold and let D be a normal crossing divisor. The starting point is
a transfer of Mochizuki’s notion of higher dimensional Stokes filtered local system in a purely
categorical setup. The first step of this transfer is channeled by the topological exodromy equivalence
from [32, 41, 54, 25] which converts a hyperconstructible hypersheaf with respect to a stratification
P of X into a functor from the ∞-category of Exit Paths Π∞(X,P ) attached to (X,P ). By
design, the objects of Π∞(X,P ) are the points of X and the morphisms between two points x
and y can be thought of as continuous paths γ : [0, 1] → X such that γ((0, 1]) lies in the same
stratum as y. Let I ⊂ OX(∗D)/OX be a good sheaf of irregular values (see Recollection 16.3.4).
Let π : X̃ → X be the real blow-up of X along D (see Construction 16.1.4). A point x ∈ X̃ with
π(x) ∈ D can be thought of as a line passing through π(x) and a section of π∗I near x as a
meromorphic function defined on some small multi-sector emanating from π(x). For two such
sections a and b, the relation

a ≤x b if and only if ea−b has moderate growth at x

defines an order on the germs of π∗I at x. This collection of orders upgrades π∗I into a sheaf of
posets that turns out to be constructible for a suitable choice of finite subanalytic stratification P
of X̃. Through the exodromy equivalence, π∗I thus corresponds to a functor Π∞(X̃, P )→ Poset
which in turn corresponds to a cocartesian fibration in posets I→ Π∞(X̃, P ) via the Grothendieck
construction. In this language, Stokes filtered local systems are special functors F : I→ E that
we call Stokes functors, where E is the category of C-vector spaces. A substantial part of the
paper is devoted to the analysis of the two conditions that make these functors special.

Splitting condition. This condition is punctual. For x ∈ X̃, let Ix ∈ Poset be the fibre of
I → Π∞(X̃, P ) above x and consider the restricted functor Fx : Ix → E. Let iIx : Iset

x → Ix
be the underlying set of Ix. Let iIx,! : Fun(Iset

x ,E) → Fun(Ix,E) be the left Kan extension
of i∗Ix : Fun(Ix,E) → Fun(Iset

x ,E). Then Fx is requested to lie in the essential image of iIx,!.
Unravelling the definition, the means that there is V : Ix → E such that for every a ∈ Ix, we have

Fx(a) '
⊕

b≤a in Ix

V (b) .

Induction condition. If γ : x → y is an exit path for (X̃, P ), it pertains to a prescription
of Fy by Fx via γ referred as induction in [37]. If γ : Ix → Iy is the morphism of posets
induced by γ : x → y and if γ! : Fun(Ix,E) → Fun(Iy,E) is the left Kan extension of the pull-
back γ∗ : Fun(Iy,E)→ Fun(Ix,E), Mochizuki’s condition translates purely categorically into the
requirement that the natural map γ!(Fx)→ Fy is an equivalence.

Remark 1.1. When the sheaf I is trivial, the splitting condition is trivial and the induction
condition is an instance of parallel transport from x to y. So in this case, Stokes functors are
nothing but local systems on X̃ (see Construction 16.1.4).
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The splitting and induction conditions have purely categorical formulations. This motivates
the following

Definition 1.2. Let X be an ∞-category. Let I→ X be a cocartesian fibration in posets. Let E
be a presentable ∞-category. A Stokes functor is a functor F : I→ E satisfying the splitting and
induction conditions. We denote by StI,E ⊂ Fun(I,E) the full subcategory spanned by Stokes
functors and by StI,E,ω ⊂ StI,E the subcategory spanned by Stokes functors with value in compact
objects of E.

One major obstacle to work ∞-categorically is to make sense of the induction condition
in a sufficiently synthetic way to minimize the amount of ∞-categorical data required for its
check. This is achieved through the specialization formalism developed in a first part of the
paper. The gains with this approach are streamlined proofs of crucial properties for Stokes
functors: preservation under cartesian pull-back and induction over a fixed base (Corollary 8.3.4),
invariance under localisation of the base (Proposition 8.3.5), preservation under graduation
(Proposition 9.4.9), explicit description when X has an initial object (Proposition 8.2.5), spreading
out (Theorem 11.4.1), compatibility with tensor product in PrL (Proposition 8.6.5), categorical
actions of local systems (Corollary 8.8.5), Van Kampen (Proposition 8.5.1) and existence of
t-structures (Proposition 8.7.11). When X is the ∞-category of Exit Paths of some manifold
endowed with a subanalytic stratification, we introduce the following:

Definition 1.3. Let M be a manifold. Let X ⊂M be a locally closed subanalytic subset and let
X → P be a subanalytic stratification. A Stokes fibration over (X,P ) is a cocartesian fibration
in posets I→ Π∞(X,P ). The data of (X,P, I) is referred to as a Stokes analytic stratified space.

Similarly to Stokes lines, one can define the Stokes loci:

Definition 1.4. Let (X,P, I) be a Stokes analytic stratified space and let a, b be cocartesian
sections of I→ Π∞(X,P ). Then, the Stokes locus of {a, b} is the set of points x ∈ X such that
ax and bx cannot be compared in Ix.

The simplest Stokes analytic stratified spaces are those for which the order plays no role.

Example 1.5. We say that a Stokes analytic stratified space (X,P, I) is elementary if for every
presentable stable ∞-category E, the left Kan extension iI! : Fun(Iset,E)→ Fun(I,E) induces an
equivalence between StIset,E and StI,E.

The following is the main result of this paper :

Theorem 1.6 (Theorem 16.6.15). Let X be a complex manifold admitting a smooth compactifica-
tion. Let D be a normal crossing divisor in X and put U := X \D. Let π : X̃ → X be the real-blow
up along D and j : U → X̃ the inclusion. Let I ⊂ (j∗OU )/(j∗OU )lb be a good sheaf of irregular
values and let X̃ → P be a finite subanalytic stratification such that I is P -hyperconstructible.
Let (X̃, P, I) be the associated Stokes analytic stratified space. Let k be an animated commutative
ring. Then the prestack

StI : dAffop
k → Spc

defined by the rule
StI(Spec(A)) := (StI,ModA,ω)'

is locally geometric of finite presentation. Moreover, for every animated commutative k-algebra A
and every morphism

x : Spec(A)→ StI

classifying a Stokes functor F : I→ PerfA, there is a canonical equivalence

x∗TStI ' HomFun(I,ModA)(F, F )[1] ,
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where TStI denotes the tangent complex of StI and the right hand side denotes the ModA-enriched
Hom of Fun(I,ModA).

There are at least three reasons justifying the use of derived algebraic geometry. First, it is
sensitive to the full stratified homotopy type Π∞(X̃, P ) and not only its underlying 1-category.
By analogy with character varieties [21, 50] and the curve case [8, 9, 45], we expect StI to carry
a shifted symplectic structure in the sense of [39], which is typically invisible from the viewpoint
of classical algebraic geometry in dimension ≥ 2. Finally, derived algebraic geometry provides an
interpretation of the cohomology of Stokes functors as cotangent complexes for StI, leading to a
better control of its infinitesimal theory than in the classical context. These aspects will be the
topics of future works.

The proof of Theorem 1.6 goes through the identification of the prestack StI with Toën-
Vaquié moduli of objects attached to StI,Modk , which is known to be locally geometric of finite
presentation by the main result [51]. At the core of this identification is the following

Theorem 1.7 (Theorem 12.1.3). In the setting of Theorem 1.6, let E be a presentable stable
∞-category. Then, the subcategory StI,E ⊂ Fun(I,E) is stable under limits and colimits.

Let us explain why Theorem 1.7 is striking. Let F• : I → StI,E be a diagram of Stokes functors
and let F := limFi be its limit computed in Fun(I,E). Then, for every i ∈ I and every x ∈ X̃,
the splitting condition for Fi at x yields an equivalence Fi,x ' iIx,!(Vi) where Vi : Iset

x → E is a
functor. Observe that these equivalences are non canonical, so they typically cannot be rearranged
into a diagram V• : I → Fun(Iset

x ,E) realizing the splitting of F at x. What Theorem 1.7 says is
that for Stokes stratified spaces coming from the theory of flat bundles, such a rearrangement
exists. As immediate corollary of Theorem 1.7, we deduce the following

Theorem 1.8 (Theorem 12.1.1 and Corollary 12.1.6). In the setting of Theorem 1.7, the following
hold;

(1) For every presentable stable ∞-category E, the ∞-category StI,E is presentable stable.

(2) For every Grothendieck abelian category A, the category StI,A is Grothendieck abelian.

When A is the category of vector spaces over a field, (2) reproduces a theorem of Sabbah
[44, Corollary 9.20]. This is again striking since over a point, Stokes functors neither form a
presentable stable ∞-category nor an abelian category. In the same vein, we show the following:

Theorem 1.9 (Theorem 12.3.5). In the setting of Theorem 1.6, let E be a k-linear presentable
stable ∞-category of finite type (see Definition 17.3.1). Then, StI,E is k-linear of finite type. In
particular, StI,E is a smooth non-commutative space.

One could package the above results in the following

Slogan 1.10. For Stokes stratified spaces coming from flat bundles, the ∞-category of Stokes
functors inherits the properties of its coefficients.

We refer to Theorem 14.2.2 for a possible way of transforming this slogan into a precise statement.

In a nutshell, the moduli functor from Theorem 1.6 parametrizes “Stokes filtered perfect
complexes”. From this perspective, actual Stokes filtered local systems correspond to objects
concentrated in degree 0. It turns out that these can also be organized into a sub pre-stack
Stflat

I,k ⊂ StI,k satisfying the following

Theorem 1.11 (Theorem 13.3.4). In the setting of Theorem 1.6, the pre-stack Stflat
I,k is a derived

1-Artin stack locally of finite type.
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In particular, the truncation of Stflat
I,k , namely its restriction to discrete k-algebra is an Artin

stack locally of finite type in the classical sense.

Although stated in the context coming from flat bundles, the above theorems hold more
generally for what we call families of Stokes analytic stratified spaces locally admitting a piecewise
elementary level structure. To explain this, let us introduce the following

Definition 1.12. Let (X,P, I) be a Stokes analytic stratified space and let p : I → J be a
morphism of Stokes fibrations over (X,P ). We say that p : I→ J is a level morphism if for every
x ∈ X and every a, b ∈ Ix, we have

p(a) < p(b) in Jx ⇒ a < b in Ix .

Definition 1.12 is an axiomatization of a standard dévissage procedure in the classical theory
of Stokes structures. If we consider the fibre product Ip := Jset×J I, this dévissage is traditionally
used to reduce the study of (X,P, I) to that of (X,P, J) and (X,P, Ip). This is effective since
the level morphisms naturally occurring classically are so that J has less objects than I while Ip
comes with extra properties. In this paper, we show that the power of this reduction procedure
has a purely categorical explanation, which seems to be new already in the classical setting (see
Theorem 10.2.1 for a more precise statement in a purely ∞-categorical context):

Theorem 1.13. Let (X,P, I) be a Stokes analytic stratified space and let p : I → J be a level
graduation morphism of Stokes fibrations over (X,P ). Let E be a presentable stable ∞-category.
Then, there is a pullback square

StI,E StJ,E

StIp,E StJset,E

in Cat∞.

The extra property of (X,P, Ip) alluded to is what we call piecewise elementary (see Defini-
tion 11.3.19). In a nutshell, it means that every point admits a subanalytic closed neighbourhood
Z such that the induced Stokes analytic stratified space (Z,P, Ip|Z) is elementary in the sense of
Example 1.5. That one can find such cover is typically possible when the differences of irregular
values have the same pole order. This follows from the following result, whose statement is
inspired from [36, Proposition 3.16]:

Theorem 1.14 (Theorem 15.2.4). Let (C,P, I) be a Stokes analytic stratified space in finite
posets where C ⊂ Rn is a polyhedron and Iset → Π∞(C,P ) is locally constant. Assume that
for every distinct cocartesian sections a, b of I→ Π∞(C,P ), there exists a non zero affine form
ϕ : Rn → R such that

(1) The Stokes locus of {a, b} is C ∩ {ϕ = 0} (see Definition 1.4).

(2) C \ {ϕ = 0} admits exactly two connected components C1 and C2.

(3) ax < bx in Ix for every x ∈ C1 and ax < bx for every x ∈ C2.
Then (C,P, I) is elementary.

Linear overview. The paper is divided in four parts.

Part 1. The constructible sheaf of Stokes data. After reviewing the exodromy equivalence
of [41, 25], we discuss a categorical construction known as the exponential construction, that
plays a central role in this paper. Then, we introduce the notion of Stokes stratified space and
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the related notion of Stokes loci. Via the exponential construction, we introduce the constructible
sheaf of Stokes data and work out some basic examples.

Part 2. Categorical aspects. In this part, we develop the ∞-categorical framework needed in
the study of Stokes functors. We start by refining our analysis of the exponential construction
via the specialization equivalence. Later, we separately study the property of being cocartesian
and punctually split. This leads to the basic functorialities of the ∞-categories of Stokes functors
(see Corollary 8.3.4) and to their fundamental properties such the invariance by localization (see
Proposition 8.3.5), Van Kampen (see Proposition 8.5.1) and the existence of t-structures (see
Proposition 8.7.11). In the later §§9–10, we develop the theory of graduation and the notion of
level structure. We study the compatibility of the graduation procedure with Stokes functors and
the interaction with their basic functorialities. Theorem 10.2.1 is in many ways the crucial result
of this part, establishing the categorical basis of the level induction technique used to prove the
main results of the next part.

Part 3. Geometric aspects. In this part, we place ourselves in the geometric setting. In
Section 11.3, we introduce the fundamental notion of elementarity and its variants and we later
prove a spreading out theorem for elementary subsets in the setting of Stokes analytic stratified
spaces (see Theorem 11.4.1). Assuming the existence of a ramified piecewise linear level structure,
we prove the main theorems concerning Stokes functors: that they form a presentable stable
∞-category (see Theorem 12.1.1), their non-commutative smoothness (see Theorem 12.3.5) and
the representability of the derived stack of Stokes structures (see Theorem 13.1.4). In §15, we
develop the elementarity criterion based on the geometry of the Stokes loci (see Theorem 15.2.4)
and in §16 we study the Stokes stratified spaces arising from the theory of flat bundles, notably
establishing the existence of ramified piecewise linear level structures (see Corollary 16.5.5).

Part 4. Categorical complements. This part is essentially intended as an appendix to
the main body of the paper. Nevertheless, it turns out that the language of the specialization
equivalence is a powerful categorical tool that allows to prove structural results on cocartesian
fibrations. In Theorem 17.1.2, we establish a local-to-global principle for compactness of the total
space of a cocartesian fibration. In Theorem 18.2.1, we give a new and model-independent proof
of Hinich’s theorem [27]. Last but not least, in §§19–20 we introduce the notion of finite étale
(cocartesian) fibration. This notion plays a crucial role in the proof of the retraction lemma (see
Corollary 8.8.6) that allows to treat ramified Stokes structures.

Acknowledgments. We are grateful to Enrico Lampetti, Guglielmo Nocera, Tony Pantev, Marco
Robalo and Marco Volpe for useful conversations about this paper. We especially thank Peter
J. Haine for fruitful collaborations on the exodromy theorems. We thank the Oberwolfach
MFO institute that hosted the Research in Pairs “2027r: The geometry of the Riemann-Hilbert
correspondence”. We also thank the CNRS for delegations and PEPS “Jeunes Chercheurs Jeunes
Chercheuses” fundings, as well as the ANR CatAG from which both authors benefited during the
writing of this paper.
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Part 1. The constructible sheaf of Stokes data

In this part, we introduce the main geometrical object of interest of the paper: Stokes stratified
spaces, i.e. stratified spaces equipped with a constructible sheaf of posets. This sheaf of posets
allows to define Stokes loci (see Definition 4.2.2), and to introduce the constructible sheaf of
Stokes functors (see Definition 5.2.3). Much of the later parts of this paper, will be devoted to
understand the properties of the global sections of this sheaf.

2. Stratified spaces and constructible sheaves

We begin giving a brief review of the exodromy correspondence [41, 25].

2.1. Atomic generation. Let C be a presentable ∞-category. Recall that an object c ∈ C is
atomic if the functor

MapC(c,−) : C→ Spc

preserves all colimits. Write Cat ⊂ C for the full subcategory spanned by the atomic objects. We
say that C is atomically generated if the unique colimit-preserving extension

PSh(Cat) ↪→ C

of Cat ⊂ C along the Yoneda embedding is an equivalence.

2.2. Stratifications and hyperconstructible hypersheaves.

Recollection 2.2.1. If P be a poset, we endow P with the topology whose open subsets are the
closed upward subsets Q ⊂ P . That is for every a ∈ Q and b ∈ P such that b > a, we have b ∈ Q.

Definition 2.2.2. Let X be a topological space. Let P be a poset. A stratification of X by P is
a continuous morphism X → P .

Remark 2.2.3. We abuse notations by denoting a stratification of X by P as (X,P ) instead of
X → P and refer to (X,P ) as a stratified space. The collection of stratified spaces organize into
a category in an obvious manner.

Example 2.2.4. Let X be a topological space. Let A be a finite family of closed subsets of X.
Then, the map pA : X → Fun(A,∆1) sending x ∈ X to the function χx : A→ ∆1 defined by

χx(F ) :=

{
0 if x ∈ F
1 otherwise

is a stratification of X. We note by (X,A) the associated stratified space.

Remark 2.2.5. When X is a manifold and A is the set of irreducible components of a strict
normal crossing divisor D, we note (X,D) instead of (X,A).

Definition 2.2.6. Let (X,P ) be a stratified space. Let E be a presentable ∞-category. An
hypersheaf F : Open(X)op → E with value in E is hyperconstructible if for every p ∈ P , the hyper-
sheaf i∗,hyp

p (F ) is locally hyperconstant on Xp, where ip : Xp → X denotes the canonical inclusion.
We denote by Conshyp

P (X;E) the full-subcategory of Shhyp(X;E) spanned by hyperconstructible
hypersheaves on (X,P ).



HOMOTOPY THEORY OF STOKES STRUCTURES AND DERIVED MODULI 9

2.3. Exodromic stratified spaces. Following [12, 25] we introduce the following definition:

Definition 2.3.1. A stratified space (X,P ) is said to be exodromic if it satisfies the following
conditions:

(1) the ∞-category Conshyp
P (X) is atomically generated;

(2) the full subcategory Conshyp
P (X) ⊂ Shhyp(X) is closed under limits and colimits;

(3) the functor p∗ : Fun(P,Spc)→ Conshyp
P (X) commutes with limits.

We denote by ExStrat the category of exodromic stratified spaces with stratified morphisms
between them.

Example 2.3.2 ([41, Theorem 5.18]). Every conically stratified space with locally weakly
contractible strata is exodromic.

Definition 2.3.3. Let (X,P ) be an exodromic stratified space. We define the ∞-category of
exit paths Π∞(X,P ) as the opposite of the full subcategory of Conshyp

P (X) spanned by atomic
objects.

Recollection 2.3.4. Let f : (X,P )→ (Y,Q) be a morphism between exodromic stratified spaces.
By [25, Theorem 3.2.3] the functor f∗,hyp : Conshyp

Q (Y )→ Conshyp
P (X) admits a left adjoint

fhyp
] : Conshyp

P (X)→ Conshyp
Q (Y )

which preserves atomic objects. It therefore induces a well defined functor

Π∞(f) : Π∞(X,P )→ Π∞(Y,Q) .

Using the equivalence PrL,at ' Catidem
∞ , we can promote this construction to a functor

Π∞ : ExStrat→ Cat∞ .

Recollection 2.3.5. For an exodromic stratified space (X,P ), there is a canonical equivalence

(2.3.6) Fun(Π∞(X,P ),Cat∞) ' Conshyp
P (X,Cat∞)

referred to as the exodromy equivalence. By [25, Theorem 0.3.1], the exodromy equivalence (2.3.6)
is especially well-behaved with respect to stratified morphisms. Namely for every morphism
f : (X,P )→ (Y,Q) between exodromic stratified spaces, the following square

Fun(Π∞(Y,Q),Cat∞) Conshyp
Q (Y,Cat∞)

Fun(Π∞(X,P ),Cat∞) Conshyp
P (X,Cat∞)

∼

Π∞(f)∗ fhyp,∗

∼

commutes. In particular, if F ∈ Conshyp
P (X,Cat∞) corresponds to F : Π∞(X,P )→ Cat∞ trough

the exodromy equivalence, then are canonical equivalences F(X) ' lim
Π∞(X,P )

F and Fx ' F (x) for

every x ∈ X.

Remark 2.3.7. The exodromy equivalence and its functorialities also hold with coefficients in
PrL (see [25, Proposition 4.2.5]).

Proposition 2.3.8 ([25, Theorem 3.3.6]). Let (X,P ) be a stratified space and let R→ P be a
refinement such that (X,R) is exodromic. Then, (X,P ) is exodromic and the induced functor

Π∞(X,R)→ Π∞(X,P )

exhibits Π∞(X,P ) as the localization of Π∞(X,R) at the set of arrows sent to equivalences by
Π∞(X,R)→ R→ P . In particular, the above functor is final and cofinal.
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Remark 2.3.9 ([25, Proposition A.3.16]). In the setting of Proposition 2.3.8, the ∞-category
Π∞(X,P ) is compact (resp. finite) if Π∞(Y,Q) is compact (resp. finite).

Definition 2.3.10 ([25, Definition 5.2.4]). Let (X,P ) be a stratified space. We say that (X,P )
is conically refineable if there exists a refinement R→ P such that (X,R) is conically stratified
with locally weakly contractible strata.

Remark 2.3.11. A conically refineable stratified space is exodromic in virtue of Example 2.3.2
and Proposition 2.3.8.

Definition 2.3.12. Let (X,P ) be an exodromic stratified space. Let Z ⊂ X be a locally closed
subset such that (Z,P ) is exodromic. Let U ⊂ X be an open neighbourhood of Z. We say that
U is final at Z if (U,P ) is exodromic and if the functor

Π∞(Z,P )→ Π∞(U,P )

is final.

Proposition 2.3.13 ([25, Corollary 3.4.5]). Let (X,P ) be an exodromic stratified space. Let
U• be an étale hypercover of X such that (Un, P ) is exodromic for every [n] ∈ ∆s. Then, the
canonical functor

colim Π∞(U•, P )→ Π∞(X,P )

is an equivalence.

Remark 2.3.14. In the setting of Definition 2.3.12, if U is final at Z, then the inclusion Z ↪→ U
is a homotopy equivalence. Indeed, [31, Proposition 4.1.1.3-(3)] guarantees that Π∞(Z,P ) →
Π∞(U,P ) is an equivalence after passing to the enveloping ∞-groupoid. But Proposition 2.3.8
implies that

Env(Π∞(Z,P )) ' Π∞(Z) and Env(Π∞(U,P )) ' Π∞(U) ,

so the conclusion follows.

Definition 2.3.15 ([41, Definition 2.3.2]). Let (X,P ) be an exodromic stratified space. Let
Z ⊂ X be a locally closed subset such that (Z,P ) is exodromic. We say that (X,P ) is final Z if the
collection of final at Z open neighbourhoods of Z forms a fundamental system of neighbourhoods
of Z.

Definition 2.3.16. Let (X,P ) be an exodromic stratified space. Let Z ⊂ X be a locally closed
subset such that (Z,P ) is exodromic. We say that (X,P ) is hereditary final at Z if for every
open subset U ⊆ X, the stratified space (U,P ) is final at U ∩ Z.

2.4. Triangulations and hereditary finality. The goal of this subsection is to prove some
hereditary final property (Definition 2.3.16) for stratified spaces admitting a locally finite triangu-
lation. Before doing this, we need intermediate notations and lemmas.

Let K = (V, F ) be a simplicial complex. We denote by |K| the geometric realization of K. By
construction, a point in |K| is a function x : V → [0, 1] supported on a face of K and such that∑
v∈V x(v) = 1. Let us endow the set of faces F of K with the inclusion. Let SuppK : |K| → F

be the support function.

Theorem 2.4.1 ([32, Theorem A.6.10]). Let K = (V, F ) be a locally finite simplicial complex.
The stratified space (|K|, F ) is conically stratified with contractible strata and the structural
morphism

Π∞(|K|, F )→ F

is an equivalence of ∞-categories.
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Definition 2.4.2. Let K be a simplicial complex and let S be a simplicial subcomplex of K. We
say that S is full if for every face σ of K, the subset σ ∩ S is empty or is a face of S.

Lemma 2.4.3. Let K = (V, F ) be a locally finite simplicial complex. Let S = (V (S), F (S)) be a
full subcomplex of K. Put

U(S,K) := {x ∈ |K| such that V (S) ∩ SuppK(x) 6= ∅} .
Then, U(S,K) is final at |S|.

Proof. By Theorem 2.4.1, the category Π∞(U(S,K), F ) identifies with the subposet P (S) of F
of faces containing at least one vertex in S. We have to show that the inclusion F (S)→ P (S) is
final. Let σ ∈ P (S). Then, F (S)×P (S) P (S)/σ identifies with the poset of faces of K contained
in S and σ. Since σ contains at least one vertex of S, the poset F (S)×P (S) P (S)/σ is not empty.
Since S is full in K, we deduce that F (S)×P (S) P (S)/σ admits a maximal element, and is thus
weakly contractible. This finishes the proof of Lemma 2.4.3. �

Definition 2.4.4. Let (X,P ) be a stratified space. A triangulation of (X,P ) is the data of (K, r)
where K = (V, F ) is a simplicial complex and r : (|K|, F )→ (X,P ) is a refinement. We say that
(K, r) is locally finite if K is locally finite.

The existence of a (locally finite) triangulation is compatible with restriction to an open subset.

Lemma 2.4.5. Let (X,P ) be a stratified space admitting a (locally finite) triangulation. Let U
be an open subset in X. Then (U,P ) admits a (locally finite) triangulation.

Proof. LetK = (V, F ) be a simplicial complex and let r : (|K|, F )→ (X,P ) be a refinement. Then,
(r−1(U), F )→ (U,P ) is a refinement. From [17, Theorem 1], there exists a simplicial complex
L = (V (L), F (L)) and a refinement s : (|L|, F (L)) → (r−1(U), F ). Hence, r ◦ s : (|L|, F (L)) →
(U,P ) is a refinement. That L is locally finite if K is locally finite follows from [47, Theorem 8 (p.
119)]. �

Lemma 2.4.6. Let r : (X,P )→ (Y,Q) be a refinement between exodromic stratified spaces. Let
Z ⊂ Y be a locally closed subset and put T := r−1(Z). Let U ⊂ X be an open subset final at T
in the sense of Definition 2.3.15. Then r(U) is final at Z. In particular, if (X,P ) is final at T ,
then (Y,Q) is final at Z.

Proof. There is a commutative diagram of ∞-categories

Π∞(T, P ) Π∞(Z,Q)

Π∞(U,P ) Π∞(r(U), Q)

where the left vertical functor is final. From Proposition 2.3.8, the horizontal functors are
localizations. They are thus final functors from [11, 7.1.10]. From [31, 4.1.1.3], we deduce that
Π∞(Z,Q)→ Π∞(r(U), Q) is final. Lemma 2.4.6 is thus proved. �

Proposition 2.4.7. Let (X,P ) be an exodromic stratified space admitting a locally finite trian-
gulation. Then, for every locally closed subposet Q ⊂ P , (X,P ) is hereditary final at XQ in the
sense of Definition 2.3.16.

Proof. Let U ⊂ X be an open subset. We have to show that (U,P ) is final at U ∩ XQ. By
Lemma 2.4.5, (U,P ) admits a locally finite triangulation. At the cost of replacing X by U , we
are left to show that (X,P ) is final at XQ. Write Q = F ∩O where F ⊂ P is closed and where
O ⊂ P is open. To show that (X,P ) is final at XQ amounts to show that (XO, O) is final at
XQ. From Lemma 2.4.5 again, we are left to show that (X,P ) is final at XQ where Q ⊂ P
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is closed. Applying Lemma 2.4.5 one last time, we are left to show that there exists an open
subset U ⊂ X final at XQ where Q ⊂ P is closed. Let K = (V, F ) be a locally finite simplicial
complex and let r : (|K|, F ) → (X,P ) be a refinement. Since Q ⊂ P is closed, r−1(Q) ⊂ F is
closed. Hence, r−1(Q) is the set of faces of a simplicial subcomplex S = (V (S), F (S)) of K.
At the cost of replacing K by its barycentric subdivision, we can suppose that S is full in the
sense of Definition 2.4.2. By Lemma 2.4.6, it is enough to show that there exists an open subset
U ⊂ |K| containing |S| such that U is final at |S|. The existence of such open subset is provided
by Lemma 2.4.3. �

2.5. Subanalytic stratified space. In this subsection, we introduce the class of exodromic
stratified spaces relevant for the study of Stokes structures coming from flat bundles.

Definition 2.5.1. A subanalytic stratified space is the data of (M,X,P ) where M is a smooth
real analytic space, X ⊂ M a locally closed subanalytic subset and where X → P is a locally
finite stratification by subanalytic subsets.

A morphism f : (M,X,P )→ (N,Y,Q) of subanalytic stratified spaces is an analytic morphism
f : M → N inducing a stratified morphism f : (X,P )→ (Y,Q) such that the graph of f : X → Y
is subanalytic.

Notation 2.5.2. We denote by AnStrat the category of subanalytic stratified spaces and
subanalytic stratified morphisms between them.

Remark 2.5.3. If the stratification X → P satisfies Whitney’s conditions, a theorem of Mather
[34] implies that (X,P ) is conically stratified with locally weakly contractible strata. In that case
we say that (M,X,P ) is a Whitney stratified space. Note that every subanalytic stratified space
admits a Whitney refinement.

Remark 2.5.4 ([25, Theorem 5.3.9]). For every subanalytic stratified space (X,P ) and every
open subset U ⊂ X, the stratified space (U,P ) is conically refineable in virtue of Remark 2.5.3.
Hence it is exodromic by Remark 2.3.11.

Remark 2.5.5. For a subanalytic stratified space (M,X,P ), we will often drop the reference to
M and denote it by (X,P ).

Proposition 2.5.6 ([25, Proposition 5.2.9]). Let (M,X,P ) be a subanalytic stratified space.
Then, every point x ∈ X admits a fundamental system of open neighbourhoods U such that x is
an initial object in Π∞(U,P ).

Proposition 2.5.7 ([25, Theorem 5.3.9]). Let (M,X,P ) be a subanalytic stratified space. Assume
that X is relatively compact in M . Then, (X,P ) is categorically finite, that is Π∞(X,P ) is a
finite ∞-category.

Lemma 2.5.8. Let (M,X,P ) be a subanalytic stratified space. Let F ∈ Shhyp(X,Cat∞). Let A
be a finite family of locally closed subanalytic subsets of X such that F|Z ∈ Lochyp(Z,Cat∞) for
every Z ∈ A. Then there is a subanalytic refinement Q→ P such that F ∈ Conshyp

Q (X,Cat∞).
If furthermore P is finite, Q can be chosen finite as well.

Proof. For Z ∈ A, write Z = F ∩ U where F is closed and U is open. Then Z = Z ∩ U , so that
Z is open in Z. Hence, the map M → ∆2 defined by

Z \ Z → 0, Z → 1, M \ Z → 2

is a stratification of M . The stratification M → P × Fun(A,∆2) does the job. �

Lemma 2.5.9. Let (M,X,P ) be a subanalytic stratified space. Then for every locally closed
subset Q ⊂ P , (X,P ) is hereditary final at XQ in the sense of Definition 2.3.16.
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Proof. By [22], the stratified space (X,P ) admits a locally finite triangulation. Then Lemma 2.5.9
follows from Proposition 2.4.7. �

Proposition 2.5.10. Let f : (M,X,P )→ (N,Y,Q) be a proper morphism between subanalytic
stratified spaces. Then the following hold

(1) There is a subanalytic refinement S → Q such that for every F ∈ Conshyp
P (X;Cat∞), we

have f∗(F) ∈ Conshyp
S (Y ;Cat∞).

(2) For every F ∈ Conshyp
P (X;Cat∞), the formation of f∗(F) commutes with base change.

Proof. By [23, 1.7], there is a refinement

(M,X,R) (M,X,P )

(N,Y, S) (N,Y,Q)

by a morphism of Whitney stratified spaces submersive on each strata. By Thom first isotopy
lemma [34], we deduce that (X,R)→ (Y, S) is a stratified bundle above each stratum of (Y, S)
By [53, 3.7], the fibres of f are Whitney stratified spaces. They are thus conically stratified spaces
with locally weakly contractible strata by Remark 2.5.3. By Lemma 2.5.9, for every locally closed
subset T ⊂ R, (X,R) is hereditary final at XT . Hence, [41, Proposition 6.10.7-(a)] shows that
S → Q satisfies (1). To prove (2), it is enough to prove base change along the inclusion of a
point. Then, one further reduces to the case where f : (M,X,P )→ (N,Y,Q) is a morphism of
Whitney stratified spaces submersive on each strata. In this case, (2) follows from [41, Proposition
6.10.7-(b)]. �

3. Cocartesian fibrations and the exponential construction

We now review some ∞-category theory that has been developed in the companion paper
[40]. We need this technology for two reasons: (i) to provide a streamlined definition of the
category of Stokes stratified spaces, and (ii) to show that we can functorially attach to every
Stokes stratified space a constructible sheaf of ∞-categories, whose global sections is exactly the
associated ∞-category of Stokes structures.

3.1. Dual fibrations. Following the companion paper [40] we introduce the∞-category CoCart.
We start from the cartesian fibration

t : Cat[1]
∞ := Fun(∆1,Cat∞)→ Cat∞

sending a functor A→ X to its target ∞-category. We then pass to the dual cocartesian fibration,
in the following sense:

Definition 3.1.1. Let p : A → X be a cartesian fibration and let ΥA : Xop → Cat∞ be its
straightening. The dual cocartesian fibration p? : A? → Xop is the cocartesian fibration classified
by ΥA.

Recollection 3.1.2. In the setting of the above definition, recall from [5] that objects of A?
coincide with the objects of A, while 1-morphisms a→ b in A? are given by spans

a c bu v

where u is p-cocartesian and p(v) is equivalent to the identity of p(b).
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We let

B : Cat[1]?
∞ → Catop

∞

be the cocartesian fibration dual to t. Specializing Recollection 3.1.2 to this setting, we see that
objects of Cat[1]?

∞ are functors A→ X, and morphisms f = (f, u, v) from B→ Y to A→ X are
commutative diagrams in Cat∞ of the form

(3.1.3)
B BX A

Y X

vu

f

where the square is a pullback. With respect to this description, B sends A → X to its target
(or base) X, and a diagram as above defines a B-cocartesian morphism if and only if v is an
equivalence.

We define CoCart to be the (non-full) subcategory of Cat[1]?
∞ whose objects are cocartesian

fibrations, and whose 1-morphisms are commutative diagrams as above where v is required to
preserve cocartesian edges. In this way, CoCart becomes a cocartesian fibration over Catop

∞ such
that CoCart→ Cat[1]?

∞ preserves cocartesian edges. Notice that the fiber at X ∈ Catop
∞ coincides

with the ∞-category CoCart/X. We will also need a couple of variants of this construction:

Variant 3.1.4. We let PosFib ⊂ CoCart be the full subcategory spanned by those cocartesian
fibrations A→ X whose fibers are posets.

Variant 3.1.5. Let Cat∞ be the ∞-category of large ∞-categories and consider the following
fiber product:

C := Fun(∆1,Cat∞)×Cat∞ Cat∞ ,

where we used the target morphism t : Fun(∆1,Cat∞)→ Cat∞. In other words, objects in C

are morphisms p : A→ X where X is a small ∞-category and the fibers of p are not necessarily
small ∞-categories. The induced morphism t : C → Cat∞ is a cartesian fibration. Inside the
dual cocartesian fibration C?, we define CoCart as the subcategory spanned by cocartesian
fibrations and whose 1-morphisms are diagrams (3.1.3) where v preserves cocartesian edges.

Variant 3.1.6. We let PrFibL ⊂ CoCart be the subcategory spanned by cocartesian fibrations
with presentable fibres and whose 1-morphisms are diagrams (3.1.3) that are morphisms in
CoCart such that for every x ∈ X, the induced functor vx : Bf(x) → Ax is a morphism in PrL,
i.e. is cocontinuous. PrFibL is the ∞-category of presentable cocartesian fibrations [40, §3.4].

Recollection 3.1.7. BothCoCart and PrFibL can be promoted toCatop
∞-families of symmetric

monoidal ∞-categories CoCart⊗ and PrFibL,⊗, in the sense of [40, Definition A.1]. Concretely,
this provides for every X ∈ Catop

∞ a symmetric monoidal structure on the fiber CoCartX
and PrFibL

X of B : CoCart → Catop
∞ and B : PrFibL → Catop

∞ . Invoking the straightening
equivalence [31, Theorem 3.2.0.1], we find canonical identifications

(3.1.8) CoCartX ' Fun(X,Cat∞) and PrFibL
X ' Fun(X,PrL) .

Under these equivalences, the above symmetric monoidal structures correspond to those induced
respectively by the cartesian product on Cat∞ and the tensor product on PrL as defined in [32,
§4.8.1].
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3.2. Exponential construction. Fix a presentable ∞-category E.

Construction 3.2.1. Let p : A → X be a cocartesian fibration. Let ΥA : X → Cat∞ be its
straightening and consider the functor

Fun!(ΥA(−),E) : X→ PrL ,

where Fun! denotes the functoriality given by left Kan extensions. We write

expE(A/X)→ X

for the presentable cocartesian fibration classifying Fun!(ΥA(−),E). We refer to expE(A/X) as
the exponential fibration with coefficients in E associated to p : A→ X.

Example 3.2.2. Assume that X = ∗ is the category with one object and one (identity) morphism.
Then CoCartX ' Cat∞ and PrFibL

X ' PrL. In this case, expE(A) ' Fun(A,E).

Example 3.2.3. Assume that X = ∆1, so that we can represent ΦA as a single functor
f : A0 → A1. In this case, the functor Fun!(ΥA(−),E) : ∆1 → PrL is identified with the functor

f! : Fun(A0,E)→ Fun(A1,E) ,

where f! denotes the left Kan extension along f . Therefore we can understand expE(A/∆1) as
the presentable cocartesian fibration over ∆1 whose objects are pairs (F, i) where i ∈ ∆1 and
F : Ai → E is a functor. Besides, using [31, Proposition 2.4.4.2], we deduce that

MapexpE(A/∆1)((F, i), (G, j)) =


MapFun(A0,E)(F,G) if i = j = 0 ,

MapFun(A1,E)(f!(F ), G) if i = 0 and j = 1 ,

MapFun(A1,E)(F,G) if i = j = 1 ,

∅ if i = 1 and j = 0 .

Finally, a morphism (F, 0) → (G, 1) in expE(A/∆1) is cocartesian if and only if the induced
morphism f!(F )→ G is an equivalence.

Example 3.2.4. Combining the previous two points with the general properties of the straight-
ening equivalence, we deduce that for any morphism γ : x→ y in X the fibers of expE(A/X) at x
and y are canonically identified with Fun(Ax,E) and Fun(Ay,E), and a morphism α : F → G in
expE(A/X) lying over γ is cocartesian if and only if for any choice of a cocartesian straightening
fγ : Ax → Ay of γ, α exhibits G as left Kan extension of F along fγ .

It follows from [40, Variant 3.20 & Remark 3.21] that Construction 3.2.1 can be canonically
promoted to an ∞-functor

expE : CoCart→ PrFibL .

Let us spell out the functoriality of expE in more concrete terms. With respect to morphisms in
CoCart as in (3.1.3), we will use the following notation:

(3.2.5)
B BX A

Y X

vu

f

expE7−→
expE(B/Y) expE(BX/X) expE(A/X)

Y X

Eu Ev!

f

We refer to the functor Ev! as the exponential induction functor.

Proposition 3.2.6. With respect to (3.2.5), we have:
(1) the functor Eu : expE(BX/X)→ expE(B/Y) makes the the right square a pullback;

(2) the functor Ev! preserves cocartesian edges.
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In particular, expE takes B-cocartesian edges in CoCart to B-cocartesian edges in PrFibL.

Proof. Statement (1) simply follows unraveling the definitions, as in [40, Lemma 3.8]. Statement
(2) is automatic from the definition of morphisms in PrFibL, but the reader should observe that
for fixed X ∈ Catop

∞ , the induced functor expE,X : CoCartX → PrFibL
X is precisely given by

Construction 3.2.1. In other words, Ev! is the unstraightening of the natural transformation

Fun!(ΥBX
(−),E)→ Fun!(ΥA(−),E)

induced by left Kan extension along the natural transformation Υv : ΥBX
→ ΥA. Therefore, Ev!

preserves cocartesian edges by construction. �

Corollary 3.2.7. Consider a commutative diagram in CoCart

BY AY

Y B A

X

vY

uAuB

v

whose diagonal squares are pullback. Then, the squares of the commutative diagram

expE(BY/Y) expE(AY/Y)

Y expE(B/X) expE(A/X)

X

E
vY
!

EuAEuB

Ev!

are pullback.

Via the identifications of the fibres of the exponential fibration supplied by Example 3.2.2,
Corollary 3.2.7 specializes to

Corollary 3.2.8. In the situation from Corollary 3.2.7 where Y is an object x ∈ X, the squares
of the commutative diagram

Fun(Bx,E) Fun(Ax,E)

∗ expE(B/X) expE(A/X)

X

vx,!

x

Ev!

are pullback, where vx,! is the left Kan extension along vx : Ax → Bx.

Recollection 3.2.9. Assume that E has an additional symmetric monoidal structure E⊗. Then
[40, Example 3.22] shows that expE admits a natural extension

expE : CoCart⊗ → PrFibL,⊗

to a Catop
∞-lax symmetric monoidal functors, in the sense of Definition A.3 in loc. cit.
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3.3. Section functors. Given a cocartesian fibration A→ X we can associate to it two different
∞-categories:

ΣX(A/X) := Fun/X(X,A) and Σcocart
X (A/X) := Funcocart

/X (X,A) .

These are respectively the ∞-categories of sections and of cocartesian sections. It follows from
[40, Corollary 3.23 & Variant 3.24] that these constructions promote to global functors

Σ, Σcocart : CoCart→ Cat∞ ×Catop
∞ and Σ, Σcocart : PrFibL → PrL ×Catop

∞ .

The same considerations of loc. cit. shows that the same holds for CoCart in place of CoCart.

Remark 3.3.1. The functor Σcocart
X : PrFibL → PrL admits a monoidal left adjoint TrivX : PrL →

PrFibL informally given by E→ (E× X)/X. In particular, given an object A→ X of PrFibL

and E,E′ ∈ PrL, we have

expE(A/X)⊗X TrivX(E′) ' expE⊗E′(A/X) .

Notation 3.3.2. Often we will also write Σ and Σcocart for the induced functors PrFibL →
PrL and its variants obtained composing the above functors with the canonical projection
PrL ×Catop

∞ → PrL.

The subtlety here is in the great amount of functoriality encoded in Σ and Σcocart. To fix ideas,
let us discuss the case of PrFibL and the functor Σcocart, although similar considerations will
apply to both CoCart and CoCart in place of PrFibL and Σ in place of Σcocart. Morphisms
in PrL are commutative diagrams of the form

B BX A

Y X

vu

f

where the square is a pullback and v preserves cocartesian edges. Applying Σcocart, this diagram
is sent to the composition

Funcocart
/Y (Y,B) Funcocart

/X (X,BX) Funcocart
/X (X,A) .u∗ v◦−

Concretely, u∗ takes a cocartesian section s : Y→ B, considers the composition s◦f and applies the
universal property of pullbacks to produce a section u∗(s) : X→ BX of BX → X. An immediate
check reveals that this is again a cocartesian section, so that u∗ is in fact well defined. On the
other hand, v ◦ − takes a cocartesian section t : X → BX to the composite cocartesian section
v ◦ t : X→ A. That these operations can be performed ∞-functorially in PrFibL is precisely the
content of [40, Corollary 3.23].

We will often be interested in taking sections of exponential constructions. The following result
is essentially a consequence of the theory of lax limits developed in [19]:

Proposition 3.3.3 (See [40, Proposition 4.1]). Let E be a presentable ∞-category and let A→ X

be a cocartesian fibration. There are canonical equivalences

Fun(A,E) ' ΣX(expE(A/X)) ' Fun/X(X, expE(A/X)) .

Warning 3.3.4. If instead of applying ΣX we use Σcocart
X , we obtain a full subcategory Funcocart(A,E)

of Fun(A,E). We refer to objects in Funcocart(A,E) as cocartesian functors. We will provide
a in Proposition 7.2.3 a characterization intrinsic to Fun(A,E) of what it means for a functor
F : A→ E to be cocartesian.
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4. Stokes stratified spaces

4.1. The notion of Stokes stratified space. We are now ready to introduce the main geometric
object of interest of this paper:

Definition 4.1.1. The category of Stokes stratified spaces StStrat is the fiber product

StStrat PosFibop

ExStrat Cat∞ .

Bop

Π∞

Remark 4.1.2. It immediately follows from [31, Proposition 2.4.4.2] that mapping spaces in
StStrat are discrete. Therefore [31, Proposition 2.3.4.18] guarantees that StStrat is (categorically
equivalent to) a 1-category.

We have two extreme classes of examples:

Example 4.1.3. Let (X,P ) ∈ ExStrat be an exodromic stratified space. The identity of
Π∞(X,P ) is a cocartesian fibration in poset (whose fibers are all the trivial poset). This provides
a canonical fully faithful functor ExStrat → StStrat, which is left adjoint to the forgetful
functor StStrat→ ExStrat. Therefore, StStrat can be seen as an extension of the category of
exodromic stratified spaces. The forgetful functor StStrat→ ExStrat also has a right adjoint,
that sends (X,P ) to (X,P, ∅), where ∅ is the empty cocartesian fibration in posets.

Example 4.1.4. Let I be a poset. Then I → ∗ is a cocartesian fibration, so (∗, ∗, I) defines a
Stokes stratified space. In other words, Stokes stratified spaces can also be seen as an extension
of the category of posets. Nevertheless, this class of examples is badly behaved, and the main
theorems of this paper rarely apply to these situations.

Remark 4.1.5. Objects of StStrat can be explicitly described as triples (X,P, I), where (X,P )
is an exodromic stratified space and I→ Π∞(X,P ) is a cocartesian fibration in posets. Combining
the straightening equivalence [31, Theorem 3.2.0.1]

CoCart/Π∞(X,P ) ' Fun(Π∞(X,P ),Cat∞)

with the exodromy equivalence (2.3.6)

Fun(Π∞(X,P ),Cat∞) ' Conshyp
P (X,Cat∞) ,

we can equivalently describe the datum I→ Π∞(X,P ) as the datum of a hypersheaf of posets
I on X on (X,P ). With respect to this translation, the stalk of I at a point x ∈ X coincides
with the fiber of I at x seen as an object in Π∞(X,P ). We occasionally refer to the datum of a
cocartesian fibration in posets I over Π∞(X,P ) as the datum of a Stokes fibration on (X,P ).

Remark 4.1.6. The forgetful map StStrat→ ExStrat is a cartesian fibration, and a morphism
f : (Y,Q, J)→ (X,P, I) is cartesian if and only if the induced square

J I

Π∞(Y,Q) Π∞(X,P )

is a pullback.

In practice, we will be interested in a more restricted class of Stokes stratified spaces:
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Definition 4.1.7. The ∞-category of Stokes analytic stratified spaces StAnStrat is the fiber
product

StAnStrat StStrat

AnStrat ExStrat
where AnStrat is the category of subanalytic stratified spaces from Definition 2.5.1 and the
bottom horizontal functor is supplied by Remark 2.5.4.

The following example is the prototype of the situations we are interested in. The reader will
notice that, in comparison to Examples 4.1.3 and 4.1.4, it is a more intermediate kind of example:

Example 4.1.8. Let p : X → C be the real blow-up of C at 0. Concretely, there is an identification
X ' [0,+∞)× S1 through which p reads as (r, θ)→ reiθ. We think of the boundary ∂X ' S1 of
X as the circle of directions emanating from 0 in C. Let I ⊂ OC,0(∗0)/OC,0 be a finite set. For
θ ∈ S1 we define an order ≤θ on I by requiring that a ≤θ b if and only if a = b or a 6= b and ea−b
has rapid decay in the direction θ. The latter condition means that if we write

a− b = fa,bz
−ma,b

where ma,b > 0 is the pole of a− b at 0 and fa,b ∈ OC,0 is non zero, then

Fa,b(θ) := <(fa,b(0)e−iθma,b) < 0

For a 6= b, the locus of directions θ such that a ≤θ b is thus a disjoint union of ma,b open intervals
of S1 of length π/ma,b. Let S1 → P be a finite stratification whose closed strata are points
and whose open strata are open intervals over which Fa,b < 0 or Fa,b > 0 for every a, b ∈ I
distinct. Observe that Π∞(S1, P ) is equivalent to a poset. Furthermore, for every γ : θ1 → θ2

morphism of Π∞(S1, P ) and for every a, b ∈ I distinct such that a ≤θ1 b, we have a ≤θ2 b by
design of S1 → P . Hence, γ induces a morphism of posets (I,≤θ1)→ (I,≤θ2). Thus, the orders
(I,≤θ)θ∈S1 organize as a functor Π∞(X,P )→ Poset or equivalently as a cocartesian fibration
in posets I→ Π∞(X,P ).

4.2. Stokes loci. An important feature of the classical theory of Stokes data is the existence
of Stokes lines. Remarkably, it is possible to define Stokes loci for any Stokes stratified space
(X,P, I) ∈ StStrat, as we are going to discuss now.

Definition 4.2.1. For (X,P, I) ∈ StStrat, we denote by I the hyperconstructible hypersheaf
on (X,P ) corresponding to the cocartesian fibration I → Π∞(X,P ) as in Remark 4.1.5. The
objects of

I (X) ' Funcocart
/Π∞(X,P )(Π∞(X,P ), I)

are the cocartesian sections of I over Π∞(X,P ).

Definition 4.2.2. Let (X,P, I) be a Stokes analytic stratified space. Let σ, τ ∈ I (X) be
cocartesian sections. The Stokes locus Xσ,τ of σ, τ is the set of points x ∈ X such that σ(x), τ(x) ∈
Ix cannot be compared.

Observation 4.2.3. Let f : (Y,Q, J) → (X,P, I) be a cartesian morphism between Stokes
analytic stratified spaces (see Remark 4.1.6). Let σ, τ ∈ I (X) be cocartesian sections. Then, we
have

Yf∗σ,f∗τ = f−1(Xσ,τ ) .

Lemma 4.2.4. Let (X,P, I) be a Stokes analtyic stratified space. Let σ, τ ∈ I (X) be cocartesian
sections. Then,

(1) Xσ,τ is closed in X.
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(2) For every p ∈ P , the set Xσ,τ ∩Xp is open and closed in Xp. In particular, Xσ,τ is a
union of connected components of strata of (X,P ).

Proof. At the cost of refining (X,P ) by a Whitney stratified space, Observation 4.2.3 implies
that we can suppose (X,P ) to be conically stratified with locally weakly contractible strata. Let
x ∈ X −Xσ,τ . We can suppose that σ(x) ≤ τ(x) in Ix. Since the strata of (X,P ) are locally
weakly contractible, Proposition 2.5.6 yields the existence of an open subset U ⊂ X containing
x such that x is an initial object of Exit(U,P ). Hence, for every y ∈ U , there is an exit path
γ : x→ y giving rise to a morphism of posets Ix → Iy sending σ(x) to σ(y) and τ(x) to τ(y). Thus
σ(y) ≤ τ(y). Hence U ⊂ X −Xσ,τ . This proves (1). We now prove (2). From Observation 4.2.3,
we can suppose that X is trivially stratified and show that Xσ,τ is open and closed in X. From
(1), it is enough to show that Xσ,τ is open in X. Let x ∈ Xσ,τ and let U ⊂ X be an open subset
containing x such that x is an initial object of Exit(U,P ). Let y ∈ U . Let γ : x→ y be a path.
Since the stratification is trivial, γ is an isomorphism. Thus γ gives rise to an isomorphism of
posets Ix → Iy sending σ(x) to σ(y) and τ(x) to τ(y). Since σ(x), τ(x) ∈ Ix cannot be compared,
nor do σ(y), τ(y) ∈ Iy. Hence, U ⊂ Xσ,τ . The proof of Lemma 4.2.4 is thus complete. �

5. The filtered and the Stokes hyperconstructible hypersheaves

Given a Stokes stratified space (X,P, I), we now attach to it two hyperconstructible hyper-
sheaves of categories on (X,P ).

5.1. The hyperconstructible hypersheaves of filtered functors.

Observation 5.1.1. By Remark 2.3.7 and Recollection 3.1.7, we have identifications

ConsP (X;PrL) ' Fun(Π∞(X,P ),PrL) ' PrFibL
Π∞(X,P ) .

These equivalences give rise to the following canonically commutative diagram:

Conshyp
P (X;PrL) Fun(Π∞(X,P ),PrL) PrFibL

Π∞(X,P )

PrL

∼

ΓX,∗

lim

∼

Σcocart

Similar considerations hold if we replace PrL by Cat∞ or by Cat∞.

Definition 5.1.2. Let (X,P, I) be a Stokes stratified space and let E be a presentable∞-category.
The categorical hypersheaf of I-filtered functors on (X,P ) with coefficients in E is the object FilI,E
in Conshyp

P (X;PrL) corresponding to expE(I/Π∞(X,P )) via the equivalences of Observation 5.1.1.
The ∞-category of cocartesian I-filtered functors on (X,P ) is the presentable ∞-category

Filco
I,E := FilI,E(X)

of global sections of FilI,E.

Remark 5.1.3. Let (X,P, I) be a Stokes stratified space. We can give an explicit description of
the hypersheaf FilI,E as follows. For every open subset U ⊂ X, write

jU : Π∞(U,P )→ Π∞(X,P )

for the canonical map. Let ΥI : Π∞(X,P ) → Poset be the straightening of I. Unraveling the
equivalences of Observation 5.1.1, we can identify FilI,E with the presheaf Open(X)op → PrL

informally defined by sending an open subset U ⊂ X to

lim
Π∞(U,P )

Fun!(ΥI ◦ jU (−),E) .
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It is not obvious from this description that FilI,E satisfies hyperdescent nor that it is P -
hyperconstructible: it is rather a consequence of the exodromy equivalence.

Example 5.1.4. Let (X,P, I) be a Stokes stratified space. Let U ⊂ X be an open subset such
that Π∞(U,P ) admits an initial object x. Then the description of FilI,E given in Remark 5.1.3
yields a canonical equivalence FilI,E(U) ' Fun(Ix,E).

Remark 5.1.5. Since all the stratified spaces we care about in this paper admit a fundamental
system of open neighbourhood U satisfying the conditions of Example 5.1.4, the description from
Remark 5.1.3 is adapted to understand the local behavior of FilI,E. To understand its ∞-category
of global sections Filco

I,E, it is best to use the perspective provided by Proposition 3.3.3. Indeed, it
follows from Warning 3.3.4 that

Filco
I,E ' Σcocart(expE(I/Π∞(X,P )))

is a full subcategory of
Σ(expE(I/Π∞(X,P ))) ' Fun(I,E) .

We refer to Fun(I,E) as the ∞-category of I-filtered functors on (X,P ), and we will see later in
Proposition 7.2.3 a characterization intrinsic to Fun(I,E) of what it means for a functor F : I→ E

to belong to the full subcategory Filco
I,E.

In the trivial stratification situation, FilΠ∞(X),E gives back locally constant hypersheaves.
Before seeing this, let us introduce the following

Definition 5.1.6. Let X be a topological space. Let E be a presentable ∞-category. We
denote by LocX,E : Open(X)op → E the presheaf defined by LocX,E(U) = Lochyp(U,E) for every
U ∈ Open(X).

Proposition 5.1.7. Consider a Stokes stratified space of the form (X, ∗,Π∞(X)). Let E be a pre-
sentable ∞-category. Then, FilΠ∞(X),E is canonically equivalent to LocX,E (see Definition 5.1.6).

Proof. In that case, expE(Π∞(X)/Π∞(X)) is the constant fibration Π∞(X) × E → Π∞(X).
Since Π∞(X) is an ∞-groupoïd, every section of expE(Π∞(X)/Π∞(X)) is cocartesian. Thus
Remark 5.1.3 yields a canonical equivalence

FilΠ∞(X),E(U) ' Fun(Π∞(U),E)

for every U ∈ Open(X). Since X is exodromic, the conclusion follows from the monodromy
equivalence. �

5.2. The hyperconstructible hypersheaves of Stokes functors. The categorical hypercon-
structible hypersheaf FilI,E is not yet the main object of interest of this paper. In order to obtain
the subsheaf of E-valued Stokes structures, we need the following easy observation:

Lemma 5.2.1. Let X ∈ Cat∞ and let

B A

X

f

q p

be a commutative diagram where p and q are cocartesian fibrations and f preserves cocartesian
edges. Letting EssIm(f) be the essential image of f , the composition

EssIm(f) ⊆ A
p→ X

is again a cocartesian fibration. Furthermore, the formation of EssIm(f) commutes with pullback
along any morphism Y→ X in Cat∞. In particular, the fibers of EssIm(f) at x ∈ X canonically
coincide with the essential image of fx : Bx → Ax.
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Notation 5.2.2. We let
(−)set : Poset→ Poset

be the functor sending a poset (I,6) to the underlying set I, seen as a poset with trivial order.
By extension, if X ∈ Cat∞ and I → X is a fibration in posets, we let Iset be the cocartesian
fibration on X obtained by applying (−)set fiberwise. In a more verbose way, if I : X→ Poset
is the unstraightening of I, then Iset is the cocartesian fibration classifying the composition
(−)set ◦ I : X → Poset. Notice that Iset is in fact a left fibration over X and that it comes
equipped with a canonical morphism

iI : Iset → I

that preserves cocartesian edges over X. It is immediate that this construction promotes to a
global functor

(−)set : PosFib→ PosFib ,

equipped with a natural transformation i : (−)set → idPosFib.

Let (X,P, I) be Stokes stratified space. Let E be a presentable ∞-category. The functoriality
of the exponential construction induces a well defined exponential induction functor

EiI! : expE(Iset/Π∞(X,P ))→ expE(I/Π∞(X,P ))

in PrFibL
Π∞(X,P ).

Definition 5.2.3. Let (X,P, I) be Stokes stratified space. Let E be a presentable∞-category. The
categorical sheaf of E-valued I-Stokes functors on (X,P ) is the object StI,E in ConsP (X;Cat∞)

corresponding to EssIm(EiI! ) via the equivalences of Observation 5.1.1. The∞-category of E-valued
I-Stokes functors is the (large) ∞-category

StI,E := StI,E(X) ∈ Cat∞

of global sections of StI,E.

Remark 5.2.4. By Remark 5.1.5, the global sections StI,E of StI,E embed fully faithful inside
Filco

I,E ⊂ Fun(I,E). One can characterize StI,E as the full subcategory of Filco
I,E spanned by

punctually split cocartesian functors. See Definition 8.1.1.

Example 5.2.5. Let (X,P ) be an exodromic stratified space. Review it as a Stokes stratified
space (X,P,Π∞(X,P )), with the trivial cocartesian fibration given by the identity of Π∞(X,P ).
Then there is a canonical equivalence

StΠ∞(X,P ),E ' LocX,E ,

where LocX,E is the categorical sheaf of locally hyperconstant hypersheaves on X (see Defini-
tion 5.1.6). The proof relies on some more advanced material that will be developed in the main
body of the paper. See Corollary 11.1.13. In other words, Stokes functors provide an extension of
the theory of locally hyperconstant hypersheaves.

At the other extreme, we have:

Example 5.2.6. Let (X,P, I) be a Stokes stratified space. Assume that Π∞(X,P ) admits an
initial object x. Then, in virtue of Remark 5.1.3, the∞-category StI,E coincides with the essential
image of

iIx,! : Fun(Iset
x ,E)→ Fun(Ix,E) .

Notice that the essential image of this functor is typically not presentable. Similarly, if E is
assumed to be stable (or abelian), the (∞-)category StI,E is not necessarily stable (nor abelian).
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The following example is a particularly simple situation in dimension 1, but covers a large part
of the ideas covered in this paper. For this reason, we encourage the reader to keep it in mind
while reading the later parts:

Example 5.2.7. On the circle S1 = {z ∈ C | |z| = 1} consider the stratification over the poset
P = {0 < 1} whose closed stratum is {1,−1}. Write

U := {z ∈ S1 | =(z) > 0} and V := {z ∈ S1 | =(z) < 0} .

Consider the P -constructible sheaf of posets I whose underlying sheaf of sets I set is the constant
sheaf associated to {a, b}, and whose order is determined by the requirement that a < b over U
and b < a over V , while a and b are not comparable at 1 and −1. The situation can be visualized
as follows:

1−1
{a : b}

{a < b}

{a : b}

{b < a}

U

V

After applying the exodromy and the straightening equivalence, we are left with the following
cocartesian fibration in posets over Π∞(S1, P ):

Π∞(S1, P )

I

U

b

a

1

b

a

−1

b

a

V

b

a

Beware that different copies of a and b represent different objects in I, lying over different
objects of Π∞(X,P ). Arrows between identical letters correspond to cocartesian edges in I. Take
E := Modk, where k is some field. Then both Filco

I,E and StI,E can be realized as full subcategories
of Fun(I,Modk). Although practical for many purposes, this is not the best way to handle these
categories. Let us explain in this example how to exploit the sheaf theoretic nature of both Filco

I,E
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and StI,E. Define the two opens

W1 := {z ∈ S1 | <(z) > −1} and W−1 := {z ∈ S1 | <(z) < 1} ,
and let W := W1 ∩W−1 be their intersection. For i ∈ {1,−1}, put

IWi
:= Π∞(Wi)×Π∞(S1,P ) I .

Since FilI,E and StI,E are sheaves, we deduce that the squares

Filco
I,E Filco

IW1
,E

Filco
IW−1

,E Filco
IW ,E

and

StI,E StIW1
,E

StIW−1
,E StIW ,E

are pullbacks. Now, observe that:
(i) since 1 is initial in Π∞(W1, P ), we have Filco

IW1
,E ' Fun(I1,E) ' E×E and StIW1

,E ' StI1,E;

(ii) since the order on I1 = {a : b} is trivial, we have Iset
1 = I1, and therefore StIW1

,E = Filco
IW1

,E.
A symmetrical reasoning applies with −1 in place of 1. Full faithfulness of StIW ,E ↪→ Filco

IW ,E

ensures that the induced map

StIW1
,E ×StIW ,E

StIW−1
,E → StIW1

,E ×Filco
IW ,E

StIW−1
,E

is an equivalence. Hence, the canonical map

StI,E → Filco
I,E

is an equivalence. In particular, StI,E is stable.
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Part 2. Categorical aspects

In this part, we develop the categorical framework needed to deal with Stokes functors. Stokes
functors are by definition filtered functors that are in addition cocartesian (see Definition 7.2.1)
and punctually split (see Definition 8.1.1). These two properties are examined in detail through
the lenses of the specialization equivalence. Finally, we introduce two fundamental concepts: that
of graduation (see Definition 9.1.7) and of level morphism (see Definition 10.1.1). Theorem 10.2.1
can be seen in many ways as the crucial result of this part: it provides the categorical basis of
the level induction technique that will be used in the next part.

6. The specialization equivalence

6.1. Global functoriality statements. Fix a cocartesian fibration p : A → X as well as a
presentable ∞-category E. Write

pE : expE(A/X)→ X

for the structural map of the exponential construction of p. Recall from Proposition 3.3.3 that
there is a canonical equivalence

(6.1.1) spE
X,p : Fun(A,E) ' Fun/X(X, expE(A/X)) ,

which we refer to as the specialization equivalence. When X and E are clear out of the context,
we will use the notation spA (or even just sp) instead of spE

X,p.

The right hand side of (6.1.1) is functorial in p : A → X with respect to the morphisms in
CoCart. Explicitly, this means that to every morphism (3.1.3)

B BX A

Y X

vu

f

one can first apply expE : CoCart→ PrFibL to obtain the morphism

expE(B/Y) expE(BX/X) expE(A/X)

Y X

Eu Ev!

f

and then apply the section functor Σ: PrFibL → PrL to obtain the composition

Fun/Y(Y, expE(B/Y)) Fun/X(X, expE(BX/X)) Fun/X(X, expE(A/X)) .
Σ(Eu) Σ(Ev! )

We defer to [40] for the justification that these operations can be performed in an ∞-functorial
way. The goal of this section is to explain how this functoriality interacts with the specialization
equivalence. More precisely, observe that applying (6.1.1) to every term in the above composition,
we obtain respectively Fun(B,E), Fun(BX,E) and Fun(A,E). The following is the main result of
this section:

Proposition 6.1.2.
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(1) There exists a canonically commutative square

(6.1.3)

Fun/Y(Y, expE(B/Y)) Fun/X(X, expE(BX/X))

Fun(B,E) Fun(BX,E) ,

Σ(Eu)

spB
spBX

u∗

providing a canonical identification Σ(Eu) ' u∗.

(2) There exists a canonically commutative square

(6.1.4)

Fun/X(X, expE(BX/X)) Fun/X(X, expE(A/X))

Fun(BX,E) Fun(A,E) ,

Σ(Ev! )

spBX
spA

v!

providing a canonical identification Σ(Ev! ) ' v!.

Before starting the proof, let us record a couple of handy consequences. First, recall from
Corollary 3.2.8 that the fiber of expE(A/X) at x ∈ X is canonically identified with Fun(Ax,E).
In particular, this means that for a functor F : A→ E, the value of its specialization spF at an
object x ∈ X is a functor

(spF )x : Ax → E .

We have:

Corollary 6.1.5. Let jx : Ax → A be the natural inclusion. Then there is a canonical identifica-
tion

(spF )x ' j∗x(F ) .

In particular, for every a ∈ A we have a canonical identification

(spF )p(a)(a) ' F (a) ∈ E .

Proof. The pullback square

A Ax

X ∗

p

x

defines a morphism from A → X to Ax → ∗ in CoCart. It is then enough to apply Proposi-
tion 6.1.2-(1) to this morphism. �

Corollary 6.1.6. Consider a commutative diagram in CoCart

BY AY

Y B A

X

vY

uAuB

v
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whose diagonal squares are pullback. Let E be a presentable ∞-category. Then, the squares

Fun(BY,E) Fun(AY,E)

Fun(B,E) Fun(A,E)

v∗Y

u∗B

v∗

u∗A
and

Fun(BY,E) Fun(B,E)

Fun(AY,E) Fun(A,E)

u∗B

v∗Y

u∗A

v∗

are respectively horizontally left and right adjointable.

Proof. It is enough to prove the left adjointability statement, which follows by applying the
section functor to the commutative diagram

expE(BY/Y) expE(AY/Y)

Y expE(B/X) expE(A/X)

X

E
vY
!

EuAEuB

Ev!

supplied by Corollary 3.2.7 and then invoke Proposition 6.1.2. �

6.2. Some categorical calculus. As a preliminary for Proposition 6.1.2, we revisit and extend
part of the content of [20].

Recollection 6.2.1. Let f : X→ Y be a functor of ∞-categories. The pullback

f∗ := X×Y − : Cat∞/Y → Cat∞/X
preserves (co)cartesian fibrations and therefore it gives rise to functors

f∗ : CartY → CartX and f∗ : CoCartY → CoCartX .

Under the straightening equivalences, we see these functors admit both a left and a right adjoint,
denoted respectively

f c
! , f

c
∗ : CartX → CartY and f cc

! , f
cc
∗ : CoCartX → CoCartY .

Recall the following standard notation in category theory:

Notation 6.2.2. Let X be an ∞-category. We write Tw(X) for the associated ∞-category of
twisting arrows, see [32, §5.2.1] and λ : Tw(X)→ X× Xop for the right fibration constructed in
[32, Proposition 5.2.1.11]. Given a functor

F : X× Xop → Cat∞ ,

we respectively write ∫ X

F and
∫
X

F

for the coend and the end of F , i.e. for the colimit and the limit of the composite

Tw(X) X× Xop Cat∞ .λ F

Notation 6.2.3. Write πX : X×Xop → X and πXop : X×Xop → Xop for the canonical projections.
Given two functors

F : X→ Cat∞ and G : Xop → Cat∞ ,

we write F �G for the functor

F �G := π∗X(F )× π∗Xop(G) .
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When A→ X is a cocartesian fibration and B→ X is a cartesian fibration, we write∫ X

A�B :=

∫ X

ΥA �ΥB and
∫
X

A�B :=

∫
X

ΥA �ΥB .

To state the first fundamental result, we need to introduce one final notation:

Notation 6.2.4. Let X and E be two ∞-categories. For A → X a cartesian fibration, write
ΥA : Xop → Cat∞ for its straightening and EA

cc for the cocartesian fibration classifying the functor

Fun(ΥA,E) : X→ Cat∞ .

Similarly, for a cocartesian fibration B→ A, write ΥB : X→ Cat∞ for its straightening and EB
c

for the cartesian fibration classifying the functor

Fun(ΥB,E) : Xop → Cat∞ .

Notice that given a functor f : Y→ X, there are canonical equivalences

(6.2.5) f∗EA
cc ' Ef

∗(A)
cc and f∗EB

c ' Ef
∗(B)

c .

Lemma 6.2.6. Let f : X→ Y be a functor of ∞-categories.
(1) For B→ X a cartesian fibration and A→ Y a cocartesian fibration, there is a canonical

equivalence ∫ Y

A� f c
! (B) '

∫ X

f∗(A)�B .

(2) For B→ X a cocartesian fibration and A→ Y a cartesian fibration, there is a canonical
equivalence ∫ Y

A� f cc
! (B) '

∫ X

f∗(A)�B .

Proof. To prove (1), it suffices to fix E ∈ Cat∞ and observe that there is the following chain of
natural equivalences:

MapCat∞

(∫ Y

A� f c
! (B),E

)
'
∫
Y

MapCat∞(ΥA �Υfc
! (B),E)

'
∫
Y

MapCat∞(Υfc
! (B),Fun(ΥA,E))

' MapCartY(f c
! (B),EA

c ) By [20, Prop. 6.9]

' MapCartX(B, f∗EA
c )

' MapCartX(B,Ef
∗(A)

c ) By eq. (6.2.5)

'
∫
X

MapCat∞(ΥB,Fun(Υf∗(A),E))

' MapCat∞

(∫ X

f∗(A)�B,E
)
,

so the conclusion follows from the Yoneda lemma. As for (2), it follows by the same argument,
using EA

cc instead of EA
c and working in CoCartY instead of in CartY. �

Next, recall the following:

Theorem 6.2.7 ([20, Theorem 4.5]). Let X be an ∞-category. The forgetful functor

UX : CartX → Cat∞/X
admits a left adjoint FX.
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Remark 6.2.8. Given a functor f : Y → X, we refer to FX(f) as the free cartesian fibration
over X generated by f . It follows from the explicit description provided in [20, Definition 4.1 &
Remark 4.4], that FX satisfies the following two conditions:

(1) when f = idX, FX(idX) = X[1], and the structural map is ev1 : X[1] → X. In other words,
FX(idX) classifies the functor

X−/ : Xop → Cat∞ .

(2) For a general f : Y→ X, one has the following commutative diagram

FX(f) X[1] X

Y X ,

ev1

ev0

f

where the left square is a pullback and where the top horizontal composition is the
structural map of the cartesian fibration FX(f).

Lemma 6.2.9. Let f : X→ Y be a functor of ∞-categories. Then there is a canonical equivalence

f c
! (FX(idX)) ' FY(f)

in CartY.

Proof. Indeed, for every cartesian fibration B→ Y, we have:

MapCartY(f!(FX(idX)),B) ' MapCartX(FX(idX), f∗(B))

' Map/X(X, f∗(B))

' Map/Y(X,B)

' MapCartY(FY(f),B) ,

so the conclusion follows from the Yoneda lemma. �

Finally, observe that [20, Proposition 7.1] can be rewritten as follows:

Corollary 6.2.10. Let X be an ∞-category and let A→ X be a cocartesian fibration. Then there
is a canonical equivalence

A '
∫ X

A� FX(idX)

in Cat∞.

6.3. Exponential pullback vs. global pullback. Before proving Proposition 6.1.2-(1), let us
revisit the proof of the equivalence (6.1.1) in terms of the categorical calculus we just introduced.

Recollection 6.3.1 ([40, Proposition 4.1]). Fix a cocartesian fibration p : A → X and a pre-
sentable ∞-category E. Using the equivalence PrL ' (PrR)op, we see that the presentable
fibration expE(A/X)→ X is at the same time a cocartesian and a cartesian fibration. Seen as a
cartesian fibration, it classifies the functor

Fun(ΥA,E) : Xop → PrR .
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We use this second description to compute the sections of expE,X(A). Then the specialization
equivalence spA is identified with the following composition of equivalences:

Fun/X(X, expE(A/X)) ' Funcart
/X (FX(idX), expE(A/X))

'
∫
X

Fun(X−/,Fun(ΥA,E)) By [20, Prop. 6.9] & Rem. 6.2.8

' Fun
(∫ X

A� FX(idX),E
)

' Fun(A,E) By Cor. 6.2.10.

We are now ready for:

Proof of Proposition 6.1.2-(1). Fix a pullback square

(6.3.2)
B A

X Y

u

f

where the vertical functors are cocartesian fibrations. Recall from Proposition 3.2.6-(1) the
canonical equivalence

f∗(expE(A/Y)) ' expE(B/X)

We therefore obtain a canonical equivalence

ΣX(expE(B/X)) = Fun/X(X, expE(B/X))

' Fun/Y(X, expE(A/Y))

' Funcart
/Y (FY(f), expE(A/Y)) .

Similarly,
ΣY(expE(A/Y)) ' Funcart

/Y (FY(idY), expE(A/Y)) .

Since idY is the final object in Cat∞/Y, we find a canonical map

αf : FY(f)→ FY(idY)

in CartY between free cartesian fibrations, and unwinding the definitions we find that the sections
of the exponential pullback Σ(Eu) are canonically identified with the functor

α∗f : Funcart
/Y (FY(idY), expE(A/Y))→ Funcart

/Y (FY(f), expE(A/Y)) .

Applying the same chain of equivalences of Recollection 6.3.1, we find a canonical identification
of α∗f with the map

Fun
(∫ Y

A� FY(idY),E
)
→ Fun

(∫ Y

A� FY(f),E
)

induced by pullback along the canonical map

βf : A '
∫ Y

A� FY(idY)→
∫ Y

A� FY(f)

constructed out of αf . Recall now from Lemma 6.2.9 that there is a canonical equivalence

FY(f) ' f c
! (FX(idX)) ,

so that Lemma 6.2.6 and Corollary 6.2.10 supply a canonical identification∫ Y

A� FY(f) '
∫ Y

A� f c
! (FX(idX)) '

∫ X

f∗(A)� FX(idX) ' B .
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Unwinding the definitions, we see that βf is identified with u, whence the conclusion. �

6.4. Exponential induction vs. global induction. We now deal with Proposition 6.1.2-(2).
Fix an ∞-category X and consider a morphism

B A

X

v

in CoCartX. Applying expE(−/X), we find the morphism

expE(B/X) expE(A/X)

X

Ev!

in PrFibL
X.

Lemma 6.4.1. The functor Ev! admits a right adjoint

Ev,∗ : expE(A/X)→ expE(B/X)

relative to X.

Proof. Since both expE(A/X) and expE(B/X) are cocartesian fibrations and Ev! preserves cocarte-
sian edges, applying [32, Proposition 7.3.2.6] shows that it is enough to prove that for every
x ∈ X, the induced functor on the fibers at x

Ev!,x : expE(A/X)x → expE(B/X)x

admits a right adjoint. However, Corollary 3.2.8 identifies this functor with the left Kan extension

vx,! : Fun(Ax,E)→ Fun(Bx,E) ,

which is tautologically left adjoint to the restriction v∗x. The conclusion follows. �

At this point, Proposition 6.1.2 immediately follows from the following more precise statement:

Proposition 6.4.2. Keeping the same notations as above, both diagrams

Fun/X(X, expE(A/X)) Fun/X(X, expE(B/X))

Fun(A,E) Fun(B,E)

ΣX(Ev! )

spA spB

v!

and
Fun/X(X, expE(B/X)) Fun/X(X, expE(A/X))

Fun(B,E) Fun(A,E)

ΣX(Ev,∗)

spA spB

v∗

are canonically commutative.

Proof. Since Ev! is left adjoint to Ev,∗ by Lemma 6.4.1, it follows that ΣX(Ev! ) is left adjoint to
ΣX(Ev,∗). Since spA and spB are equivalences, it is then enough to prove the commutativity
of the second diagram. Notice that since v preserves cocartesian arrows, it induces a natural
transformation

αv : ΥA × X−/ → ΥB × X−/
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of functors X× Xop → Cat∞. Following the construction of the specialization equivalence (see
Recollection 6.3.1), we reduce to check that the map

A '
∫ X

A� FX(idX)→
∫ X

B� FX(idX) ' B

induced by αv is canonically identified with v. This follows from Corollary 6.2.10 and the Yoneda
lemma. �

6.5. Change of coefficients. It follows from [40, Variant 3.20 & Remark 3.21-(1)] and the
functoriality of the tensor product of presentable ∞-categories that the exponential construction
expE depends functorially on E. In other words, we have a bifunctor

exp: CoCart×PrL → PrFibL ,

that sends a pair (p : A→ X,E) to the presentable fibration p : expE(A/X)→ X.

Let f : E→ E′ be a morphism in PrL and fix a cocartesian fibration p : A→ X. The functor f
induces morphisms

fA/X : expE(A/X)→ expE′(A/X) and f : Fun(A,E)→ Fun(A,E′) ,

in PrFibL and in PrL, respectively. Here we wrote f in place of the more accurate f ◦ (−), to
keep the notations light. These two operations are related by the following relation:

Proposition 6.5.1. Keeping the above notations, the diagram

Fun/X(X, expE(A/X)) Fun/X(X, expE′(A/X))

Fun(A,E) Fun(A,E′)

ΣX(fA/X)

spE
A spE′

A

f

commutes.

Proof. This simply follows unraveling the chain of equivalences in Recollection 6.3.1 and observing
that they are natural in E. �

Finally, let us observe that fA/X is natural in A→ X:

Proposition 6.5.2. Let
B BX A

Y X

vu

f

be a morphism in CoCart and let f : E→ D be a morphism in PrL. Then the diagram

expE(B/Y) expE(BX/X) expE(A/X)

expD(B/Y) expD(BX/X) expD(A/X)

fB/Y

Eu Ev!

fBX/X fA/X

Du Dv
!

commutes and the left square is a pullback. In particular, the diagram

Fun(B,E) Fun(BX,E) Fun(A,E)

Fun(B,D) Fun(BX,D) Fun(A,E)

f

u∗

f

v!

f

u∗ v!
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commutes.

Proof. The first half simply follows from the bifunctoriality of exp: CoCart×PrL → PrFibL.
The second half follows applying Σ and combining Propositions 6.1.2 and 6.5.1. Alternatively,
the second half can be proven directly observing that, since f commutes with colimits, it also
commutes with the formation of arbitrary left Kan extensions. �

7. Cocartesian functors

7.1. The space of specialization morphisms. Fix a cocartesian fibration p : A→ X as well
as a presentable ∞-category E. Write

pE : expE(A/X)→ X

for the structural morphism of the exponential construction of p. Recall from Proposition 3.3.3
that there is a canonical equivalence

spE
X,p : Fun(A,E) ' Fun/X(X, expE(A/X)) ,

which we refer to as the specialization equivalence. When X, p and E are clear out of the context,
we drop the decorations and write sp instead of spE

X,p.

Remark 7.1.1. Recall from Example 3.2.2-(1) that the fiber of expE(A/X) at x ∈ X is canonically
identified with Fun(Ax,E). In particular, for F : A→ E, the value (spF )x of the section spF on
x is a functor (spF )x : Ax → E. Denoting by jx : Ax → A the natural inclusion, Corollary 6.1.5
supplies a canonical identification (spF )x ' j∗x(F ).

Definition 7.1.2. Let F ∈ Fun(A,E) be a functor and let γ : x→ y be a morphism in X. The
space of specialization morphisms for F relative to γ is the space SPγ(F )

(spF )x G (spF )y
β α

where β is a pE-cocartesian lift of γ in expE(A/X). In this case, we say that α is a specialization
morphism for F relative to γ.

Remark 7.1.3. Since expE(A/X) is also a cartesian fibration, there is a dual notion of cospecial-
ization morphism, that are obtained choosing pE-cartesian lifts of γ.

We immediately discuss a fundamental example.

Notation 7.1.4. Let p : A→ X be a cocartesian fibration. For σ : ∆n → X, write Aσ := ∆n×XA

and pσ : Aσ → ∆n for the induced cocartesian fibration. Notice that Proposition 3.2.6 provides a
canonical and functorial identification

expE(A/X)σ ' expE(Aσ/∆
n) .

Example 7.1.5. Let p : A→ X be a cocartesian fibration and let γ : x→ y be a morphism in X.
Choose a straightening

f : Ax → Ay

for pγ : Aγ → ∆1. The functor f fits in the following triangle

Ax Ay

A

fγ

jx jy
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where jx and jy denote the canonical inclusions of the fibers of p inside A. This triangle is not
commutative but we can choose a natural transformation

s : jx → jy ◦ fγ
in Fun(Ax,E) with the property that for every a ∈ Ax the morphism sγ(a) : jx(a)→ jy(fγ(a)) is p-
cocartesian in A. Applying the contravariant functor Fun(−,E) we obtain a natural transformation

s∗ : j∗x → f∗γ ◦ j∗y
of functors from Fun(A,E)→ Fun(Ax,E). There is therefore an induced Beck-Chevalley morphism

(7.1.6) αf,s : fγ,! ◦ j∗x → j∗y .

Unraveling the definition of expE(A/X) we see that for every F : A→ E, the induced morphism

αf,s(F ) : fγ,!j
∗
x(F )→ j∗y(F )

is a specialization morphism for F relative to γ.

Remark 7.1.7. Let p : A→ X be a cocartesian fibration and let F : A→ E be a fixed functor.
Since pE : expE(A/X) → X is a cocartesian fibration, it immediately follows that the space
SPγ(F ) is contractible. Observe that, in the setting of Example 7.1.5, neither f nor s are uniquely
determined in a strict sense (although the spaces of choices for the pair (f, s) is contractible).
Every such choice gives rise to an element SPγ(F ), whose underlying specialization morphism is
αf,s(F ). The contractibility of SPγ(F ) shows that the actual choices for f and s are immaterial
as they give rise to equivalent specialization morphisms, and this in a homotopy unambiguous
way.

Example 7.1.8. We maintain the notation introduced in Example 7.1.5. It is worth unpacking
the specialization equivalence when X = ∆1. Write ∆1 = {γ : x → y} and fix a cocartesian
fibration p : A→ ∆1 together with a straightening fγ : Ax → Ay and a natural transformation
s : jx → jy ◦ fγ as in Example 7.1.5. Notice that Tw(∆1) can be represented as

x

x y y

x y,

γ
γ

γ

where the vertical arrows are the objects of Tw(∆1). In other words, Tw(∆1) is equivalent to
Span = {∗ ← ∗ → ∗}. It follows that the chain of equivalences of Recollection 6.3.1 in this case
simply asserts that the square

Fun(A,E) Fun(Ay,E)

Fun(∆1,Fun(Ax,E)) Fun(Ax,E).

j∗y

f∗γ

ev1

is a pullback. Unraveling the definitions, we see that the left vertical map sends F : A→ E to
s∗ : j∗x(F )→ f∗γ (j∗y(F )). Vice-versa, given

Fx : Ax → E , Fy : Ay → E

and a natural transformation
α : Fx → f∗γ (Fy) ,

we can produce a functor F : A→ E together with the following data:
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(1) equivalences βx : Fx ' j∗x(F ) and βy : Fy ' j∗y(F );

(2) whenever φ : a→ fγ(a) is a p-cocartesian morphism in A, an equivalence

βa : F (φ) ' α(a)

in MapE(Fx(a), Fy(fγ(a))).

The above analysis allows to obtain an improvement on Corollary 6.1.5. To state it, we need
to first introduce the following:

Notation 7.1.9. Let γ : x → y‘be a morphism in X. Let F ∈ Fun(Ax,E) and G ∈ Fun(Ay,E)
and let α : F → G be a morphism in expE(A/X) lying over γ. We can factor α as

F G′ G ,
α0 α1

where α1 is pE-cartesian. Unraveling the definitions, we see that for every p-cocartesian lift
φ : a → b of γ, α1 induces a canonical equivalence α1(φ) : G′(a) ' G(b), and in particular we
obtain a well defined morphism

α(φ) := α1(φ) ◦ α0(a) : F (a)→ G(b)

in E.

Corollary 7.1.10. Let F : A→ E be a functor and let φ : a→ b be a p-cocartesian morphism in
A. Then there is a canonical identification

F (φ) ' (spF )p(φ)(φ)

of morphisms in E.

Proof. Using Proposition 6.1.2-(1) we can assume without loss of generality that X = ∆1. Choose
a straightening fγ : Ax → Ay together with a morphism s : jx → jy ◦ fγ as in Example 7.1.5.
Using Corollary 6.1.5 we see that (spF )γ can be factored as

j∗x(F ) f∗γ (j∗y(F )) j∗y(F ) ,s∗

where the second morphism is pE-cartesian. With these choices, the notation introduced in
Notation 7.1.9 collapses to (spF )p(φ)(a) ' s∗(a), so the conclusion follows from the analysis of
the specialization equivalence over ∆1 carried out in Example 7.1.8. �

7.2. Cocartesian functors. We fix as usual a cocartesian fibration p : A→ X and a presentable
∞-category E. We let pE : expE(A/X)→ X be the canonical projection.

Definition 7.2.1. Let F : A → E be a functor and let γ : x → y be a morphism in X. We say
that F is cocartesian at γ if every specialization morphism for F relative to γ is an equivalence in
Fun(Ay,E).

We say that F is cocartesian if it is cocartesian at every morphism γ of X. We write Funcocart(A,E)
for the full subcategory of Fun(A,E) spanned by cocartesian functors.

Remark 7.2.2. Recall from Remark 7.1.7 that SPγ(F ) is a contractible space. In particular, in
order to check that F is cocartesian at γ, it is enough to check that there exists one specialization
morphism α that is an equivalence.

We now collect a couple of elementary facts concerning these objects. We keep the cocartesian
fibration p : A→ X and the presentable ∞-category E fixed in all the following statements:

Proposition 7.2.3. Let F : A → E be a functor and let γ : x → y be a morphism in X. The
following statements are equivalent:
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(1) F is cocartesian at γ;

(2) the specialization spF : X→ expE(A/X) takes γ to a pE-cocartesian edge;

(3) let fγ : Ax → Ay be any straightening for pγ : Aγ → ∆1. Then the canonical Beck-
Chevalley transformation (7.1.6)

fγ,!j
∗
x(F )→ j∗y(F )

is an equivalence.

Proof. Any element of SPγ(F ) corresponds to a factorization

(spF )x G

(spF )y

β

(spF )γ
α

inside expE(A/X), where β is pE-cocartesian and α is the associated specialization morphism. It
follows that (spF )γ is pE-cocartesian if and only if α is an equivalence. This shows that (1) ⇔
(2). The equivalence (2) ⇔ (3) follows now from Example 7.1.5. �

Corollary 7.2.4. Denoting ΥA : X→ Cat∞ the straightening of the cocartesian fibration A→ X,
there are canonical equivalences

Funcocart(A,E) ' Σcocart
X (expE(A/X)) ' lim

X
Fun!(ΥA,E)

In particular:
(1) Funcocart(A,E) is presentable;

(2) if E is stable, Funcocart(A,E) is stable.

Proof. Combining the specialization equivalence (6.1.1) and the equivalence (1) ⇔ (2) of Proposi-
tion 7.2.3, we see that Funcocart(A,E) coincides with the full subcategory of Fun/X(X, expE(A/X))
spanned by cocartesian sections This proves the first equivalence, and the second follows directly
from [31, Proposition 3.3.3.1]. For point (1) it is now sufficient to observe that the functor
Fun!(ΥA,E) : X → Cat∞ takes values in PrL, so the conclusion follows from [31, Propositon
5.5.3.13]. Similarly, point (2) follows from [32, Theorem 1.1.4.4]. �

Warning 7.2.5. There is another natural condition that we can impose on a functor F : A→ E:
namely, we can ask that F takes p-cocartesian arrows in A to equivalences in E. This condition cuts
a full subcategory Fun′(A,E) of Fun(A,E), that however does not coincide with Funcocart(A,E).
Indeed, [31, Corollary 3.3.4.3] yields an identification

Fun′(A,E) ' Fun
(

colim
X

ΥA,E
)
' lim

Xop
Fun∗(ΥA,E) ' Σcart

X (expE(A/X)) ,

where Σcart
X denotes the functor of cartesian sections.

Corollary 7.2.6. A functor F : A→ E is cocartesian at every equivalence of X.

Proof. Immediate from the equivalence (1) ⇔ (2) of Proposition 7.2.3 and [31, 2.4.1.5]. �

Corollary 7.2.7. Let
y

x z.

γ1γ0

γ2

be a commutative triangle in X. Let F : A→ E be a functor, and assume that it is cocartesian at
γ0. Then F is cocartesian at γ1 if and only if it is cocartesian at γ2.
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Proof. Immediate from the equivalence (1) ⇔ (2) of Proposition 7.2.3 and from [31, 2.4.1.7]. �

Corollary 7.2.8. Let p : A→ X be a cocartesian fibration. Let γ : x→ y be a morphism in X.
Let E be a presentable ∞-category. Then, the full subcategory of Fun(A,E) spanned by functors
cocartesian at γ is stable under colimits.

Proof. This follows from the equivalence (1) ⇔ (3) in Proposition 7.2.3 and the fact that the
functors fγ,!, j∗x and j∗y commute with colimits. �

Proposition 7.2.9. Let p : A → X be a cocartesian fibration and let E be a presentable ∞-
category. Then Funcocart(A,E) is stable under colimits Fun(A,E). In particular, Funcocart(A,E)
is a coreflective subcategory of Fun(A,E), that is the inclusion

(7.2.10) Funcocart(A,E) ↪→ Fun(A,E)

admits a right adjoint.

Proof. We know from Corollary 7.2.4 that Funcocart(A,E) is presentable. It is thus enough to check
that Funcocart(A,E) is stable under colimits in Fun(A,E), which follows from Corollary 7.2.8. �

Definition 7.2.11. Let p : A → X be a cocartesian fibration and let E be a presentable ∞-
category. We denote by

(−)cocart : Fun(A,E)→ Funcocart(A,E)

the right adjoint of the inclusion (7.2.15), and refer to (−)cocart as the cocartesianization functor.

Remark 7.2.12. The functor (−)cocart can be explicitly computed in some specific situations.
See Corollary 7.6.12.

Under extra stability and fiberwise compactness conditions, Corollary 7.2.8 and Proposi-
tion 7.2.9 have the following counterparts for limits :

Lemma 7.2.13. Let p : A→ X be a cocartesian fibration and let γ : x→ y be a morphism in X

such that Ax is compact and Ay is proper (see Definition 17.1.1). Let E be a presentable stable
∞-category. Then, the full subcategory of Fun(A,E) spanned by functors cocartesian at γ is closed
under limits.

Proof. This follows from the equivalence (1) ⇔ (3) in Proposition 7.2.3 and the fact that the
functors fγ,!, j∗x and j∗y commute with limits in virtue of Proposition 17.2.3. �

Proposition 7.2.14. Let p : A→ X be a cocartesian fibration with compact and proper fibers.
Let E be a presentable stable ∞-category. Then Funcocart(A,E) is stable under limits Fun(A,E).
In particular Funcocart(A,E) is a reflective subcategory of Fun(A,E), that is the inclusion

(7.2.15) Funcocart(A,E) ↪→ Fun(A,E)

admits a left adjoint.

Proof. We know from Corollary 7.2.4 that Funcocart(A,E) is presentable. It is thus enough to check
that Funcocart(A,E) is stable under limits in Fun(A,E), which follows from Lemma 7.2.13. �

7.3. Functoriality of cocartesian functors. We fix as usual a cocartesian fibration p : A→ X

and a presentable ∞-category E. We saw in Corollary 7.2.4 that there is a canonical equivalence

Funcocart(A,E) ' Σcocart(expE(A/X)) .

Therefore, it follows from [40, Corollary 3.23] that this construction depends functorially on the
cocartesian fibration A→ X seen as an element of CoCart. We now make this explicit in terms
of the lax functoriality of Fun(A,E) ' Σ(expE(A/X)) in A→ X.
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Proposition 7.3.1. Let
B BX A

Y X

vu

f

be a morphism in CoCart. Then:
(1) if F : B→ E is a cocartesian functor, the same goes for u∗(F ) : BX → E;

(2) if G : BX → E is a cocartesian functor, then the same goes for v!(G) : A→ E.
In particular the functors

u∗ : Fun(B,E)→ Fun(BX,E) and v! : Fun(BX,E)→ Fun(A,E)

restrict to well-defined functors

u∗ : Funcocart(B,E)→ Funcocart(BX,E) and v! : Funcocart(BX,E)→ Funcocart(A,E) .

This proposition results of the following two more precise lemmas:

Lemma 7.3.2. Let
A B

X Y

u

f

be a pullback square in Cat∞, where the vertical morphisms are cocartesian fibrations. Fix a
morphism γ in X and a functor F : B→ E. Then u∗(F ) is cocartesian at γ if and only if F is
cocartesian at f(γ).

Proof. Under the specialization equivalence (6.1.1) and Proposition 6.1.2-(1), the statement
follows from Proposition 7.2.3 and from [31, Proposition 2.4.1.3-(2)] applied to the square

expE(A/X) expE(B/Y)

X Y ,

Eu

f

which is a pullback thanks to Proposition 3.2.6-(1). �

Lemma 7.3.3. Let X be an ∞-category and consider a morphism

A B

X

v

in CoCartX. Let γ be a morphism in X and let F : A→ E be a functor. If F is cocartesian at γ,
then the same goes for v!(F ).

Proof. In virtue of Proposition 7.2.3, we have to prove that the section

sp(v!(F )) : X→ expE(B/X)

takes γ to a cocartesian edge in expE(B/X). Using Proposition 6.1.2-(2), we find a canonical
identification

sp(v!(F )) ' Ev! ◦ sp(F ) ,

where Ev! : expE(A/X)→ expE(B/X) is the exponential induction functor. The conclusion now
follows from Proposition 3.2.6-(2), that guarantees that Ev! preserves cocartesian edges. �
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We conclude with a handy consequence:

Corollary 7.3.4. In the setting of Lemma 7.3.2, the composition

ucocart
∗ := (−)cocart ◦ u∗ : Funcocart(B,E)→ Funcocart(A,E)

is right adjoint to the pull-back functor u∗ : Funcocart(A,E)→ Funcocart(B,E).

Proof. The functors at play are well-defined from Proposition 7.3.1-(1) and Definition 7.2.11.
Corollary 7.3.4 is then a routine computation. �

Lemma 7.3.5. Let
B BX A

Y X

vu

f

be a morphism in CoCart. Assume that A→ X and B→ X have compact and proper fibers, and
that E is presentable stable. Then, the functors

u∗ : Funcocart(B,E)→ Funcocart(BX,E) and v! : Funcocart(BX ,E)→ Funcocart(A,E)

commute with limits and colimits.

Proof. From Proposition 7.2.9 and Proposition 7.2.14, Funcocart(B,E) and Funcocart(BX,E) are
stable under limits and colimits in Fun(B,E) and Fun(BX,E) respectively. Hence, it is enough to
show that the functors

u∗ : Fun(B,E)→ Fun(BX,E) and v! : Fun(BX,E)→ Fun(A,E)

commute with limits and colimits. For the former, this is obvious. For the latter, this follows
from Proposition 17.2.3. �

7.4. Van Kampen for cocartesian functors. Consider the following general fact:

Lemma 7.4.1 (Van Kampen for filtered functors). Let X• : I → Cat∞ be a diagram with colimit
X. Let p : A→ X be a cocartesian fibration and set

A• := X• ×X A : I → Cat∞ .

Then the canonical morphism
colim
i∈I

Ai → A

is an equivalence. In particular, for every presentable ∞-category E the canonical morphism

(7.4.2) Fun(A,E)→ lim
i∈Iop

Fun∗(Ai,E)

is an equivalence.

Proof. Since p : A → X is a cocartesian fibration, it is in particular an exponentiable fibration
thanks to [2, Lemma 2.15]. In particular, the functor

p∗ : (Cat∞)/X → (Cat∞)/A

is a left adjoint. It follows in particular that it preserves all colimits. Now the conclusion follows
from the fact that for every ∞-category C, the forgetful functor

(Cat∞)/C → Cat∞
is conservative and preserves all colimits. �

To prove a Van Kampen result for cocartesian functors, we need a couple of categorical
preliminaries. Recall the following definitions:



40 MAURO PORTA AND JEAN-BAPTISTE TEYSSIER

Definition 7.4.3. The maximal spine of the standard n-simplex ∆n is the sub-simplicial set
formed by the consecutive 1-simplexes ∆n

{0,1},∆
n
{1,2}, . . . ,∆

n
{n−1,n}.

Remark 7.4.4. Notice that the maximal spine of ∆2 coincides with Λ2
1. On the other hand, for

n > 3 every horn Λni cointains the maximal spine of ∆n.

Definition 7.4.5. Let C be a quasi-category and let S ⊂ C be a collection of 1-simplexes. We
say that S is closed under identities if whenever f : x→ y belongs to S, then idx and idy belong
to S as well.

Construction 7.4.6. Let C be a quasicategory and let S ⊂ C be a collection of 1-simplexes.
Define CS as the full sub-simplicial set of C defined by the following condition: an n-simplex
σ : ∆n → C belongs to CS if and only if the restriction of σ to the maximal spine of ∆n factors
through S.

Lemma 7.4.7. Let C be a quasi-category and let S ⊂ C be a collection of 1-simplexes. If S is
closed under identities, then CS is the smallest full sub-quasicategory of C containing C.

Proof. Let C′ be the smallest full sub-quasicategory of C containing C. It immediately follows
from Remark 7.4.4 that CS is a quasi-category, and therefore that C′ ⊆ CS . Vice-versa, iteratively
applying the lifting condition against inner horns we deduce that any sub-quasicategory containing
S must contain CS . Thus, C′ = CS as full sub-quasicategories of C. �

Notation 7.4.8. Let f : Y→ X be a morphism of quasicategories. We denote by Sf the collection
of 1-simplexes of X that lie in the essential image of f .

Lemma 7.4.9. Let X• : I → Cat∞ be a diagram with colimit X. Let fi : Xi → X be the structural
morphisms and define

S :=
⋃
i∈I

Sfi .

Then S is closed under identities and the inclusion XS ⊆ X is an equivalence in Cat∞.

Proof. That S is closed under identities simply follows from the definitions. Notice that XS is
itself an ∞-category and that the inclusion i : XS ↪→ X is fully faithful. By definition, every fi
factors as

f i : Xi → XS .

Therefore, the universal property of the colimit provides a canonical map p : X→ XS together
with an equivalence i ◦ p ' idX. This implies that i is essentially surjective. Being already fully
faithful, it follows that it is an equivalence. �

We are now ready for:

Proposition 7.4.10 (Van Kampen for cocartesian functors). Let X• : I → Cat∞ be a diagram
with colimit X. Let p : A→ X be a cocartesian fibration and set

A• := X• ×X A : I → Cat∞ .

Let E be a presentable∞-category. Then the equivalence of Lemma 7.4.1 restricts to an equivalence

Funcocart(A,E) ' lim
i∈I

Funcocart(Ai,E) .
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Proof. Using Proposition 7.3.1-(1), we see that the canonical map (7.4.2) induces a well defined
map between cocartesian functors making the diagram

Fun(A,E) lim
i∈I

Fun(Ai,E)

Funcocart(A,E) lim
i∈I

Funcocart(Ai,E) .

Since the top horizontal arrow is an equivalence and the vertical ones are fully faithful, it follows
that the bottom horizontal functor is fully faithful as well. To conclude the proof, it is enough to
show that a functor F : A→ E is cocartesian if and only if for every i ∈ I its image in Fun(Ai,E)
is cocartesian. The “only if” follows from Proposition 7.3.1-(1). For the converse, observe first
that combining Corollary 7.2.7 and Lemma 7.4.9 we deduce that F is cocartesian if and only if it
is cocartesian at every morphism in the essential image of the structural map fi : Xi → X. At
this point, the conclusion follows from Lemma 7.3.2. �

7.5. Change of coefficients for cocartesian functors. Fix a cocartesian fibration p : A →
X and let f : E → E′ be a morphism in PrL. Recall from Section 6.5 that this induces a
transformation

fA/X : expE(A/X)→ expE′(A/X)

in PrFibL. In particular:

Proposition 7.5.1. The transformation fA/X preserves cocartesian edges. Therefore, the induced
functor

f : Fun(A,E)→ Fun(A,E′)

preserves cocartesian functors and induces a well defined morphism

f : Funcocart(A,E)→ Funcocart(A,E′) .

Proof. Since fA/X is a morphism in PrFibL, it automatically preserves cocartesian edges. The
second half follows then from the identification f ' ΣX(fA/X) supplied by Proposition 6.5.1. �

We now study the change of coefficients via the tensor product in PrL. Recall that for every
pair of presentable ∞-categories E and E′ and for every ∞-category A, there is a canonical
equivalence

Fun(A,E)⊗ E′ ' Fun(A,E⊗ E′) .

Under suitable finiteness assumptions, we are going to see that this equivalence preserves cocarte-
sian functors.

Definition 7.5.2. Define PrL,R as the (non full) subcategory of PrL whose objects are pre-
sentable ∞-categories and morphisms are functors that are both left and right adjoints.

Definition 7.5.3. LetPrFibL,R be the full subcategory ofPrFibL corresponding to Fun(X,PrL,R)
under the straightening equivalence (3.1.8).

Example 7.5.4. Let p : A→ X be a cocartesian fibration with compact and proper fibers (see
Definition 17.1.1). Let E be a stable presentable ∞-category. Then the exponential fibration
pE : expE(A/X) → X defines an object in PrFibL,R: indeed, we have to check that for every
morphism γ : x→ y in X and any choice of a straightening fγ : Ax → Ay, the induced functor

fγ,! : Fun(Ax,E)→ Fun(Ay,E)

commutes with limits and colimits, and this follows from Proposition 17.2.3.
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Our main use of PrL,R will be through the following lemma from [25, 2.7.9].

Lemma 7.5.5. Let A be a small∞-category and let C• : A→ PrL,R be a diagram of∞-categories.
Then,

(1) The limits of C• when computed in PrR, PrL, or Cat∞ all agree.

(2) For any presentable ∞-category E, the natural morphism

lim
α∈A

E⊗ Cα → E⊗ lim
α∈A

Cα

in PrL is an equivalence. (Here, both limits are computed in PrL).

Lemma 7.5.6. Let X be an∞-category and let E be a presentable∞-category. Then commutative
diagram

PrL PrFibL

PrL PrFibL

(−)⊗E

TrivX

(−)⊗XTrivX(E)

TrivX

is horizontally right adjointable on objects of PrFibL,R. That is, for every object p : A→ X of
PrFibL,R, the Beck-Chevalley transformation

Σcocart
X (A/X)⊗ E→ Σcocart

X (A⊗X TrivX(E))

is an equivalence.

Proof. Let ΥA : X→ PrL be the straightening of A→ X. From [31, 3.3.3.2], the Beck-Chevalley
transformation reads as the following natural morphism in PrL(

lim
x∈X

Ax
)
⊗ E→ lim

x∈X
(Ax ⊗ E) .

Then, Lemma 7.5.6 follows from Lemma 7.5.5. �

Corollary 7.5.7. Let p : A → X be an object of CoCart with proper and compact fibers. Let
E,E′ be presentable ∞-categories such that E is stable. Then, the canonical transformation

Funcocart(A,E)⊗ E′ → Funcocart(A,E⊗ E′)

is an equivalence.

Proof. Recall from Remark 3.3.1 that there is a canonical equivalence

expE(A/X)⊗X TrivX(E) ' expE⊗E′(A/X) .

By Example 7.5.4 the exponential fibration expE(A/X) belongs to PrFibL,R. Thus, the conclusion
follows applying Σcocart

X to the above equivalence and using Lemma 7.5.6. �

7.6. Cocartesian functors in presence of an initial object. We saw in Proposition 7.2.9
that the inclusion of cocartesian functors inside all functors always admits a right adjoint (−)cocart.
The goal of this section is to provide an explicit description of this functor in the special case
where the base X admits an initial object. We start with the following construction:

Construction 7.6.1. Fix a cocartesian fibration p : A→ X and let γ : x→ y be a morphism in
X. Define

γ! := j∗y ◦ jx,! : Fun(Ax,E)→ Fun(Ay,E) .

Write εx for the counit of the adjunction jx,! a j∗x. It induces a natural transformation

αγ := εxj
∗
x : γ! ◦ j∗x → j∗y .
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Fix now a straightening
f : Ax → Ay

for pγ : Aγ → ∆1 together with a natural transformation s : jx → jy ◦ f as in Example 7.1.5.
Write ηx for the unit of jx,! a j∗x and consider the transformation

βf,s : f! f! ◦ j∗x ◦ jx! j∗y ◦ jx! = γ!.
f!(ηx) αf,s(jx!)

Proposition 7.6.2. In the setting of Construction 7.6.1, the diagram

f! ◦ j∗x j∗y ◦ jx,! ◦ j∗x

j∗y

βf,s(j
∗
x)

αf,s
j∗y(εx)

is canonically commutative. If in addition x is an initial object of X, then the natural transforma-
tion βf,s : f! → γ! is an equivalence. In this case, for every F ∈ Fun(A,E), the morphism

j∗y(εx) : j∗yjx,!j
∗
x(F )→ j∗y(F )

is a specialization morphism for F relative to γ.

Proof. For what concerns the commutativity, a standard diagram chase reduces it to the triangular
identities for j0,! a j∗0 . We leave the details to the reader. We check that βf,s is an equivalence
under the assumption that x is an initial object of X. Unraveling the definitions, we reduce
ourselves to check that for every a ∈ Ay, the canonical functor induced by the pair (f, s)

(7.6.3) Ax ×Ay (Ay)/a → Ax ×A A/jy(a)

is cofinal. We are going to show that it is an equivalence. To do this, [31, 2.2.3.3] ensures that
it is enough to show that (7.6.3) is a pointwise equivalence over Ax. The restriction of (7.6.3)
above b ∈ Ax reads as

(7.6.4) MapAy
(f(b), a)→ MapA(jx(b), jy(a)) .

Since x is an initial object in X, MapX(x, y) is contractible. Thus, every morphism jx(b)→ jy(a)
lies over γ : x→ y. Since s : jx(b)→ jy(f(b)) is a p-cocartesian lift of γ, [31, 2.4.4.2] implies that
(7.6.4) is an equivalence.

�

For a general morphism γ : x→ y in X, we can always replace p : A→ X by pγ : Aγ → ∆1 in
order to ensure that the hypothesis of Proposition 7.6.2 is satisfied. This yields:

Definition 7.6.5. Let p : A→ X be a cocartesian fibration. Let F ∈ Fun(A,E) be a functor and
let γ : ∆1 → X be a morphism in X. Let jγ : Aγ → A, jγ,x : Ax → Aγ and jγ,y : Ay → Aγ be the
natural functors. Observe that jγ ◦ jγ,y ' jy, and similarly for x. The strict induction functor
relative to γ is the functor

γA,! := j∗γ,y ◦ jγ,x,! : Fun(Ax,E)→ Fun(Ay,E).

The strict specialization morphism for F relative γ is the natural transformation

spA,γ(F ) := j∗γ,y(εxj
∗
γ) : γA,!(j

∗
xF )→ j∗y(F ),

where εx denotes the counit of the adjunction jγ,x,! a j∗γ,x.
When A is clear from the context, we write γ! and spγ(F ) instead of γA! and spA,γ .

Remark 7.6.6. The terminology is due to the fact that neither γA,! nor spA,γ(F ) depend on
the choice of a straightening of p : A→ X.
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Proposition 7.6.2 leads to a complete understanding of Funcocart(A,E) when X has an initial
object. Before stating the main result of this section, let us collect a couple of general facts:

Proposition 7.6.7. Let X and Y be small ∞-categories and let

C D

X Y

g

q p

f

be a pullback square in Cat∞, with p being a cocartesian fibration. If f is a final functor, then
the induced pull-back functor

f∗ : Funcocart
/Y (Y,D)→ Funcocart

/X (X,C)

is an equivalence of ∞-categories.

Proof. Let ΥD and ΥC be the straightenings of p : D→ Y and of q : C→ X, respectively. Since
the given square is a pullback, there is a natural equivalence ΥC ' ΥD ◦ f . We find:

Funcocart
/Y (Y,D) ' lim

X
ΥD By [31, Prop. 3.3.3.1]

' lim
Y

ΥD ◦ f f is cofinal

' lim
Y

ΥC

' Funcocart
/X (X,C) By [31, Prop. 3.3.3.1],

and the conclusion follows. �

In the particular case where C = expE(B/Y), we find:

Corollary 7.6.8. Let

A B

X Y

u

q p

f

be a pullback in Cat∞, with p being a cocartesian fibration. Let E be a presentable ∞-category.
If f is a final functor, then

(7.6.9) u∗ : Funcocart(B,E)→ Funcocart(A,E)

is an equivalence.

Proof. Apply Proposition 7.6.7 to expE(B/Y) and use Proposition 6.1.2-(1). �

Observation 7.6.10. Recall from Corollary 7.3.4 that u∗ admits a right adjoint ucocart
∗ . It

follows formally that in the situation of Corollary 7.6.8, the ucocart
∗ realizes the inverse of u∗.

Corollary 7.6.11. Let X be an∞-category with an initial object x. Let p : A→ X be a cocartesian
fibration and let E be a presentable ∞-category. Then:

(1) the functor jx,! : Fun(Ax,E)→ Fun(A,E) factors through Funcocart(A,E).

(2) The adjunction
jx,! : Fun(Ax,E)� Fun(A,E) : j∗x

restricts to an equivalence of ∞-categories between Fun(Ax,E) and Funcocart(A,E).
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Proof. We prove (1). Let F ∈ Fun(Ax,E) and let γ : y → z be a morphism in X. We need to
show that jx,!(F ) is cocartesian at γ. Since x is initial in X, we can find a commutative triangle

y

x z.

γγ0

γ2

in X. From Corollary 7.2.7, it is enough to prove that jx,!(F ) is cocartesian at γ0 and γ2.
Equivalently, we can suppose that y = x. Now we apply Proposition 7.6.2 to jx,!(F ): notice that
since x is initial, the inclusion {x} ↪→ X is fully faithful and therefore that jx : Ax → A is fully
faithful as well. Thus, the unit transformation F → j∗xjx,!(F ) is an equivalence, and therefore the
strict specialization morphism provided by Proposition 7.6.2 is an equivalence as well.

We now prove (2). Since Funcocart(A,E) is fully faithful inside Fun(A,E) and since jx,! factors
through Funcocart(A,E), we see that the adjunction jx,! a j∗x descends to an adjunction

jx,! : Fun(Ax,E)� Fun(A,E) : j∗x .

It is therefore enough to prove that j∗x is an equivalence. Since the inclusion {x} ↪→ X is final,
this follows from the limit-description of cocartesian functors provided in Corollary 7.2.4. See
also Corollary 7.6.8 below. �

Corollary 7.6.12. Let X be an∞-category with an initial object x. Let p : A→ X be a cocartesian
fibration and let E be a presentable ∞-category. Then there is a natural equivalence

(−)cocart ' jx,! ◦ j∗x
of functors from Fun(A,E) to Funcocart(A,E).

Proof. Fix F ∈ Funcocart(A,E) and let G ∈ Fun(A,E). We have

MapFun(A,E)(F,G) ' MapFun(A,E)(jx,!j
∗
x(F ), G) By Cor. 7.6.11

' MapFun(Ax,E)(j
∗
x(F ), j∗x(G))

' MapFuncocart(Ax,E)(jx,!j
∗
x(F ), jx,!j

∗
x(G))

' MapFuncocart(Ax,E)(F, jx,!j
∗
x(G))

where the last two equivalences are again due to Corollary 7.6.11. Therefore, jx,! ◦ j∗x is right
adjoint to the inclusion of Funcocart(A,E) into Fun(A,E), whence the conclusion. �

For later use, let us extract the formal argument used to prove Corollary 7.6.11-(2):

Lemma 7.6.13. Let
A B

X Y

u

q p

f

be a pullback in Cat∞, with p being a cocartesian fibration. Let E be a presentable ∞-category.
Assume that u∗ : Funcocart(A,E)→ Funcocart(B,E) is an equivalence of ∞-categories. Then, the
following conditions are equivalent:

(1) The functor u! : Fun(B,E)→ Fun(A,E) preserves cocartesian functors;

(2) The adjunction u! a u∗ restricts to an equivalence of ∞-categories between Funcocart(A,E)
and Funcocart(B,E);

(3) For every F ∈ Funcocart(B,E), there is a natural equivalence u!(F ) ' ucocart
∗ (F ).
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Proof. Notice that both (2) and (3) imply tautologically (1). Since Funcocart(A,E) is a full
subcategory of Fun(A,E), and similarly for B in place of A, we see that as soon as (1) is satisfied
the induced functor

u! : Funcocart(B,E)→ Funcocart(A,E)

provides a left adjoint to u∗. So (2) holds, and since u∗ is an equivalence, (3) follows from the
uniqueness of the inverse. �

7.7. Invariance of cocartesian functors under localization. We saw in Corollary 7.6.8 that
when f is a final functor,

u∗ : Funcocart(B,E)→ Funcocart(A,E)

is an equivalence, with inverse given by ucocart
∗ . Furthermore, in Corollary 7.6.11, we saw that

when f is the inclusion of an initial object, then the inverse can be identified with the much
simpler left Kan extension u!. In this section, we analyze a similar situation, where f is assumed
to be a localization (recall from [11, Proposition 7.1.10] that all localizations are final), building on
the results of the previous section. Our starting point is the following finer analysis of cocartesian
functors in this special situation:

Proposition 7.7.1. Let

(7.7.2)
A B

X Y .

u

q p

f

be a pullback square in Cat∞, with p being a cocartesian fibration. Assume that f exhibits Y as a
localization of X at a collection of morphisms W . Then for every presentable ∞-category E and
every functor G : A→ E, the following conditions are equivalent:

(1) G lies in the essential image of u∗ : Fun(B,E)→ Fun(A,E);

(2) G is cartesian at every mophism in W ;

(3) For every γ ∈W , the morphism Eu((spG)(γ)) is an equivalence in expE(B/Y);

(4) G is cocartesian at every mophism in W .

Proof. Let WA be the set of cocartesian lifts of morphisms in W . We saw in Theorem 18.2.1
that u : A → B exhibits B as a localization of A at WA. Thus, (1) is equivalent to ask that
G inverts every arrow in WA and Lemma 18.1.1 shows that this is equivalent to condition (2).
Combining the specialization equivalence Proposition 3.3.3 and the global functoriality established
in Proposition 6.1.2-(1) and the fact that the front square of (18.2.3) is a pullback, we deduce
that (1) is equivalent to ask that Eu ◦ (spG) : X → expE(B/Y) inverts all arrows in W , i.e. to
condition (3). Finally, we prove the equivalence between (3) and (4): let γ be a morphism in W .
Combining Proposition 3.2.6-(1) and [31, 2.4.1.12], we see that G is cocartesian at γ if and only if
Eu ◦ (spG) takes γ into a pE-cocartesian morphism in expE(B/Y). Since Eu((spG)(γ)) lies over
f(γ), which is an equivalence in Y, we see that this happens if and only if Eu((spG)(γ)) is an
equivalence in expE(B/Y), whence the conclusion. �

Proposition 7.7.3. Let

(7.7.4)
A B

X Y .

u

q p

f



HOMOTOPY THEORY OF STOKES STRUCTURES AND DERIVED MODULI 47

be a pullback square in Cat∞, with p being a cocartesian fibration. Assume that f is a localization
functor and let E be a presentable ∞-category. Then:

(1) A functor F ∈ Fun(B,E) is cocartesian if and only if u∗(F ) cocartesian.

(2) The functor
u! : Fun(A,E)→ Fun(B,E)

preserves cocartesian functors.

(3) The adjunction
u! : Fun(A,E)� Fun(B,E) : u∗

restricts to an equivalence of ∞-categories between Funcocart(A,E) and Funcocart(B,E).

Proof. Let W be the collection of morphisms that in X that are inverted by f . We start by
proving (1). The “only if” direction is a consequence of Proposition 7.3.1-(1). Suppose on the
other hand that u∗(F ) is cocartesian. Notice that the homotopy category h(Y) is the 1-categorical
localization of h(X) at the image of W in h(X). In particular, every 1-morphism (in h(Y) and
hence) in Y can be represented as a zig-zag (see [18]):

x0 → x1 ← x2 → · · · ← xn

in X, where the arrows pointing to the left are in W . Recall from Corollary 7.2.6, that F is
cocartesian at every equivalence of Y. Thus, using Corollary 7.2.7 we are left to show that for
every morphism γ of X, the functor F is cocartesian at f(γ), and this follows from Lemma 7.3.2
and our assumption that u∗(F ) is cocartesian.

We now prove the claim (2). Let G : A→ E be a cocartesian functor. Proposition 7.7.1 ensures
the existence of a functor F : B → E such that G ' u∗(F ). Point (1) guarantees that F is
cocartesian. At the same time, we know from Theorem 18.2.1 that u : B→ A is a localization
functor. Thus, u∗ : Fun(B,E)→ Fun(A,E) is fully faithul, and therefore the counit transformation
g! ◦ g∗ → id is an equivalence. It follows that

F ' g!(g
∗(F )) ' g!(G)

is cocartesian, and so (2) is proven.

Finally, for (3), recall from [11, Proposition 7.1.10] that localization functors are final. Thus,
(3) follows from (2) combined with Corollary 7.6.8 and Lemma 7.6.13. �

Corollary 7.7.5. Let

A′ B′

A B

X′ Y′

X Y

u′

s′ s

u

f ′

r′ r

f

be a commutative cube in Cat∞, with the vertical arrows being cocartesian fibrations. Assume
that r and r′ are localization functors and that the left and right vertical faces are pullbacks. Let
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E be a presentable ∞-category. Then, the following diagrams

Funcocart(A′,E) Funcocart(B′,E)

Funcocart(A,E) Funcocart(B,E),

u′∗

s! s′!

u∗

Funcocart(B,E) Funcocart(A,E)

Funcocart(B′,E) Funcocart(A′,E)

gcocart
∗

u′∗ s∗

u′ cocart
∗

are canonically commutative.

Proof. Observe that the right square from Corollary 7.7.5 is obtained from the left square by
passing to right adjoints. Hence, we are left to prove the commutativity of the left square. Since
the top face is commutative, we have

s′∗ ◦ u∗ = u′∗ ◦ s∗

From Proposition 7.7.3, the adjunction s! a s∗ induces an equivalence of ∞-categories between
Funcocart(A,E) and Funcocart(A′,E) and similarly with s′! a s′∗. The commutativity of the left
square thus follows. �

Corollary 7.7.6. Let f : X→ Y be a localization functor between ∞-categories. Let B be an ∞-
category and denote by u : B×X→ B×Y the induced functor. Let E be a presentable ∞-category.
The adjunction u! a u∗ induces an equivalence of ∞-categories between Funcocart(A× Y,E) and
Funcocart(A× X,E).

Proof. Consider the pullback square

A× Y A× X

Y X

and apply Proposition 7.7.3. �

Remark 7.7.7. When applied to the localization X→ Env(X), the above corollary says that u! a
u∗ induces an equivalence of ∞-categories between Fun(A× Env(X),E) and Funcocart(A× X,E).

7.8. Exceptional functoriality. Let

(7.8.1)
A B

X Y

u

q p

f

be a pullback diagram in Cat∞, with p being a cocartesian fibration. We saw in Corollary 7.6.8
that when f is a final functor the pullback

u∗ : Funcocart(B,E)→ Funcocart(A,E)

is an equivalence for every presentable∞-category E. In virtue of Proposition 7.2.9, the inverse to
u∗ is always given by the functor ucocart

∗ , which is nevertheless very inexplicit in general. At the
same time we saw in two rather different situations (Corollary 7.6.11 and Proposition 7.7.3) that
sometimes the inverse can be computed by the left Kan extension u!. In this section, we analyze
this phenomenon more in detail, obtaining a sufficient criterion guaranteeing that u! preserves
cocartesian functors, that will be needed later on.

We start with a simple observation:
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Proposition 7.8.2. Let
A B

X Y

u

q p

f

be a pullback square in Cat∞, with p being a cocartesian fibration. Let E be a presentable ∞-
category. Assume that f is fully faithful, and let F ∈ Fun(A,E) be a functor cocartesian at a
morphims γ : x→ y in X. Then u!(F ) is cocartesian at f(γ).

Proof. Since f is fully faithful, the same goes for u. Thus, the unit transformation F → u∗(u!(F ))
is an equivalence. Using Lemma 7.3.2, we therefore see that u!(F ) is cocartesian at f(γ) if and
only if F ' u∗(u!(F )) is cocartesian at γ. The conclusion follows. �

We now carry out a finer analysis. Fix x ∈ X, set y := f(x) and fix as well a morphism
γ : y → z in Y. Associated to these data, we can form the following commutative cube:

(7.8.3)

By Bγ

A B

∗ ∆1

X Y ,

jγ,x

jx

px

jγ

pγ

u

p0

y γ

f

q

whose vertical faces are pullbacks. Fix a presentable ∞-category E. The commutativity of the
top face of the above cube induces a Beck-Chevalley transformation

(7.8.4) jγ,x,! ◦ j∗x → j∗γ ◦ u!

of functors from Fun(A,E) to Fun(Bγ ,E). We have:

Proposition 7.8.5. Assume that the Beck-Chevalley transformation (7.8.4) is an equivalence.
Then for every F ∈ Fun(B,E), the functor u!(F ) : A→ E is cocartesian at γ.

Proof. We have to prove that sp(u!(F )) is cocartesian at γ. By Lemma 7.3.2 applied to γ : ∆1 → Y,
this is equivalent to show that j∗γ(u!(F )) is cocartesian at 0 → 1. Since the Beck-Chevalley
transformation (7.8.4) is an equivalence, we are reduced to prove that jγ,x,!(j∗x(F )) is cocartesian
at 0→ 1. In other words, we are reduced to prove the statement in the special case where (7.8.1) is
the back square of (7.8.3). Since 0 is initial in ∆1, this follows directly from Corollary 7.6.11. �

We now give a sufficient condition on f and γ ensuring that the Beck-Chevalley transformation
(7.8.4) is an equivalence:

Proposition 7.8.6. In the above setting, assume that:
(1) for every (t, α) ∈ X×Y Y/y, the map

MapX(t, x)→ MapY(f(t), y)

is an equivalence;

(2) for every (s, β) ∈ X×Y Y/z, the composition

MapX(s, x)→ MapY(f(s), y)→ MapY(f(s), z)

is an equivalence.
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Then for every F ∈ Fun(A,E), u!(F ) is cocartesian at γ.

Remark 7.8.7. Notice that condition (1) above is automatically satisfied when f is fully faithful,
or when both MapX(t, x) and MapY(f(t), y) are both contractible. Similarly, condition (2) is
automatically satisfied when both MapX(s, x) and MapY(f(s), z) are both contractible.

Proof of Proposition 7.8.6. In virtue of Proposition 7.8.5, it is enough to show that these assump-
tions guarantee that the Beck-Chevalley transformation (7.8.4) is an equivalence. For this, it is
enough to check that for every b ∈ Bγ , the induced functor

(7.8.8) By ×Bγ (Bγ)/b A×B B/jγ(b)

is cofinal. Let v := pγ(b) ∈ ∆1 and set w := γ(v) (we have w = y if v = 0 and w = z if v = 1).
Using Lemma 21.2.1, it is sufficient to prove that under our assumptions, the map

(7.8.9) {0} ×∆1 ∆1
/v X×Y Y/w

is cofinal. Observe that the left hand side is contractible (and it coincides with the unique
morphism ε from 0 to v in ∆1). In particular, the map (7.8.9) is cofinal if and only if its image
coincides with the final object of X×Y Y/w. Now, unraveling the definitions we see that the above
map takes ε to (x, idy) if v = 0 and to (x, γ) if v = 1. Thus, we have to prove that (x, idy) and
(x, γ) are final objects in X ×Y Y/y and in X ×Y Y/z, respectively. Fix (t, α) ∈ X ×Y Y/w and
consider the following commutative diagram:

MapX×YY/w
((t, α), (x, γ(ε))) MapX(t, x)

MapY/w
(α, γ(ε)) MapY(f(t), y)

∗ MapY(f(t), w) .α

The top square is a pullback by definition and the bottom one is a pullback thanks to the dual
of [31, Lemma 5.5.5.12]. Our assumptions guarantee that in the two cases under consideration,
the right vertical composition is an equivalence. Therefore, it follows that the top left corner is
contractible, i.e. that (x, γ(ε)) is a final object in X×Y Y/w, thus completing the proof. �

Corollary 7.8.10. Let f : J→ I be a fully faithful functor between posets and consider a pullback
square in Cat∞

A B

J I ,

u

q p

f

where in addition p is a cocartesian fibration. Assume that for every object i in I, the subposet J/i
of J admits a final object. Then, the functor u! : Fun(A,E) → Fun(B,E) preserves cocartesian
functors.

Proof. Let F : B→ E be a cocartesian functor. Let γ : i1 → i2 be a morphism in I. By assumption,
there exists a commutative diagram

i1

f(j) i2

γ
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in I where j belongs to J. Using Corollary 7.2.7, we see it is enough to show that F is cocartesian
at a morphism of the form f(j)→ i where j ∈ J and i ∈ I. Let j∞ be a final object in J/i. Then,
there is a commutative diagram

f(j∞)

f(j) i

in I. Since f : J→ I is fully faithful and since F : B→ E is cocartesian at j → j∞, Proposition 7.8.2
ensures that u!(F ) is cocartesian at f(j)→ f(j∞). Using again Corollary 7.2.7, we are thus left
to show that u!(F ) is cocartesian at f(j∞)→ i. In that case, the conditions of Proposition 7.8.6
(in the form of Remark 7.8.7) are satisfied and the proof is achieved. �

Corollary 7.8.11. Let
A B

X Y

q

u

p

f

be a pullback square in Cat∞, with p being a cocartesian fibration. Let E be a presentable ∞-
category. Assume that f is fully faithful and admits a right adjoint g and let γ : f ◦ g → idY be a
counit transformation. Then for every F ∈ Fun(A,E), u!(F ) is cocartesian at γy for every y ∈ Y.

7.9. Induced t-structure for cocartesian functors. Let p : A→ X be a cocartesian fibration
and let E be a stable presentable ∞-category equipped with an accessible t-structure τ =
(E>0,E60). Then Fun(A,E) has an induced t-structure defined by

Fun(A,E)>0 := Fun(A,E>0) and Fun(A,E)60 := Fun(A,E60) .

Definition 7.9.1. We say a cocartesian functor F ∈ Funcocart(A,E) is connective (with respect
to τ) if its image in Fun(A,E) belongs to Fun(A,E)>0. We let Funcocart(A,E)>0 be the full
subcategory of Funcocart(A,E) spanned by connective objects.

Proposition 7.9.2. There exists a unique t-structure on Funcocart(A,E) whose connective part
coincides with Funcocart(A,E)>0. In particular, the inclusion Funcocart(A,E) ↪→ Fun(A,E) is
right t-exact.

Proof. Since Funcocart(A,E) is presentable and stable by Corollary 7.2.4, using [32, Proposition
1.4.4.11] we are reduced to check that Funcocart(A,E)>0 is closed under colimits and extensions in
Funcocart(A,E). Closure under colimits follows from Corollary 7.2.8, and closure under extensions
is automatic. So the conclusion follows. �

Lemma 7.9.3. Assume that X has an initial object x. Then a cocartesian functor F ∈
Funcocart(A,E) is connective if and only if j∗x(F ) ∈ Fun(Ax,E) is connective.

Proof. The functor j∗x : Fun(A,E) → Fun(Ax,E) is t-exact, so if F is connective then j∗x(F ) is
connective as well. For the converse, we have to check that F takes values in E>0. It suffices
to show that for every y ∈ X, j∗y(F ) : Ay → E takes values in E>0. Since x is an initial object,
there exists a morphism γ : x → y in X. Choose a straightening fγ : Ax → Ay for Aγ . Then
Proposition 7.2.3 provides a canonical identification

j∗y(F ) ' fγ,!j∗x(F ) .

Since j∗x(F ) takes values in E>0 by assumption and since E>0 is closed under colimits in E, the
conclusion follows from the formula for left Kan extensions. �
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Corollary 7.9.4. Assume that X has an initial object x. Then the adjoint equivalence of
Corollary 7.6.11

jx,! : Fun(Ax,E)� Funcocart(A,E) : j∗x
is t-exact.

Proof. Thanks to Lemma 7.9.3, we know that Funcocart(A,E)>0 corresponds via the above
equivalence to Fun(Ax,E>0). The conclusion follows from the uniqueness of the t-structure. �

Example 7.9.5. Consider the posets I0 and I1 having I = {a, b, c, d} as the underlying set and
order given by the following Hasse diagrams:

I0 =

 b c d

a

 , I1 =


d

b d

a


The identity of I defines a morphism of posets f : I0 → I1, which we can reinterpret as a
constructible sheaf of posets I on ([0, 1], {0}). Fix a field k and consider the stable derived
∞-category E := Modk. Let F : I0 → Modk be the functor defined by setting

Fa = Fd := k , Fb = Fc := 0 .

Then via Corollary 7.9.4, F determines an object in Funcocart(I,Modk)♥. Notice however that

f!(F )d ' Fd ⊕ Fa[1] ' k ⊕ k[1]

does not belong to the abelian category Mod♥k .

7.10. Categorical actions on cocartesian functors. We use the terminology on categorical
actions reviewed in Section 20. Fix a presentably symmetric monoidal∞-category E⊗. As recalled
in Recollection 20.1.2, for every (small) ∞-category A, the functor ∞-category Fun(A,E) inherits
a symmetric monoidal structure Fun(A,E)⊗. When A is part of a cocartesian fibration p : A→ X,
cocartesian functors Funcocart(A,E) form a full subcategory of Fun(A,E), but they are not closed
under tensor product. Nevertheless, we still see a shadow of the tensor structure of Fun(A,E) on
cocartesian functors in terms of a categorical action:

Proposition 7.10.1. Let p : A → X be a cocartesian fibration. Then for every L ∈ Loc(X;E)
(see Definition 19.1.1) and every G ∈ Funcocart(A,E), the functor

p∗(L)⊗G : A→ E

is again cocartesian. In particular, the standard action of Loc(X;E) on Fun(A,E) restricts to a
categorical action of Loc(X;E) on Funcocart(A,E).

Proof. Let γ : x → y be a morphism in X and let fγ : Ax → Ay be any straightening for
pγ : Aγ → ∆1. Since j∗x and j∗y are symmetric monoidal, we reduce to check that

fγ,!(j
∗
xp
∗(L)⊗ j∗x(G))→ j∗y(p∗(L))⊗ j∗y(G)

is an equivalence. Since j∗x ◦ p∗(L) ' p∗x(L(x)), Lemma 20.1.3 supplies a canonical equivalence

fγ,!(j
∗
xp
∗(L)⊗ j∗x(G)) ' p∗y(L(x))⊗ fγ,!(j∗x(G)) .

Since G is cocartesian, the canonical comparison map

fγ,!(j
∗
x(G))→ j∗y(G)

is an equivalence. On the other hand, since L is a local system, the canonical map L(γ) : L(x)→
L(y) is an equivalence. The conclusion follows. �
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Consider now a pullback square

(7.10.2)
B A

Y X

u

q p

f

in Cat∞, where p is a cocartesian fibration. Then Construction 20.2.1 supplies a canonical
comparison map

µ : Loc(Y;E)⊗Loc(X;E) Fun(A,E)→ Fun(B,E) .

Unraveling the definitions, we see that µ takes L⊗G to p∗(L)⊗G. In particular, Proposition 7.10.1
shows that µ restricts to a well defined functor

(7.10.3) µcocart : Loc(Y;E)⊗Loc(X;E) Funcocart(A,E)→ Funcocart(B,E)

When f is a finite étale fibration (see Definition 19.2.1), Corollary 20.2.8 shows that µ is an
equivalence. The goal of this section is to show that under mild assumptions the same holds in
the cocartesian setting.

Observation 7.10.4. In the above setting, assume that f is a finite étale fibration. Then the
composition q′ := f ◦ q : B→ X is a cocartesian fibration. This allows to consider the exponential
fibrations

expE(B/Y) ∈ PrFibL
Y and expE(B/X) ∈ PrFibL

X .

We set

Funcocart(B/Y,E) := Σcocart
Y (expE(B/Y)) and Funcocart(B/X,E) := Σcocart

X (expE(B/X)) .

Notice that both Funcocart(B/Y,E) and Funcocart(B/X,E) are full subcategories of Fun(B,E).

Construction 7.10.5. Using the notation from Recollection 6.2.1, observe the commutativity of

B B

Y X

q f◦q
f

provides a canonical transformation
δ : B→ f∗(B)

in CoCartY. In turn, Proposition 3.2.6-(1) shows that δ induces a morphism

expE(B/Y)→ f∗ exp(B/X) ,

which by adjunction f∗ a f cc
∗ corresponds to a morphism

(7.10.6) α : expE(B/X)→ f cc
∗ exp(B/Y) .

Proposition 7.10.7. In the above setting, assume that f is a finite étale fibration. Then the
comparison morphism (7.10.6) is an equivalence. In particular,

Funcocart(B/Y,E) = Funcocart(B/X,E)

as full subcategories of Fun(B,E).

Proof. The second half follows applying Σcocart
X to the equivalence (7.10.6). To show that α is an

equivalence, it is enough to show that for every x ∈ X, j∗x(α) is an equivalence. Unraveling the
definitions, we see that

Bx '
∐
y∈Yx

Ax ,
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which immediately implies that

exp(B/X)x '
∏
y∈Yx

Fun(Ax,E) .

Similarly, the formula for right Kan extensions paired with [41, Lemma 3.1.1], implies that(
f cc
∗ expE(B/Y)

)
x
'
(
f cc
∗ f
∗ expE(A/X)

)
x
'
∏
y∈Yx

Fun(Ax,E) .

The conclusion follows. �

Corollary 7.10.8. In the above setting, if f is a finite étale fibration then

u! : Fun(B,E)→ Fun(A,E)

preserves cocartesian functors and therefore it induces a well defined functor

u! : Funcocart(B,E)→ Funcocart(A,E) .

Proof. Seeing B fibered over X via q′ := f ◦ q, [31, Proposition 2.4.1.3-(2)] implies that u takes
q′-cocartesian edges to p-cocartesian ones. Therefore, Proposition 7.3.1-(2) shows that u! restricts
to a well defined functor

u! : Funcocart(B/X,E)→ Funcocart(A,E) .

Since Funcocart(B/X,E) = Funcocart(B/Y,E) by Proposition 7.10.7, the conclusion follows. �

Corollary 7.10.9. In the above setting, assume that f is a finite étale fibration and that E is
stable. Then

u! : Funcocart(B,E)→ Funcocart(A,E)

is monadic.

Proof. It follows from Lemma 20.2.5 that the functors

u! : Fun(B,E)→ Fun(A,E) and u∗ : Fun(A,E)→ Fun(B,E)

are biadjoint. Combining Proposition 7.3.1-(1) and Corollary 7.10.8, we see that both respect
cocartesian functors. Therefore, u! : Funcocart(B,E)→ Funcocart(A,E) is biadjoint to u∗. Besides,
Lemma 20.2.6 implies that u! : Fun(B,E)→ Fun(A,E) is conservative. Since Funcocart(A,E) is a
full subcategory of Fun(A,E), it follows that the same goes for the restriction of u! to cocartesian
functors. At this point, the conclusion follows from Lurie-Barr-Beck [32, Theorem 4.7.3.5]. �

Corollary 7.10.10. Let

B A

Y X

u

q p

f

be a pullback square in Cat∞, where p is a cocartesian fibration. Let E⊗ be a presentably symmetric
monoidal ∞-category. If f is a finite étale fibration and E is stable, then the comparison functor

Loc(Y)⊗Loc(Y) Funcocart(A,E)→ Funcocart(B,E) .

is an equivalence.

Proof. Using Corollary 7.10.9 as input, the same proof of Corollary 20.2.8 applies. �
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8. Punctually split and Stokes functors

In this section, we explore the new features that appear when one specializes the exponential
construction to the case of cocartesian fibrations in posets. Every such fibration I has an
underlying discrete fibration Iset (see Notation 5.2.2), and this allows to introduce punctually split
functors. We analyze their role and explore this notion from the point of view of the exponential
construction and discuss their basic functorialities. Finally, we introduce the main object of study
of this paper: Stokes functors.

8.1. Punctually split functors. We fix a presentable ∞-category E.

Definition 8.1.1. Let p : I→ X be an object in PosFib. Let F ∈ Fun(I,E).
(1) For x ∈ X, we say that F is split at x if j∗x(F ) lies in the essential image of

iIx,! : Fun(Iset
x ,E)→ Fun(Ix,E)

(2) We say that F is punctually split if it is split at every object x ∈ X.

(3) We say that F is split if it lies in the essential image of the induction functor

iI,! : Fun(Iset,E)→ Fun(I,E)

We denote by FunPS(I,E) the full subcategory of Fun(I,E) formed by punctually split functors.

Remark 8.1.2. It follows from Corollary 6.1.6 that split functors are punctually split.

Example 8.1.3. Let p : I→ X be a cocartesian fibration in posets and let a ∈ I be an element.
Write evI

a : {a} ↪→ I for the canonical inclusion. Since evI
a factors through iI : Iset → I, we see

that for every E ∈ E the functor evI
a,!(E) ∈ Fun(I,E) is split, and hence punctually split by

Remark 8.1.2.

Definition 8.1.4. In the setting of Definition 8.1.1, a splitting for F is the given of a functor
F0 : Iset → E and an equivalence α : iI,!(F0) ' F .

Warning 8.1.5. In general, splittings do not exist and even when they exist they are typically
neither unique nor canonical.

The essential image construction of Lemma 5.2.1 allows to organize punctually split functors
into a subfibration of the exponential fibration expE(I/X):

Definition 8.1.6. Let p : I→ X be a cocartesian fibration in posets and let iI : Iset → I be the
canonical morphism. We define the punctually split exponential fibration with coefficients in E

associated to p : I→ X as
expPS

E (I/X) := EssIm(EiI! ) .

Remark 8.1.7. Notice that expPS
E (I/X) defines an object in CoCartX, but typically not in

PrFibL
X (see also Example 5.2.6). Lemma 5.2.1 shows that it is a sub-cocartesian fibration of

expE(I/X). Under the specialization equivalence, we see that ΣX(expPS
E (I/X)) coincides with the

full subcategory of Fun(I,E) spanned by punctually split functors.

Split functors provide a handy set of generators for Fun(A, I):

Recollection 8.1.8. Let A be an ∞-category. For every a ∈ A, write evA
a : {a} → A be the

canonical inclusion. It follows from the Yoneda lemma that the functor

evA
a,! : Spc→ Fun(A,Spc)

is the unique colimit-preserving functor sending ∗ to MapA(a,−). The density of the Yoneda
embedding implies therefore that Fun(A,Spc) is generated under colimits by {evA

a,!(∗)}a∈A. More
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generally, let E be a presentable ∞-category generated under colimits by a set {Eα}α∈I . Then
under the identification

Fun(A,E) ' Fun(A,Spc)⊗ E

we see that eva,!(Eα) ' evA
a,!(∗)⊗Eα and therefore that {evA

a,!(Eα)}a∈A,α∈I generates Fun(A,E)
under colimits.

Proposition 8.1.9. Let p : I→ X be a cocartesian fibration in posets. Then Fun(I,E) is generated
under colimits by split functors.

Proof. Combine Example 8.1.3 and Recollection 8.1.8. �

8.2. Stokes functors. We introduce here the fundamental object of this paper. We fix once
more a presentable ∞-category E.

Definition 8.2.1. Let p : I→ X be a cocartesian fibration in posets. The ∞-category of I-Stokes
functors with value in E is by definition

StI,E := Σcocart
X (expPS

E (I/X)) .

Remark 8.2.2. Under the specialization equivalence (6.1.1), the ∞-category StI,E coincides
with full subcategory of Fun(I,E) spanned by functors F : I→ E such that

(1) F is cocartesian (Definition 7.2.1).

(2) F is punctually split (Definition 8.1.1).

Example 8.2.3. Assume that the cocartesian fibration p : I→ X is discrete, i.e. that its fibers
are sets. Then the map iI : Iset → I is an equivalence, so in this case every functor F : I→ E is
split (and hence punctually split). It follows from the above remark that in this case

StI,E ' Funcocart(I,E) .

The cocartesian condition can be used to transport a splitting defined at an object x ∈ X to a
point y via a morphism γ : x→ y, as in the following lemma:

Lemma 8.2.4. Let
J JX

Y X

u

f

be a pullback square in Cat∞, whose vertical morphisms are cocartesian fibrations in posets. Let
γ : f(x)→ y be a morphism in Y, with x ∈ X. Let F : JX → E be a functor such that u!(F ) : J→ E

is cocartesian at γ and such that the unit F → u∗u!(F ) is an equivalence above x. If F is split at
x, then u!(F ) is split at y. In particular, when f = idX and F is cocartesian at γ : x→ y, if F is
split at x then it is split at y as well.

Proof. Let fγ : Jf(x) → Jy be the morphism of posets induced by γ : f(x)→ y. Since u!(F ) : J→ E

is cocartesian at γ, Proposition 7.2.3 implies the existence of an equivalence fγ,!((u!(F ))f(x)) ' Fy.
By assumption Fx ' (u!(F ))f(x). The conclusion thus follows. �

This leads to the following neat description of Stokes functors when X admits an initial object:

Proposition 8.2.5. Let p : I → X be a cocartesian fibration in posets. If X admits an initial
object x, then the adjunction

jx,! : Fun(Ix,E)� Fun(I,E) : j∗x

restricts to an equivalence of ∞-categories between StIx,E and StI,E.
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Proof. Using Corollary 7.6.11, we see that both jx,! and j∗x preserve cocartesian functors and
that it restricts to an equivalence between Funcocart(Ix,E) and Funcocart(I,E). That j∗x preserves
punctually split functors follows directly from the definition. On the other hand, combining
together Corollary 7.6.11 and Lemma 8.2.4 we see that jx,! also preserves the punctually split
condition. The conclusion follows. �

Corollary 8.2.6. Let p : I→ X be an object of PosFib. Assume that X admits an initial object.
Let E be a presentable ∞-category. Then, the induction

iI! : StIset,E → StI,E

is essentially surjective. That is, every Stokes functor F : I→ E splits.

Proof. Let x be an initial object in X. From Proposition 8.2.5, the horizontal arrows of the
following commutative square

StIset
x ,E StIset,E

StIx,E StI,E

jset
x!

iIx! iI!

jx!

are equivalences. On the other hand, the left vertical arrow is essentially surjective by definition.
�

Warning 8.2.7. The splitting produced by Corollary 8.2.6 is not unique nor canonical.

8.3. Functoriality for punctually split and Stokes functors. Fix a morphism

J JX I

Y X

vu

f

in PosFib. We now show that the basic functorialities of pullback and induction are well behaved
with respect to punctually split and Stokes functors. We start at the exponential level:

Proposition 8.3.1. The functors

Eu : expE(J/Y)→ expE(JX/X) and Ev! : expE(JX/X)→ expE(I/X)

respect the punctually split sub-cocartesian fibrations and thus they induce the following commuta-
tive diagram:

(8.3.2)

expPS
E (J/Y) expPS

E (JX/X) expPS
E (I/X)

expE(J/Y) expE(JX/X) expE(I/X)

Y X

Eu Ev!

Ev!Eu

whose left squares are pullbacks.

Proof. An object in expE(JX/X) is a pair (x, F ), where x ∈ X and F : (JX)x → E. The functor Eu
takes (x, F ) to (f(x), F ), where F is now seen as a functor from If(x) ' (JX)x to E. In particular,
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Eu preserves and reflects the punctually spit condition, which shows that the top left square is
both commutative and a pullback. On the other hand, the commutativity of

(Jset
X )x Iset

x

(JX)x Ix

vset
x

iJX iI

vx

immediately implies that Ev! preserves the condition of being split at x. �

Corollary 8.3.3. In the above setting:
(1) Let F : J→ E be a functor. Let x ∈ X be an object. Then, F is punctually split at f(x) if

and only if u∗(F ) is punctually split at x.

(2) if G : JX → E is punctually split, then the same goes for v!(G) : I→ E.
In particular the functors

u∗ : Fun(J,E)→ Fun(JX,E) and v! : Fun(JX,E)→ Fun(I,E)

restrict to well-defined functors

u∗ : FunPS(J,E)→ FunPS(JX ,E) and v! : FunPS(JX ,E)→ FunPS(I,E) .

Proof. Apply ΣX to the commutative diagram (8.3.2) and use Proposition 6.1.2. �

Corollary 8.3.4. In the above setting:
(1) if F : J→ E is a Stokes functor, the same goes for u∗(F ) : JX → E;

(2) if G : JX → E is a Stokes functor, then the same goes for v!(G) : I→ E.
Thus, the functors

u∗ : Fun(J,E)→ Fun(JX,E) and v! : Fun(JX,E)→ Fun(I,E)

restrict to well-defined functors

u∗ : StJ,E → StJX ,E and v! : StJX ,E → StI,E .

Proof. Apply Σcocart
X to the commutative diagram (8.3.2) and combine Proposition 7.3.1 and

Corollary 8.3.3. �

We conclude this section with the following generalization of Proposition 8.2.5:

Proposition 8.3.5. Let

J I

Y X

g

f

be a pullback square in Cat∞, where the vertical morphisms are cocartesian fibrations in posets.
Assume that f : Y→ X is a localization functor. Let E be a presentable ∞-category. Then, the
following statements hold :

(1) Let F ∈ Fun(I,E). Then, F is a Stokes functor if and only if so is g∗(F ).

(2) Let G ∈ Fun(J,E). If G is a Stokes functor, then so is g!(G).

(3) The adjunction g! a g∗ induces an equivalence of ∞-categories between StI,E and StJ,E.
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Proof. The claim (1) follows from Proposition 7.7.3-(1) and Corollary 8.3.3-(1). Let G : J→ E

be a Stokes functor. From Proposition 7.7.3-(2) the functor g!(G) is cocartesian. To check that
g!(G) is punctually split amounts to show by (1) that g∗(g!(G)) is punctually split. On the other
hand, Proposition 7.7.3-(3) gives g∗(g!(G)) ' G and (2) is proved. The claim (3) then follows
from Proposition 7.7.3-(3). �

8.4. Stokes functors and (co)limits. Stokes functors are poorly behaved with respect to limits
and colimits, as the following next two lemmas are essentially the only stability properties one
gets in general:

Proposition 8.4.1. Let p : I→ X be a cocartesian fibration in sets, seen as an object in PosFib.
Then StI,E is presentable and furthermore:

(1) StI,E is stable under colimits in Fun(I,E).

(2) Assume additionally that the fibers of p are finite and that E is presentable stable. Then
StI,E is stable under limits in Fun(I,E).

Proof. Via the equivalence StI,E ' Funcocart(I,E) of Example 8.2.3, presentability follows from
Corollary 7.2.4, statement (1) follows from Corollary 7.2.8 and statement (2) follows from
Proposition 7.2.14. �

More in general, we have:

Lemma 8.4.2. Let p : I → X be a cocartesian fibration in posets. Then StI,E is closed under
arbitrary coproducts in Fun(I,E).

Proof. Thanks to Proposition 7.2.9, we know that cocartesian functors are closed under arbitrary
colimits in Fun(I,E). Besides, for every x ∈ X, the restriction functor j∗x : Fun(I,E)→ Fun(Ix,E)
commute with all colimits as well. This reduces us to the case where X is a single point, and we
have to prove that split functors are closed under coproducts. Let therefore {Fi}i∈I be a family
of split functors and fix splittings

αi : iI,!(Vi) ' Fi .
Since iI,! commutes with colimits, it immediately follows that

∐
i∈I Vi provides a splitting for∐

i∈I Fi. �

Definition 8.4.3. Let p : I→ X be an object of PosFib and let C ⊂ PrL be a full subcategory.
We say that p : I → X is C-bireflexive if the full subcategory StI,E of Fun(I,E) is closed under
limits and colimits for every E ∈ C.

Example 8.4.4. If C only consists in a single category E, we say that p : I→ X is E-bireflexive.
If C ⊂ PrL is the collection of all presentable stable ∞-categories, we simply say that p : I→ X

is stably bireflexive.

Remark 8.4.5. Theorem 12.1.3 provides many geometrical examples of stably bireflexive co-
cartesian fibrations in posets.

Lemma 8.4.6. Let p : I → X be an object of PosFib and let E be a presentable (stable) ∞-
category such that p : I → X is E-bireflexive. Then StI,E is a localization of Fun(I,E), and in
particular it is presentable (stable).

Proof. Since E is presentable (stable), Fun(I,E) is presentable (stable) in virtue of [31, Proposition
5.5.3.6] and [32, Proposition 1.1.3.1]. Then, the conclusion follows from the∞-categorical reflection
theorem, see [42, Theorem 1.1]. �

Notation 8.4.7. In the setting of Lemma 8.4.6, the canonical inclusion StI,E ↪→ Fun(I,E) admits
a left adjoint and a right adjoint, that we denote by LStI,E and RStI,E respectively.
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Lemma 8.4.8. Let p : I→ X be an object of PosFib. Let E be a presentable stable compactly
generated ∞-category such that p : I→ X is E-bireflexive. Let {Eα}α∈I be a set of compact genera-
tors for E. Then StI,E is presentable stable compactly generated by the {LStI,E(eva,!(Eα))}α∈I,a∈I
where the eva : {a} → I are the canonical inclusions.

Proof. That StI,E is presentable stable follows from Lemma 8.4.6. By Recollection 8.1.8, the
{eva,!(Eα)}α∈I,a∈I are compact generators of Fun(I,E). Then Lemma 8.4.8 formally follows from
the fact that StI,E ↪→ Fun(I,E) commutes with colimits. �

The following two lemmas are immediate consequences of Proposition 17.2.3.

Lemma 8.4.9. Let X be an ∞-category. Let p : I → J be a morphism in PosFibfX. Let
E be a presentable stable ∞-category such that I → X and J → X are E-bireflexive. Then,
p! : StI,E → StJ,E commutes with limits and colimits.

Lemma 8.4.10. Let X be an ∞-category. Let p : I → J be a morphism in PosFibfX. Let
E be a presentable stable ∞-category such that I → X and Ip → X are E-bireflexive. Then,
Grp : StI,E → StIp,E commutes with limits and colimits.

Corollary 8.4.11. Let (X,P ) be an exodromic stratified space. Let p : I → J be a graduation
morphism of cocartesian fibrations in finite posets over Π∞(X,P ). Let E be a presentable stable
∞-category and consider the pull-back square

StI,E StJ,E

StIp,E StJset,E

p!

Grp Gr

π!

supplied by Theorem 10.2.1. If all the above cocartesian fibrations in posets are E-bireflexive, then
the square is a pullback in PrL,R.

Proof. The ∞-categorical reflection theorem of [42, Theorem 1.1] implies that in this case all
the ∞-categories of Stokes functors appearing in the above square are presentable. Then the
conclusion follows combining Lemma 8.4.9 with Lemma 8.4.10. �

8.5. Van Kampen for Stokes functors. In Proposition 7.4.10 we proved a Van Kampen result
for cocartesian functors. We now show that the same holds for Stokes functors:

Proposition 8.5.1 (Van Kampen for Stokes functors). Let X• : I → Cat∞ be a diagram with
colimit X. Let p : I→ X be a cocartesian fibration in posets and set

I• := X• ×X I : I → Cat∞ .

Let E be a presentable∞-category. Then the equivalence of Lemma 7.4.1 restricts to an equivalence

StI,E ' lim
i∈I

StIi,E .

Proof. Using Corollary 8.3.4 in place of Proposition 7.3.1, we see that the natural map

Fun(I,E)→ lim
i∈I

Fun(Ii,E)

gives rise to the following commutative square:

(8.5.2)

Fun(I,E) lim
i∈I

Fun(Ii,E)

StI,E lim
i∈I

StIi,E .
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It follows from Lemma 7.4.1 that the top horizontal functor is an equivalence. Thus, the bottom
horizontal one is fully faithful. To conclude the proof, it is enough to prove that a functor
F : I → E is Stokes if and only if for every i ∈ I, its image in Fun(Ii,E) is Stokes. The “only
if” follows from Corollary 8.3.4. For the converse, we have already shown in Proposition 7.4.10
that if each restriction of F is cocartesian then F was cocartesian to begin with. We are left
to check that F is punctually split. Combining Corollary 7.2.6 and Lemma 7.4.9, we see that
F is punctually split if and only if it is split at every object of X lying in the image of some
structural map fi : Xi → X. However, if x ∈ X is in the image of fi, then F is split at x thanks
to Corollary 8.3.3. �

As a consequence of Van Kampen for Stokes functors, we can prove:

Corollary 8.5.3. In the situation of Proposition 8.5.1, if furthermore E is stable and if Ii → X

is E-bireflexive for every i ∈ I, then I→ X is E-bireflexive and the limit of Proposition 8.5.1 can
be computed inside PrL,R.

Proof. Let f : i→ j be a morphism in I. Since Ii and Ij are E-bireflexive, it follows that StIi,E
and StIj ,E are presentable and that the transition functor

f∗ : StIj ,E → StIi,E

commute with limits and colimits. Therefore, it admits both a left and a right adjoint. In
particular, the diagram StI•,E factors through PrL,R. Since limits in PrL can be computed in
Cat∞, Proposition 8.5.1 implies that StI,E is presentable and stable. Besides, since all transition
maps in StI•,E commute with limits, it automatically follows that the structural functors

StI,E → StIi,E

commute with limits as well. Thus, StI,E is closed under limits inside Fun(I,E). On the other
hand, Lemma 8.4.2 shows that StI,E is closed under arbitrary coproducts inside Fun(I,E). Since
E is stable and we already showed that StI,E is stable, closure under finite colimits is automatic.
The conclusion follows. �

8.6. Change of coefficients for punctually split and Stokes functors. Fix a cocartesian
fibration in posets p : I→ X and let f : E→ E′ be a morphism in PrL. Recall from Section 6.5
that this induces a transformation

fI/X : expE(I/X)→ expE′(I/X)

in PrFibL. We have:

Proposition 8.6.1. The transformation fI/X respects the punctually split sub-cocartesian fibra-
tions, and thus it induces a functor

fI/X : expPS
E (I/X)→ expPS

E′ (I/X)

in PrFibL
X. In particular, the induced functor

f : Fun(I,E)→ Fun(I,E′)

induces well defined functors

f : FunPS(I,E)→ Fun(I,E′) and f : StI,E → StI,E′ .

Proof. Since f commutes with colimits, it commutes with the formation of left Kan extensions.
This immediately implies the first statement. Applying ΣX and using Proposition 6.5.1, we
deduce that f : Fun(I,E)→ Fun(I,E′) preserves punctually split functors. In turn, this fact and
Proposition 7.5.1 implies that f also preserves Stokes functors. �
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Cocartesian functors exhibit a nice behavior with respect to the tensor product in PrL (see
Corollary 7.5.7). On the other hand expPS

E (I/X) is typically not a presentable fibration, and StI,E
is typically not presentable. This prevents from formally deducing an analogue of Corollary 7.5.7
for Stokes functors: such a result will be true, but only in a more restrictive geometric setting,
see Theorem 12.2.6. For the moment, let us simply collect a couple of elementary observations
that will be needed later.

When bireflexivity holds, we can construct, for every pair of presentable∞-categories E and E′,
a canonical comparison morphism StI,E ⊗ E′ → StI,E⊗E′ . The key point is the following lemma:

Lemma 8.6.2. Let p : I → X be a cocartesian fibration in posets. Let E and E′ be presentable
∞-categories. Let x ∈ X be an object and let F : I → E be a functor that splits at x. Then for
every object E′ ∈ E′, the functor

F ⊗ E′ ∈ Fun(I,E)⊗ E′ ' Fun(I,E⊗ E′)

splits at x as well.

Proof. Let ix : Ix → I be the canonical functor. For any presentable ∞-category D, both functors

i∗x : Fun(I,D)→ Fun(Ix,D) and iIx,! : Fun(Iset
x ,D)→ Fun(Ix,D)

commute with colimits, so we obtain the following canonical identifications:

Fun(I,Spc)⊗D Fun(Ix,Spc)⊗D Fun(Iset
x ,Spc)⊗D

Fun(I,D) Fun(Ix,D) Fun(Iset
x ,D) .

i∗x⊗D

o o

iIx,!⊗D

o

i∗x iIx,!

This proves the lemma when E = Spc, and the general case follows from the associativity of the
tensor product in PrL. �

Construction 8.6.3. Let p : I → X be a cocartesian fibration in posets. Let E and E′ be
presentable ∞-categories such that p : I→ X is {E,E′}-bireflexive. Consider the following solid
commutative diagram:

(8.6.4)

StI,E ⊗ E′ StI,E⊗E′

Funcocart(I,E)⊗ E′ Funcocart(I,E⊗ E′)

Fun(I,E)⊗ E′ Fun(I,E⊗ E′)

∼

∼

in PrL. By definition, StI,E⊗E′ is generated under colimits by objects of the form F ⊗E′, where
F : I → E is a Stokes functor and E′ ∈ E′ is an object. Lemma 8.6.2 guarantees that such an
object is mapped via the bottom horizontal equivalence into an object in StI,E⊗E′ . Since the
right vertical arrows are fully faithful by definition, it follows that the dashed arrow exist.

Proposition 8.6.5. Let p : I→ X be a cocartesian fibration in posets. Let E and E′ be presentable
∞-categories. Assume that:

(1) The fibers of I are finite;

(2) p : I→ X is E,E′-bireflexive.
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Then the canonical comparison functor

StI,E ⊗ E′ → StI,E⊗E′

of Construction 8.6.3 is fully faithful.

Proof. Since the fibers of I are finite, Proposition 7.2.14 implies that Funcocart(I,E) is closed under
limits and colimits in Fun(I,E). By (2), it follows that StI,E is closed under limits and colimits
in Funcocart(I,E) as well. Since in this situation StI,E is presentable by Lemma 8.4.6, it follows
that the inclusion of StI,E into Funcocart(I,E) has both a left and a right adjoint. Therefore, the
functoriality of the tensor product in PrL implies that the top left vertical arrow in the diagram
(8.6.4) is fully faithful. On the other hand, the middle horizontal functor is an equivalence thanks
to Corollary 7.5.7, so the conclusion follows. �

Definition 8.6.6. Let p : I→ X be an object of PosFib and let C ⊂ PrL be a full subcategory
stable under tensor product. We say that p : I→ X is C-universal if it is C-bireflexive and the
comparison map StI,E ⊗ E′ → StI,E⊗E′ of Construction 8.6.3 is an equivalence for everyE,E′ ∈ C.
If C ⊂ PrL is the collection of all presentable stable ∞-categories, we simply say that p : I→ X

is stably universal.

Proposition 8.6.7. Let X• : I → Cat∞ be a diagram with colimit X. Let p : I → X be a
cocartesian fibration in posets and set

I• := X• ×X I : I → Cat∞ .

Assume that Ii → X is stably universal for every i ∈ I. Then I→ X is stably universal.

Proof. Note that I → X is stably bireflexive by Corollary 8.5.3. For every presentable stable
∞-categories E,E′, we have

StI,E ⊗ E′ ' (lim
i∈I

StIi,E)⊗ E′ Corollary 8.5.3

' lim
i∈I

(StIi,E ⊗ E′) Lemma 7.5.5

' lim
i∈I

StIi,E⊗E′

' StI,E⊗E′ Corollary 8.5.3

�

8.7. Induced t-structures for Stokes functors. Fix a presentable stable ∞-category E

equipped with an induced t-structure τ = (E>0,E60). In Section 7.9 we showed that cocartesian
functors inherits a t-structure from τ , and we analyzed the basic properties. We now investigate
the behavior with respect to Stokes functor.

We start with a couple of general facts concerning t-structures.

Construction 8.7.1. Let C and D be stable ∞-categories equipped with t-structures τC =
(C60,C>0) and τD = (D60,D>0) and let

F : C→ D

be a right t-exact stable functor. For every object C ∈ C, one has F (τC>0(C)) ∈ D>0, and therefore
the mapping space

MapD

(
F (τC>0(C)), τD6−1(F (C))

)
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is contractible. It follows that there exists the dashed morphisms making the diagram

(8.7.2)

F
(
τC>0(C)

)
F (C) F

(
τC6−1(C)

)
τD>0

(
F (C)

)
F (C) τD6−1

(
F (C)

)
commutative.

Lemma 8.7.3. In the situation of Construction 8.7.1, let C ∈ C be an object. If F (τC6−1(C)) ∈
D6−1 then both canonical comparison maps

F
(
τC>0(C)

)
→ τD>0

(
F (C)

)
and F

(
τC6−1(C)

)
→ τD6−1

(
F (C)

)
are equivalences.

Proof. Since F is a stable functor, the top row of (8.7.2) is a fiber sequence in D. By definition
of t-structure, the same holds true for the bottom row. Set

K := fib
(
F
(
τC>0(C)

)
→ τD>0

(
F (C)

))
and K ′ := fib

(
F
(
τC6−1(C)

)
→ τD6−1

(
F (C)

))
.

We therefore obtain a fiber sequence

K → 0→ K ′ ,

which implies K ′ ' K[1]. Observe now that K ′ ∈ D6−1. At the same time,

K[1] ' cofib
(
F
(
τC>0(C)

)
→ τD>0

(
F (C)

))
∈ D>0 .

Thus, it follows that K ′ ∈ D>0 ∩D6−1 = {0}. Thus, both K and K ′ are zero, which implies that
the comparison morphisms are equivalences. �

We now start analyzing the behavior of the standard t-structure on Stokes functors.

Recollection 8.7.4. Let f : A→ B be a functor of ∞-categories. Then

f∗ : Fun(B,E)→ Fun(A,E)

is t-exact with respect to the standard t-structures. In particular, f! is right t-exact and f∗ is left
t-exact.

Lemma 8.7.5. Let f : I→ J be a morphism of posets, where I is discrete and finite. Then

f! : Fun(I,E)→ Fun(J,E)

is t-exact.

Proof. Fix a functor F : I→ E and an object b ∈ J. By definition

f!(F )b '
⊕
f(a)≤b

Fa ,

so the conclusion follows from the fact that both E>0 and E60 are closed under finite sums. �

Corollary 8.7.6. Let I be a finite poset and let F : I→ E be a functor. If F is split, then so are
τ6n(F ) and τ>n(F ) for every n ∈ Z.

Proof. It suffices to treat the case n = 0. Choose a functor V : Iset → E with an equivalence
F ' iI,!(V ). Since I is finite, Lemma 8.7.5 implies that

τ60(iI,!(V )) ' iI,!(τ60(V )) and τ>0(iI,!(V )) ' iI,!(τ>0(V )) ,

whence the conclusion. �
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Lemma 8.7.7. Let I be a poset and let F : I → E be a functor. Let (V, φ : iI,!(V ) ' F ) be a
splitting for F . Let n ∈ Z be an integer. If F takes values in E>n (resp. E6n), then the same
goes for V .

Proof. It suffices to consider the case n = 0. For a ∈ I, φ induces

Fa '
⊕
b6a

Vb .

In particular, Va is a retract of Fa. Since Fa ∈ E>0 (resp. Fa ∈ E60), it follows that Va ∈ E>0

(resp. Va ∈ E60) as well. �

Corollary 8.7.8. Let f : I→ J be a morphism of finite posets. Let F : I→ E be a split functor
and let n ∈ Z be an integer. If F takes values in E6n, then so does f!(F );

Proof. It suffices to consider the case n = 0. Since F is split, we can find a functor V : Iset → E

and an equivalence φ : F ' iI,!(V ). Lemma 8.7.7 guarantees that V takes values in E60. Thus,
we find

f!(F ) ' f!(iI,!(V )) ' iJ,!(f set
! (V )) ,

and the conclusion now follows from Lemma 8.7.5 applied to iJ ◦ f set : Iset → J. �

Notation 8.7.9. Given an ∞-category A, we denote again by

τ>n : Fun(A,E)→ Fun(A,E>n) and τ6n : Fun(A,E)→ Fun(A,E6n)

the induced truncation functors, given respectively by the compositions

τ>n(F ) := τ>n ◦ F and τ6n(F ) := τ6n ◦ F .

Lemma 8.7.10. Let f : I→ J be a morphism of finite posets and let F : I→ E be a split functor.
Then for every integer n, the canonical maps of Construction 8.7.1

f!(τ>n(F ))→ τ>n(f!(F )) and f!(τ6n(F ))→ τ6n(f!(F ))

are equivalences.

Proof. It suffices to consider the case n = 0. Since F is split, Corollary 8.7.6 guarantees
that τ6−1(F ) is again split and takes values in E6−1. Therefore, Corollary 8.7.8 implies that
f!(τ6−1(F )) takes values in E6−1. At this point, the conclusion follows from Lemma 8.7.3. �

Proposition 8.7.11. Let p : I→ X be a cocartesian fibration in finite posets and let E be a stable
presentable ∞-category equipped with an accessible t-structure τ = (E60,E>0). If F : I→ E is a
Stokes functor then for every integer n ∈ Z, both τ6n(F ) and τ>n(F ) are again Stokes functors.
In particular, p : I→ X is E-bireflexive, then StI,E acquires a unique accessible t-structure such
that the inclusion

StI,E ↪→ Fun(I,E)

is t-exact. If in addition τ is compatible with filtered colimits, the same goes for the induced
t-structure on StI,E.

Proof. We know from Lemma 8.4.6 that StI,E is presentable and stable. Since StI,E is closed
under limits and colimits in Fun(I,E), the first half of the statement implies the existence of the
desired t-structure, its accessibility and its compatibility with filtered colimits.

Let us therefore prove the first part. It suffices to consider the case n = 0. Let F : I→ E be a
Stokes functor. We first prove that τ>0(F ) and τ60(F ) are punctually split. Fix an object x ∈ X.
Since j∗x : Fun(I,E)→ Fun(Ix,E) is t-exact, we find canonical equivalences

j∗x(τ>0(F )) ' τ>0(j∗x(F )) and j∗x(τ60(F )) ' τ60(j∗x(F )) .
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Since j∗x(F ) is split by assumption, Corollary 8.7.6 implies that the same goes for τ60(j∗x(F )) and
τ>0(j∗x(F )) as well, which proves the first claim.

We now prove that τ>0(F ) and τ60(F ) are cocartesian. Let γ : x→ y be a morphism in X and
let fγ : Ix → Iy be any straightening for Iγ → ∆1. By Lemma 8.7.10, the canonical comparison
maps

fγ,!(τ>0(j∗x(F )))→ τ>0(fγ,!(j
∗
x(F ))) and fγ,!(τ60(j∗x(F )))→ τ60(fγ,!(j

∗
x(F )))

are equivalences. Since F is cocartesian, the canonical map

fγ,!(j
∗
x(F ))→ j∗y(F )

is an equivalence. The conclusion now follows from the t-exactness of both j∗x and j∗y . �

Corollary 8.7.12. In the setting of Proposition 8.7.11, one has a canonical equivalence:

St♥I,E ' StI,E♥ .

Proof. By definition of the standard t-structure on Fun(I,E), we have Fun(I,E)♥ ' Fun(I,E♥).
Proposition 8.7.11 guarantees that a Stokes functor is connective (resp. coconnective) if and only
if it is connective (resp. coconnective) as an object in Fun(I,E), so the conclusion follows. �

Recollection 8.7.13. If A is a Grothendieck abelian category, we denote by D(A) the derived∞-
category of A (see [32, Definition 1.3.5.8]). By [32, Propositions 1.3.5.9 & 1.3.5.21] we see that D(A)
is a presentable stable ∞-category equipped with an accessible t-structure τ = (D(A)>0,D(A)60)
compatible with filtered colimits and such that A ' D(A)♥.

Corollary 8.7.14. Let p : I → X be an object of PosFib and let A be a Grothendieck abelian
category such that p : I→ X is D(A)-bireflexive. Then StI,A is a Grothendieck abelian category.

Proof. Lemma 8.4.6 implies that StI,D(A) is presentable and stable, while Proposition 8.7.11
guarantees that τ induces an accessible t-structure on StI,D(A) which is compatible with filtered
colimits and such that the inclusion

StI,D(A) ↪→ Fun(I,D(A))

is t-exact. Moreover, Corollary 8.7.12 and Recollection 8.7.13 imply that

St♥
I,D(A) ' StI,A .

Thus, it follows that StI,A is a Grothendieck abelian category. �

Corollary 8.7.15. Let X be an ∞-category and let f : I→ J be a morphism between cocartesian
fibrations in finite posets over X. If I→ X and J→ X are E-bireflexive, then the functor

f! : StI,E → StJ,E

is t-exact.

Proof. It follows from Proposition 8.7.11 and Recollection 8.7.4 that f! is right t-exact. Let
F ∈ (StI,E)60. We have to prove that f!(F ) takes values in E60. Combining Corollaries 6.1.6
and 8.3.4, we can reduce ourselves to the case where X is reduced to a point, where the result
follows from Corollary 8.7.8. �

Remark 8.7.16. The inclusion Funcocart(I,E) ↪→ Fun(I,E) is typically not left t-exact and in
general

Funcocart(I,E)♥ 6' Funcocart(I,E♥) ,
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as Example 7.9.5 shows. Notice however that the functor F considered there is not punctually
split at 0. Similarly, if f : I → J is a morphism between cocartesian fibrations in finite posets,
neither

f! : Fun(I,E)→ Fun(J,E)

nor its cocartesian variant are left t-exact. However, it becomes left t-exact once restricted to
StI,E, thanks to Corollary 8.7.15.

Corollary 8.7.17. Let I→ X be a cocartesian fibration in posets. If X admits an initial object
x, then a Stokes functor F : I→ E takes values in E♥ if and only if j∗x(F ) : Ix → E takes values
in E♥.

Proof. The “only if” direction simply follows from the t-exactness of j∗x : Fun(I,E)→ Fun(Ix,E).
For the “if” direction, we equivalently have to show that for every y ∈ X, the restriction j∗y(F )

takes values in E♥. Since x is initial in X, we can find a morphism γ : x → y. Choose any
straightening fγ : Ix → Iy for Iγ → ∆1. Since F is cocartesian, the canonical map

fγ,!(j
∗
x(F ))→ j∗y(F )

is an equivalence. The conclusion now follows from Corollary 8.7.8. �

8.8. Categorical actions on Stokes functors. We use the terminology on categorical actions
reviewed in Section 20 (see also Section 7.10, of which this section is the continuation). We fix a
presentably symmetric monoidal and stable ∞-category E⊗. In analogy to Proposition 7.10.1, we
have:

Proposition 8.8.1. Let p : I → X be a cocartesian fibration in posets. Then for every L ∈
Loc(X;E) and every G ∈ FunPS(I,E), the functor

p∗(L)⊗G : I→ E

is again punctually split. In particular, if G is a Stokes functor, the same goes for p∗(L)⊗G.

Proof. Fix x ∈ X. Since the restrictions j∗x : Fun(I,E)→ Fun(Ix,E) are E-linear, we can assume
without loss of generality that X is reduced at a single point. Choose a splitting V : Iset → E

for G. Lemma 20.1.3 implies that iI,! : Fun(Iset,E)→ Fun(I,E) is E-linear. Therefore, for every
L ∈ E we obtain

p∗(L)⊗G ' p∗(L)⊗ iI,!(V ) ' iI,!(pset,∗(L)⊗ V ) ,

i.e. p∗(L)⊗G is split. �

Corollary 8.8.2. Let p : I → X be a E-bireflexive cocartesian fibration in posets. Then the
categorical action of Loc(X;E) on Fun(I,E) restricts to a categorical action of Loc(X;E) on StI,E.

Proof. This is obvious from Proposition 8.8.1. �

We now derive an analogue of Corollaries 20.2.8 and 7.10.10 in the setting of Stokes functors.
We fix a pullback square

J I

Y X

u

q p

f

in Cat∞, where p is a cocartesian fibration in posets. In addition, we assume that f is a finite
étale fibration (see Definition 19.2.1) and that both I and J are E-bireflexive. In this setting,
Construction 20.2.1 supplies a canonical transformation

µ : Loc(Y;E)⊗Loc(X;E) Fun(I,E)→ Fun(J,E) ,
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and Proposition 7.10.1 and Corollary 8.8.2 imply that this action restricts to a well defined
categorical action

µ : Loc(Y;E)⊗Loc(X;E) StI,E → StJ,E .

Lemma 8.8.3. In the above setting, the functor

u! : Fun(J,E)→ Fun(I,E)

respects Stokes functors and in particular it induces a well defined functor

u! : StJ,E → StI,E .

Proof. We know from Corollary 7.10.8 that u! preserves cocartesian functors. It is therefore
enough to prove that it preserves punctually split functors as well. Let therefore F : J→ E be a
punctually split functor. Fix x ∈ X. For every y ∈ Yx, we have a splitting

Vy : Jset
y → E

for j∗y(F ). Since f is a finite étale fibration, the same goes for u (see Lemma 19.2.2), and therefore

j∗x(u!(F )) '
⊕
y∈Yx

j∗y(F ) .

It follows from Lemma 8.4.2 that
⊕

y∈Yx Vy provides a splitting for j∗x(u!(F )), whence the
conclusion. �

Proposition 8.8.4. In the above setting, the functor

u! : StJ,E → StI,E

is monadic.

Proof. As in the proof of Corollary 7.10.9, Lemmas 8.8.3 and 20.2.5 imply that u! and u∗ are
biadjoint. Besides, u! : Fun(J,E) → Fun(I,E) is conservative thanks to Lemma 20.2.6, so the
same holds true for its restriction to the ∞-categories of Stokes functors. �

Corollary 8.8.5. Let
J I

Y X

u

q p

f

be a pullback square in Cat∞, where p is a cocartesian fibration in posets. Let E⊗ be a presentably
symmetric monoidal ∞-category. Assume that:

(1) f is a finite étale fibration;

(2) E is stable;

(3) both I and J are E-bireflexive.
Then, the comparison functor

µ : Loc(Y;E)⊗Loc(X;E) StI,E → StJ,E

is an equivalence.

Proof. Using Proposition 8.8.4 as input, the same proof of Corollary 20.2.8 applies. �

We conclude this section with the following result, which has been inspired by [4, Lemma 15.5]
and that will play an important role later on:
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Corollary 8.8.6 (Retraction lemma). Let

X• : ∆op
s → Cat∞

be a semi-simplicial diagram with colimit X. Let I→ X be a cocartesian fibration in posets and set

I• := X• ×X I .

Let E⊗ be a presentably symmetric monoidal stable ∞-category. Assume that:
(1) Env(X) is compact in Spc;

(2) for every [n] ∈∆s, the structural morphism Xn → X is a finite étale fibration;

(3) For every [n] ∈∆s, In is E-bireflexive;
Then there exists an integer m > 0 depending only on Env(X) such that StI,E is a retract of

lim
[n]∈∆s,≤m

StIn,E

in PrL.

Proof. To begin with, Corollary 8.5.3 implies that StI,E is presentable, stable and closed under
limits and colimits in Fun(I,E) and that besides

StI,E ' lim
i∈I

StIi,E ,

the limit being computed in PrL,R.

For any integer m > 0, set
X(m) := colim

[n]∈∆op
s,≤m

X• .

It automatically follows that
X ' colim

m∈Nop
X(m) ,

where the colimit is now filtered. Since the enveloping ∞-groupoid functor Env: Cat∞ → Spc is
a left adjoint, we see that

Env(X) ' colim
m∈N

Env(X(m)) .

Since Env(X) is compact, there exists an integerm > 0 such that Env(X) is a retract of Env(X(m)).
As a consequence, we see that Loc(X;E) is a retract of Loc(X(m);E). In particular,

StI,E ' Loc(X;E)⊗Loc(X;E) StI,E

is a retract of

Loc(X(m);E)⊗Loc(X;E) StI,E '
(

lim
[n]∈∆s,≤m

Loc(Xn;E)
)
⊗Loc(X;E) StI;E .

Notice that the diagram Loc(X•;E) takes values in PrL,R. Therefore, Lemma 7.5.5 supplies a
canonical equivalence(

lim
[n]∈∆s,≤m

Loc(Xn;E)
)
⊗Loc(X;E) StI;E ' lim

[n]∈∆s,≤m
Loc(Xn;E)⊗Loc(X;E) StI;E .

Since each Xn → X is a finite étale fibration, Corollary 8.8.5 supplies a canonical equivalence

Loc(Xn;E)⊗Loc(X;E) StI;E ' StIn;E .

Thus, the conclusion follows. �
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9. Graduation

In this section we keep working with cocartesian fibrations in posets, but we restrict to stable
coefficients. This allows to introduce a new fundamental operation for Stokes functors: graduation.
Intuitively, this allows to break a Stokes functor in more elementary pieces, and it will be the key
ingredient needed to develop the theory of level morphisms and level induction.

9.1. Relative graduation. Let X be an ∞-category. Starting with a morphism p : I → J in
PosFibX, we can perform the following two constructions:

Construction 9.1.1. Consider the fiber product

Ip I

Jset J

π p

iJ

Notice that Iset
p → Iset is an equivalence. When X is reduced to a point, we can identify Ip with

the poset (I,≤p), where
a ≤p a′

def.⇐⇒ p(a) = p(a′) and a ≤ a′ .
In other words, if p(a) 6= p(a′), then a and a′ are incomparable with respect to ≤p.

Construction 9.1.2. Let
Υ = ΥJ := Stco

X (J) : X→ Cat∞
be the straightening of pJ : J→ X. Consider the composition

Υ∆1

:= Fun(∆1,Υ(−)) : X→ Cat∞,

and write J∆1

:= Unco
X (Υ∆1

) for the associated cocartesian fibration. The source and identity
functors

Fun(∆1,Υ(−))→ Υ(−) and Υ(−)→ Fun(∆1,Υ(−))

induce morphisms of cocartesian fibration in posets over X

s : J∆1

→ J and id : J→ J∆1

Consider the pullback diagram
I≤ I

J∆1

J .

σ

p

s

Objects of I≤ are triples (x, a, b) where a ∈ Ix, b ∈ Jx and where p(a) ≤ b in Jx. We also consider
the full subcategory iI,< : I< ↪→ I≤ spanned by objects (x, a, b) with p(a) < b. When I is clear
from the context, we simply write i< instead of iI,<.

Remark 9.1.3. The target functor Fun(∆1,Υ(−))→ Υ(−) induces a morphism of cocartesian
fibration in posets t : J∆1 → J. Let τ : I≤ → J be the composition of I≤ → J∆1

with t : J∆1 → J.
Then, one checks that if X is a point, the induced functor (σ, τ) : I≤ → I× J is fully-faithful.

In general, I< is no longer a cocartesian fibration. To remedy this, we introduce the following:

Definition 9.1.4. Let X be an ∞-category. Let p : I → J be a morphism in PosFib over X.
We say that p : I→ J is a graduation morphism if the cocartesian fibration Jset → X is locally
constant in the sense of Definition 19.1.4.

The following lemma is simply a matter of unraveling the definitions:
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Lemma 9.1.5. Let X be an ∞-category. Let p : I→ J be a graduation morphism over X. Then,
i< : I< → I≤ is a cocartesian subfibration of I≤ over X.

Consider the following diagram with pull-back squares:

(9.1.6)

I<

Ip I≤ I

Jset J J∆1

J .

i<

ip σ

p

iJ id s

We fix a presentable stable ∞-category E and write

ε< : i<!i
∗
< → idFun(I≤,E)

for the counit of the adjunction i<! : Fun(I<,E)� Fun(I≤,E) : i∗<.

Definition 9.1.7. The graduation functor relative to p : I→ J (or p-graduation functor)

Grp : Fun(I,E)→ Fun(Ip,E)

is the cofiber
Grp := cofib

(
i∗pε<σ

∗ : i∗p ◦ i<! ◦ i∗< ◦ σ∗ → i∗p ◦ σ∗
)
.

Notation 9.1.8. When p = id, we note Gr for Grid.

In the following basic example, we recall that if p : I→ J is a morphism of posets and if b ∈ J,
we put I≤b = I/b := I×J J/b. Since J is a poset, the canonical morphism J/b → J is fully-faithful.
Thus, the canonical morphism I/b → I identifies I/b with the full subcategory of I spanned by
objects a ∈ I such that p(a) ≤ b. Similarly, I<b := I×J J<b is the full subcategory of I spanned
by objects a ∈ I such that p(a) < b.

Example 9.1.9. Let p : I → J be a morphism of posets. Let E be a presentable stable ∞-
category. Let V : Iset → E be a functor and put F := iI!(V ). Let a ∈ Ip. Then, there is a
canonical equivalence

(Grp(F ))a '
⊕
a′≤a

p(a′)=p(a)

Va′ .

Proof. We have

(i∗p ◦ i<! ◦ i∗< ◦ σ∗(F ))a ' colim
(a′,b)∈(I<)/(a,p(a))

Fa′ ' colim
(a′,a′′,b)∈C

Va′′

where C is the full subcategory of I× J× Iset spanned by triples (a′, b, a′′) such that a′′ ≤ a′ ≤ a
and p(a′) < b ≤ p(a). Let D be the full subcategory of I× Iset spanned by pairs (a′, a′′) such that
a′′ ≤ a′ ≤ a and p(a′) < p(a). Let A be the subset of Iset formed by the a′′ such that a′′ ≤ a and
p(a′′) < p(a). Consider the commutative diagram

D C

A Iset

f

p2 p3

where f : D→ C is given by (a′, a′′) 7→ (a′, p(a), a′′). We claim that f is cofinal. Indeed, for every
triple (a′, b, a′′) ∈ C, D(a′,b,a′′)/ := D×C C(a′,b,a′′)/ is the subposet of D spanned by pairs (α′, a′′)
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with a′ ≤ α′. Observe that (a′, a′′) is a minimal element of D(a′,b,a′′)/, which is thus weakly
contractible. Hence, the claimed cofinality follows from [31, Theorem 4.1.3.1]. Thus,

(i∗p ◦ i<! ◦ i∗< ◦ σ∗(F ))a ' colim
D

V |D

We also claim that p2 : D→ A is cofinal. Indeed, if a′′ ∈ A, Da′′/ := D×A Aa′′/ is the subposet
of D spanned by couples (α′, a′′). Observe that (a′′, a′′) is a minimal element of Da′′/, which is
thus weakly contractible. Hence, the claimed cofinality follows from [31, Theorem 4.1.3.1]. Thus,

(i∗p ◦ i<! ◦ i∗< ◦ σ∗(F ))a ' colim
A

V |A '
⊕
a′≤a

p(a′)<p(a)

Va′

On the other hand,
(i∗p ◦ σ∗(F ))a ' Fa '

⊕
a′≤a

Va′

Example 9.1.9 thus follows. �

In particular when p : I→ J is the identity of I, we obtain:

Example 9.1.10. In the setting of Example 9.1.9, let V : Iset → E be a functor and put
F := iI!(V ). Let a ∈ Iset. Then, there is a canonical equivalence

(GrF )a ' Va

Example 9.1.11. Let X be an ∞-category. Let p : I→ J be a graduation morphism over X and
assume that J = Jset. Then, Ip = I and Grp : Fun(Ip,E)→ Fun(I,E) is the identity functor.

Proposition 9.1.12. Let X be an ∞-category. Let p : I → J be a graduation morphism over
X. Let E be a presentable stable ∞-category. Then Grp : Fun(I,E)→ Fun(Ip,E) commutes with
colimits. In particular, Grp admits a right adjoint

Gr∗p : Fun(Ip,E)→ Fun(I,E)

that can be explicitly computed as

Gr∗p ' fib
(
σ∗ ◦ ip,∗

η<→ σ∗ ◦ i<,∗ ◦ i∗< ◦ ip,∗
)
,

where η< is the unit of the adjunction i∗< a i<,∗.

Proof. The first half follows immediately from the fact that Grp is a composition of functors
commuting with colimits. The second half simply follows from the Yoneda lemma. �

Remark 9.1.13. For an explicit description of the right adjoint Gr∗p in the spirit of Example 9.1.9,
see Proposition 9.3.11.

Under extra finitness conditions, Proposition 9.1.12 has a counterpart for limits. Before stating
it, we introduce the following

Definition 9.1.14. We define PosFibf as the full subcategory of PosFib spanned by cocartesian
fibrations in posets p : I→ X such that for every x ∈ X, the poset Ix is finite.

Proposition 9.1.15. Let X be an ∞-category. Let p : I → J be a graduation morphism in
PosFibf over X. Let E be a presentable stable ∞-category. Then Grp : Fun(I,E)→ Fun(Ip,E)
commutes with limits.

Proof. Follows immediately from Proposition 17.2.3 and the fact that in a stable ∞-category, the
cofiber functor commutes with limits in virtue of Lemma 17.2.1. �
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Proposition 9.1.16. Let X be an ∞-category. Let p : I → J be a graduation morphism in
PosFibf over X. Let E be a presentable stable ∞-category. Then Grp : Fun(I,E)→ Fun(Ip,E)
is conservative.

Proof. From Corollary 6.1.6, we can suppose that X is a point. Let f : F → G be a morphism in
Fun(I,E) such that Grp(f) : Grp(F ) → Grp(G) is an isomorphism. Let A ⊂ I be the subset of
elements a such that f is not an isomorphism at a. We argue by contradiction and assume that
A is not empty. Since I is finite, A admits a minimal element a. If Ca := I< ×I≤ (I≤)/(a,p(a)),
there is a morphism of cofibre sequences

colim
Ca

F |Ca Fa Grp(F )a

colim
Ca

G|Ca Ga Grp(G)a

fa Gr(f)a

By definition, an object of Ca is a couple (b, c) ∈ I× J with p(b) < c such that b ≤ a and c ≤ p(a).
In particular p(b) < p(a), so that b < a. That is, the above colimit over Ca only features values of
f at elements b ∈ I strictly smaller than a. Thus, the left vertical arrow is an equivalence by the
minimality of a. The right vertical arrow is an equivalence by assumption. Hence fa : Fa → Ga is
an equivalence. Contradiction. �

Remark 9.1.17. Note that Proposition 9.1.16 fail if the finiteness assumption on I is dropped.
If I = Z and if F is the functor constant to a non zero object in E, then we have F 6= 0 and
Gr(F ) ' 0.

9.2. Exponential graduation. The graduation functor introduced in Section 9.1 should be
understood as the global counterpart of the exponential graduation, which we now discuss. Fix
a presentable stable ∞-category E. For every ∞-category X and every graduation morphism
p : I → J in PosFib over X, we can apply expE(−/X) to the diagram (9.1.6). This yields the
following commutative diagram

expE(I</X)

expE(Ip/X) expE(I≤/X) expE(I/X)

expE(Jset/X) expE(J/X) expE(J∆1

/X) expE(J/X)

E
i<
!

E
ip
! Eσ!

E
iJ
! Eid

! Es!

in PrFibL
X. Recall from Lemma 6.4.1 the existence of right adjoints Eσ,∗, Ei<,∗ and Eip,∗ for Eσ! ,

E
i<
! and E

ip
! , respectively.

Definition 9.2.1. In the above setup, the exponential graduation relative to p is the functor

expGrp := cofib(Eip,∗ ◦ Ei<! ◦ E
i<,∗ ◦ Eσ,∗ → Eip,∗ ◦ Eσ,∗) ,

where the morphism is induced by the counit of the adjunction E
i<
! a Ei<,∗.

The following result summarizes the local and the global behavior of the exponential graduation
functor:

Proposition 9.2.2. Keep the same notations as above. Then:
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(1) for every x ∈ X, the diagram

Fun(Ix,E) Fun((Ip)x,E)

expE(I/X) Fun(Ip,E)

Grpx

expGrp

commutes.

(2) The diagram

Fun/X(X, expE(I/X)) Fun/X(X, expE(Ip/X))

Fun(I,E) Fun(Ip,E)

ΣX(expGrp)

spI
spIp

Grp

commutes.

Proof. Statement (1) immediately follows from Corollary 6.1.6 applied to E
i<
! and the fact that

the adjunctions Eσ! a Eσ,∗, Ei<! a Ei<,∗ and E
ip
! a Eip,∗ are relative to X, see Lemma 6.4.1. On

the other hand, statement (2) is a direct consequence of Proposition 6.4.2. �

Our next goal is to understand the behavior of expGr with the exponential functoriality for
morphisms in PosFib. We start analyzing cartesian morphisms. Consider therefore a diagram

(9.2.3)

I IX

J JX

Y X

p q

u

u′

f

whose squares are pullbacks and where I→ Y and J→ Y are cocartesian fibrations in posets. We
also assume that Jset → X is locally constant. We have:

Proposition 9.2.4. In the above setting, the diagram

(9.2.5)
expE(Ip/Y) expE((IX)pX/X)

expE(I/Y) expE(IX/X)

Eup

expGrp

Eu

expGrq

is canonically commutative, and it is therefore a pullback.

Proof. Unraveling the definitions, we see that an object in expE(IX/X) can be identified with
a pair (F, x), where x ∈ X and F : (IX)x → E is a functor. Under the canonical identification
(IX)x ' If(x), the functor Eu sends (F, x) to (F, f(x)). At this point, the commutativity follows
from Corollary 6.1.6 and Proposition 9.2.2-(1), while Proposition 3.2.6-(1) immediately implies
that the square in consideration is a pullback. �

Corollary 9.2.6. In the above setting, the natural transformation

Grq ◦u∗ → u∗p ◦Grp

between functors from Fun(I,E) to Fun((IX)q,E) is an equivalence.
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Proof. We can see (9.2.5) as a commutative square in PrFibL. The statement then follows
applying Σ and invoking Proposition 6.1.2-(1) and Proposition 9.2.2-(2). �

Remark 9.2.7. As a particular case of Corollary 9.2.6, we see that relative graduation commutes
with restriction over an object of X.

9.3. Graduation and induction. Our next task is to understand how graduation behaves with
respect to morphisms in PosFibX for a fixed ∞-category X. In other words, we are interested in
seeing to which extent (exponential) graduation and (exponential) induction intertwine with each
other. Our starting point is the following. Let X be an ∞-category and let

(9.3.1)
I K

J L

p

f

q

g

be a commutative diagram in PosFib over X. We make the following running

Assumption 9.3.2.

(1) Both p : I→ J and q : K→ L are graduation morphisms.

(2) For every x ∈ X, the map gset
x : Jset

x → Lset
x is injective.

The second half of this assumption guarantees that if a, b ∈ Jx are such that a < b, then
g(a) < g(b) as well. Thus, the above assumption guarantees the existence and commutativity of
the following diagram:

(9.3.3)

I<

K<

Ip I≤ I

Kq K≤ K

Jset J∆1

J

Lset L∆1

L

f<

iI,<

ip

fp,q

σI

f≤

p

f

iq

iK,<

σK

g

q

Fix a stable presentable ∞-category E and consider the induced natural transformation

(9.3.4) fp,q! ◦Grp → Grq ◦f!

of functors from Fun(I,E) to Fun(Kq,E). The goal of this section is to establish the following:
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Proposition 9.3.5. Let E be a stable presentable ∞-category and let F ∈ Fun(I,E). Under
Assumption 9.3.2, the natural transformation (9.3.4) is an equivalence and the diagram

expE(I/X) expE(K/X)

expE(Ip/X) expE(Kq/X)

E
f
!

expGrp expGrq

E
fp,q
!

commutes.

We first deal with the natural transformation (9.3.4), and we start by the following particular
case:

Lemma 9.3.6. Let X be an ∞-category. Let E be a presentable stable ∞-category. Let p : I→ J

be a graduation morphism in PosFib over X. Consider the commutative diagram

Iset I

J J

p◦iI

iI

p

id

Then, the induced natural transformation iIp! → Grp ◦iI! is an equivalence.

Proof. Combining Corollary 6.1.6 and Corollary 9.2.6, we can suppose that X is a point. Let
V : Iset → E be a functor. Then, for every a ∈ Ip, we have

(iIp!(V ))a '
⊕
a′≤a

p(a′)=p(a)

Va′

Then, Lemma 9.3.6 follows from the computation performed in Example 9.1.9. �

Corollary 9.3.7. Under the assumptions of Lemma 9.3.6, for every punctually split functor
F : I→ E, the graduation Grp(F ) : Ip → E is punctually split.

Proof. From Corollary 9.2.6, we are left to treat the case where X is a point. In this case, the
statement follows from Lemma 9.3.6. �

Corollary 9.3.8. Let I → X be an object of PosFibf such that Iset → X is locally constant.
Let E be a presentable stable ∞-category. Let F : I → E be a functor. Then, the following are
equivalent:

(1) the canonical morphism i∗I(F )→ Gr(F ) admits a section σ : Gr(F )→ i∗I(F );

(2) the functor F split.
If these conditions are satisfied, the morphism

τ : iI! Gr(F )→ F

induced by σ is an equivalence.

Proof. Assume that (1) holds. To prove (2), it is enough to show that τ is an equivalence. By
Proposition 9.1.16, it is enough to show that

Gr(τ) : Gr iI! Gr(F )→ Gr(F )

is an equivalence. Then, Corollary 9.3.8 follows from Lemma 9.3.6. Assume that F split and let
us write F ' iI,!(V ) where V : I→ E is a functor. By Lemma 9.3.6, the canonical morphism from
(1) reads as i∗IiI,!(V )→ V . Then, the unit transformation V → i∗IiI,!(V ) does the job. �
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We are now ready for:

Proof of Proposition 9.3.5. Combining Corollary 6.1.6 and Corollary 9.2.6, we can assume that
X is a point. Recall moreover from Proposition 8.1.9 that Fun(I,E) is generated under colimits
by punctually split functors. Since both source and target of (9.3.4) commute with colimits, it is
enough to check that the canonical morphism

fp,q!(Grp(F ))→ Grq(f!(F ))

is an equivalence when F is punctually split. We can therefore assume that F ' iI!(V ) for some
functor V : Iset → E. Thus, we can compute:

fp,q!(Grp(F )) ' fp,q!(Grp(iI!(V )))

' fp,q! ◦ iIp!(V ) By Lemma 9.3.6

' iKq !(f
set
! (V ))

' Grq(iK!(f
set
! (V ))) By Lemma 9.3.6

' Grp ◦f! ◦ iK!(V )

' Grp ◦f!(F ) .

Thus, (9.3.4) is an equivalence. As for the second half of the statement, observe that applying
expE(−/X) to the diagram (9.3.4) supplies a canonical natural transformation

α : E
fp,q
! ◦ expGrp → expGrq ◦E

f
! .

To prove that it is an equivalence, it is enough to prove that its restriction αx is an equivalence for
every x ∈ X. Combining Proposition 6.1.2-(2) and Proposition 9.2.2-(1), we see that αx coincides
with the natural transformation (9.3.4), so the conclusion follows from what we have already
proven. �

We store the following particular cases of Proposition 9.3.5 for later use.

Corollary 9.3.9. Let X be an ∞-category. Let p : I→ J be a graduation morphism in PosFib
over X. Consider the commutative square

I J

J J

p

p

id

id

Let π : Ip → Jset be the morphism induced by p. Let E be a presentable stable ∞-category. Then,
for every functor F : I→ E, the canonical morphism

π!(Grp(F ))→ Gr(p!(F ))

is an equivalence.

Corollary 9.3.10. Let X be an ∞-category. Let i : I ↪→ J be a fully faithful functor in PosFib
over X. Consider the commutative square

I J

I J .

id

i

id

i

Let E be a presentable stable ∞-category. Then, for every functor F : I → E, the canonical
morphism

iset
! (Gr(F ))→ Gr(i!(F ))
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is an equivalence.

Proposition 9.3.11. Let p : I → J be a morphism of posets. Let E be a presentable stable
∞-category. Then, for every F ∈ Fun(Ip,E) and every a, b ∈ I with a ≤ b, we have canonical
equivalences

(Gr∗p(F ))(a ≤ b) '

{
F (a ≤ b) if p(a) = p(b)

0 : Fa → Fb if p(a) < p(b)

Proof. Let i : p−1(p(a)) → I and j : p−1(p(a)) → Ip be the inclusions. From Proposition 9.3.5
and Example 9.1.11 applied to the commutative square

p−1(p(a)) I

∗ J

i

p

p(a)

there is a canonical equivalence of functors j! ' Grp ◦i!. Passing to right adjoints gives a canonical
equivalence i∗ ◦Gr∗p ' j∗. This proves the first claim. Let a, b ∈ I with a ≤ b and p(a) < p(b).
We want to show that

α := (Gr∗p(F ))(a ≤ b) : (Gr∗p(F ))a → (Gr∗p(F ))b

is the zero morphism. This amounts to show that for every V ∈ E, the morphism

Map(V, α) : Map(V, evI,∗
a Gr∗p(F ))→ Map(V, evI,∗

b Gr∗p(F ))

is the zero morphism. By adjunction, this amounts to show that

Map(β, F ) : Map(Grp ◦evI
a,!(V ), F )→ Map(Grp ◦evI

b,!(V ), F )

is the zero morphism, where

β : Grp ◦evI
b,!(V )→ Grp ◦evI

a,!(V )

is the induced morphism in Fun(Ip,E). We are thus left to show that β is the zero morphism.
From Proposition 9.3.5, β identifies with a morphism of the form ev

Ip
b,!(V )→ ev

Ip
a,!(V ). Let c ∈ Ip.

Since p(a) < p(b), then either p(c) 6= p(a) or p(c) 6= p(b). In the first case, a and c cannot be
compared in Ip, so that ev

Ip
a,!(V ) sends c to 0. In the second case, b and c cannot be compared in

Ip, so that ev
Ip
b,!(V ) sends c to 0. Hence, in both cases β is zero when evaluated at c. Thus, β is

the zero morphism. �

Proposition 9.3.12. Let X be an ∞-category. Let p : I→ J be a graduation morphism over X.
Let a ∈ I. Let E be a presentable stable ∞-category. Then the triangle

Fun(Ip,E) Fun(I,E)

E

Gr∗p

ev
Ip,∗
a

evI,∗
a

is canonically commutative.

Proof. Equivalently, it is enough to check that the canonical map

ev
Ip
a! → Grp ◦evI

a!

is an equivalence. Since ev
Ip
a factors through Iset → Ip and evI

a factors through Iset → I, the
statement follows directly from Proposition 9.3.5, in the form of the special case treated in
Lemma 9.3.6. �
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Corollary 9.3.13. Let X be an∞-category. Let p : I→ J be a graduation morphism over X. Then,
Gr∗p : Fun(Ip,E)→ Fun(I,E) commutes with colimits. In particular, Grp : Fun(I,E)→ Fun(Ip,E)
preserves compact objects.

Proof. Immediate from Proposition 9.3.12 and the fact that the functors evI,∗
a , a ∈ I are jointly

conservative and commute with colimits. �

9.4. Graduation and cocartesian functors.

Proposition 9.4.1. Let X be an ∞-category. Let p : I→ J be a graduation morphism in PosFib
over X. Let E be a presentable stable ∞-category. Then, the functor

expGrp : expE(I/X)→ expE(Ip/X)

preserves cocartesian edges. If in addition both I and J belong to PosFibf , then expGrp reflects
cocartesian edges as well.

Warning 9.4.2. Since the adjoints Eσ,∗, Ei<,∗ and Eip,∗ do not preserve cocartesian edges, it is
a priori not obvious that expGrp defines a morphism of cocartesian fibrations over X.

Proof of Proposition 9.4.1. Unraveling the definitions, we have to prove the following statement.
Let γ : x→ y be any morphism in X and fix compatible straightenings fγ : Ix → Iy, gγ : Jx → Jy
making the diagram

(9.4.3)
Ix Iy

Jx Jy

fγ

px py

gγ

commutative. Then we have to prove that for every pair of functors Fx : Ix → E and Fy : Iy → E

and every map α : (Fx, x)→ (Fy, y) in expE(I/X) lying over γ, if the canonically induced morphism

α : fγ,!(Fx)→ Fy

is an equivalence then the same goes for the map

(9.4.4) β : (fγ)px,py !(Grpx(F ))→ Grpy (Fy)

induced by the morphism β := expGrp(α) : (Grpx(Fx), x)→ (Grpy (Fy), y) in expE(Ip/X). Notice
that, since Jset → X is locally constant, the underlying map gset

γ : Jset
x → Jset

y is a bijection.
In particular, Assumption 9.3.2 is satisfied, and we therefore find a natural transformation
(fγ)px,py ! ◦Grpx → Grpy ◦fγ! making the diagram

(fγ)px,py !(Grpx(Fx)) Grpy (Fy)

Grpy (fγ!(Fx)) ,

β

Grpy (α)

commutative. Now, Proposition 9.3.5 guarantees that the vertical arrow is an equivalence, so β is
an equivalence if and only if Grpy (α) is. This immediately proves the first half of the statement,
and the second half follows from the conservativity of Grpy , that holds when I and J are in
PosFibf thanks to Proposition 9.1.16. �
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Corollary 9.4.5. In the setting of Proposition 9.4.1, the functor Grp : Fun(I,E) → Fun(Ip,E)

preserves cocartesian functors. If in addition I and J belong to PosFibf , then the resulting
commutative square

Funcocart(I,E) Fun(I,E)

Funcocart(Ip,E) Fun(Ip,E)

Grp Grp

is a pullback.

Proof. Thanks to Proposition 9.4.1, we see that expGrp is a morphism in PrFibL. Applying
Σcocart

X , we see that Grp preserves cocartesian functors. As for the pullback statement, since
both horizontal functors are fully faithful, it amounts to check that if F : I → E is such that
Grp(F ) is cocartesian, then the same goes for F . Via the specialization equivalence (6.1.1), we
can equivalently see F as a section spI(F ) : X→ expE(I/X) of the structural map of expE(I/X).
Using Proposition 9.2.2-(2), we see that the problem at hand becomes showing that spI(F ) is a
cocartesian section if and only if expGrp ◦ spI(F ) is a cocartesian section of expE(Ip/X), and this
latter statement follows directly from the second half of Proposition 9.4.1. �

In fact, we can extract from the proof of Corollary 9.4.5 the following more precise statement:

Corollary 9.4.6. In the setting of Proposition 9.4.1, let γ : x→ y be a morphism in X and let
F : I→ E be a functor. Then if F is cocartesian at γ, the same goes for Grp(F ) : Ip → E. The
converse holds provided that both I and J belong to PosFibf .

Proof. Passing to the other side of the specialization equivalence (6.1.1) and invoking Propo-
sition 9.2.2-(2), we have to prove that a section s : X → expE(I/X) takes γ to a cocartesian
morphism if and only if expGrp ◦s takes γ to a cocartesian morphism in expE(Ip/X). As this
statement is obviously implied by Proposition 9.4.1, the conclusion follows. �

Combining together Corollary 9.3.7 and Corollary 9.4.5 we obtain:

Corollary 9.4.7. Let X be an ∞-category. Let p : I→ J be a graduation morphism in PosFibX.
Let E be a presentable stable ∞-category. Then, for every cocartesian punctually split functor
F : I→ E, its p-graduation Grp(F ) : Ip → E is cocartesian and punctually split.

We conclude this section with the following handy consequence:

Corollary 9.4.8. Let X be an ∞-category. Let p : I→ J be a graduation morphism in PosFibX.
Let E be a presentable stable ∞-category. Then the functor

expGrp : expE(I/X)→ expE(Ip/X)

admits a right adjoint expGr∗p relative to X. In particular, for every x ∈ X, the diagram

Fun((Ix)px ,E) Fun(Ix,E)

expE(Ip/X) expE(I/X)

Gr∗px

expGr∗p

commutes. In addition, the diagram

Fun/X(X, expE(Ip/X)) Fun/X(X, expE(I/X))

Fun(Ip,E) Fun(I,E)

ΣX(expGr∗p)

spIp spI

Gr∗p
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commutes as well.

Proof. Since expGrp preserves cocartesian edges by Proposition 9.4.1, [32, Proposition 7.3.2.6]
shows that it is enough to prove that for every x, the induced functor on the fibers at x

(expGrp)x : Fun((Ix)px ,E)→ Fun(Ix,E)

admits a right adjoint. By Proposition 9.2.2-(1), we see that (expGrp)x canonically coincides
with Grpx , so the existence of the right adjoint is guaranteed by Proposition 9.1.12. This proves
at the same time the commutativity of the first diagram. As for the second, it simply follows
from the uniqueness of the adjoints, the fact that the specialization functors are equivalences and
Proposition 9.2.2-(2). �

Proposition 9.4.9. Let X be an∞-category. Let p : I→ J be a graduation morphism over X. Let
E be a presentable stable ∞-category. Then, the graduation functor relative to p (Definition 9.1.7)

Grp : Fun(I,E)→ Fun(Ip,E)

preserves the category of Stokes functors. In other words, it restricts to a functor

Grp : StI,E → StIp,E.

Proof. This follows from Corollary 9.4.7, Corollary 9.2.6 and Lemma 9.3.6. �

Corollary 9.4.10. Let I→ X be an object of PosFib such that Iset → X is locally constant. Let
E be a presentable stable ∞-category. Then, the following square

StIset,E StI,E

Fun(Iset,E) Fun(I,E)

iI,!

iI,!

is a pullback

Proof. Let F : I → E be a split Stokes functor. Let V : Iset → E such that F ' iI,!(V ). By
Lemma 9.3.6, we have

Gr(F ) ' Gr(iI,!(V )) ' V .

By Corollary 9.4.5, we deduce that V : Iset → E is cocartesian. Since V is automatically punctually
split, Corollary 9.4.10 thus follows.

�

9.5. Essential image of a fully-faithul induction. The following propositions describe the
essential image of a fully-faithul induction in terms of graduation.

Lemma 9.5.1. Let X be an ∞-category. Let i : I→ J be a fully faithful functor in PosFib over
X. Let E be a presentable stable ∞-category. Then, the functor

i! : FunPS(I,E)→ FunPS(J,E)

is fully faithful. Let F ∈ FunPS(J,E). Then, the following statements are equivalent :
(1) F lies in the essential image of i! : FunPS(I,E)→ FunPS(J,E).

(2) i∗(F ) lies in FunPS(I,E) and the counit map i!(i∗(F ))→ F is an equivalence.

(3) (GrF )a ' 0 for every a ∈ Jset not in the essential image of iset : Iset → Jset.
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Proof. Since i : I → J is fully faithful, so is i! : Fun(I,E) → Fun(J,E). In particular, the unit
of i! a i∗ is an equivalence. The fact that (1) implies (2) is then obvious. The statement (2)
trivially implies (1). To show the equivalence with (3), we can suppose from Corollary 6.1.6
and Corollary 9.2.6 that X is a point. If (2) holds, the sought-after vanishing follows from
Example 9.1.10. Suppose that (3) holds. Let us write F = iJ!(V ) where V : Jset → E. From
Example 9.1.10, Va ' 0 for every a ∈ Jset \ Iset. If W = V |Iset , we thus have V ' iset

! (W ). Hence,

F = iJ!(V ) ' iJ! ◦ iset
! (W ) ' i! ◦ iI!(W )

which proves (1), thus finishing the proof of Lemma 9.5.1. �

Proposition 9.5.2. Let X be an ∞-category. Let i : I ↪→ J be a fully faithful functor in PosFib
over X. Let E be a presentable stable ∞-category. Let F ∈ StJ,E. Then, the following statements
are equivalent :

(1) F lies in the essential image of i! : StI,E → StJ,E.

(2) i∗(F ) lies in StI,E and the counit map i!(i∗(F ))→ F is an equivalence.

(3) (GrF )a ' 0 for every a ∈ Jset not in the essential image of iset : Iset → Jset.

Proof. The equivalence between (1) and (2) follows as in Lemma 9.5.1. Assume that (1) holds.
Then (3) holds in virtue of Corollary 9.3.10. Assume that (3) holds. We are doing to show that
(2) holds. Since F is punctually split, Lemma 9.5.1 implies that i∗(F ) is punctually split and
that the counit map i!(i∗(F ))→ F is an equivalence. Hence, we are left to show that i∗(F ) is
cocartesian. To do this, we can suppose that X = ∆1. In that case, consider the commutative
square

Ix I

Jx J .

ix

jx

i

jx

By Proposition 8.2.5, the counit map jx,!j∗x(F )→ F is an equivalence. By Corollary 9.2.6, the
split functor j∗x(F ) : Jx → E satisfies the conditions of Lemma 9.5.1-(3). Thus, there exists
G : Ix → E such that j∗x(F ) ' ix,!(G). Hence, we have

i∗(F ) ' i∗jx,!j∗x(F ) ' i∗jx,!ix,!(G) ' i∗i!jx,!(G) ' jx,!(G)

where the last equivalence follows from the fully faithfulness of i : I ↪→ J. Then i∗(F ) is cocartesian
by Proposition 8.2.5. �

Corollary 9.5.3. Let X be an ∞-category. Let i : I ↪→ J be a fully faithful morphism in PosFib
over X. Let E be a presentable ∞-category. Assume that

iJ,! : StJset,E → StJ,E

is essentially surjective (resp. fully faithful). Then, so is

iI,! : StIset,E → StI,E .

Proof. Consider the commutative square

StIset,E StJset,E

StI,E StJ,E

iset
!

iI,! iJ,!

i!
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whose horizontal arrows are fully faithful since i : I ↪→ J is fully faithful. In particular, if iJ,! is
fully faithful so is iI,!. Assume that iJ,! is essentially surjective. Let F : I→ E be a Stokes functor.
Write i!(F ) ' iJ,!(V ) where V : Jset → E is Stokes. By Lemma 9.3.6, we have

Gr i!(F ) ' Gr iJ,!(V ) ' V ' GrV .

By Proposition 9.5.2, we deduce that (GrV )a ' 0 for every a ∈ Jset not in the essential image
of iset : Iset → Jset. By Proposition 9.5.2 again, there is a Stokes functor W : Iset → E such that
V ' iset

! (W ). Then,
i!iI,!(W ) ' iJ,!iset

! (W ) ' i!(F ) .

Since i : I ↪→ J is fully faithful, we deduce that F ' iJ,!(W ). The proof of Corollary 9.5.3 is thus
complete. �

9.6. Graduation and t-structures. We now explore the properties of the relative graduation
with respect to the t-structures of Proposition 8.7.11.

Proposition 9.6.1. Let X be an ∞-category and let p : I → J be a graduation morphism of
cocartesian fibrations in finite posets over X. Let E be a presentable stable ∞-category equipped
with an accessible t-structure τ = (E60,E>0). If I, Ip are E-bireflexive, then the relative graduation
functor

Grp : StI,E → StIp,E

is t-exact.

Proof. The very definition of Grp (see Definition 9.1.7) and Recollection 8.7.4 imply together
that Grp is right t-exact. Let now F ∈ (StI,E)60. To check that Grp(F ) ∈ (StIp,E)60, it suffices
to show that for every x ∈ X one has

j∗x(Grp(F )) ∈ Fun((Ip)x,E) .

By Corollary 9.2.6 and Remark 9.2.7 we have a canonical equivalence

j∗x(Grp(F )) ' Grpx(j∗x(F )) .

We can therefore assume that X is reduced to a point. Since F is punctually split, we can find a
functor V : Iset → E. Lemma 8.7.7 guarantees that V takes values in E60. Since Ix is finite and
E60 is closed under finite sums, the conclusion follows from the fomula given in Example 9.1.9. �

Corollary 9.6.2. In the setting of Proposition 9.6.1, a Stokes functor F : I→ E is connective
(resp. coconnective) with respect to the induced t-structure on StI,E if and only if Grp(F ) is
connective (resp. coconnective).

Proof. It follows combining t-exactness and conservativity of Grp, see Proposition 9.6.1 and
Proposition 9.1.16. �

9.7. Splitting criterion. The goal of this subsection is to establish a splitting criterion (Corol-
lary 9.7.17), to be used in the essential surjectivity part of the proof of Theorem 15.2.1.

Construction 9.7.1. Let X be an ∞-category. Let i : I ↪→ J and k : K ↪→ J be fully faithful
functors in PosFibf over X such that Jset = Iset t Kset. In particular, for every functor
G : Iset → E, we have

G ' iset
! iset ∗(G)⊕ kset

! kset ∗(G) .

We denote by ∆(G) the split cofiber sequence

(9.7.2) iset
! iset ∗(G)→ G→ kset

! kset ∗(G) .
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We assume that Jset → X is locally constant. Let E be a presentable stable ∞-category. Let
F : J → E be a functor. We suppose that the canonical morphism iset,∗i∗J(F ) → iset ∗Gr(F )
admits a section

(9.7.3) σ : iset ∗Gr(F )→ iset,∗i∗J(F ) .

By adjunction, σ yields a morphism

τ : iJ!i
set
! iset ∗Gr(F )→ F

in Fun(J,E). We denote by ∆(F, σ) the following cofiber sequence

(9.7.4) iJ!i
set
! iset ∗Gr(F ) F F \I .τ

Remark 9.7.5. By Corollary 9.2.6 and Corollary 6.1.6, observe that the formation of F \I
commutes with pull-back.

Lemma 9.7.6. In the setting of Construction 9.7.1, the canonical morphism

kset
! kset,∗Gr(F )→ Gr(F \I)

is an equivalence.

Proof. Since Gr commutes with colimits, applying Gr to (9.7.4) yields a cofiber sequence

Gr i!iI!i
set ∗Gr(F )→ Gr(F )→ Gr(F \I) .

By Lemma 9.3.6 and Corollary 9.3.10, we have Gr i!iI!i
set ∗Gr(F ) ' iset

! iset,∗Gr(F ). Since we
have

Gr(F ) ' iset
! iset,∗Gr(F )⊕ kset

! kset,∗Gr(F ) ,

Lemma 9.7.6 thus follows. �

Lemma 9.7.7. In the setting of Construction 9.7.1, the following hold:
(1) If F is cocartesian, so is F \I.

(2) If F is punctually split, so is F \I.

(3) If F split,the cofiber sequences ∆(F, σ) and iJ,!∆(Gr(F )) are equivalent. In particular,
F \I split.

Proof. Item (1) follows immediately from the stability of Funcocart(J,E) under colimits (Proposi-
tion 7.2.9). By Remark 9.7.5, the formation of F \I commutes with pull-back. Hence, (3) implies
(2). We now prove (3) and assume that F split. By Corollary 9.3.8, the canonical morphism
i∗J(F )→ Gr(F ) admits a section ι⊕ κ. Then, the vertical arrows of the commutative square

iset
! iset,∗i∗J(F ) i∗J(F )

iset
! iset,∗Gr(F ) Gr(F )

σ⊕0 σ⊕κ

admit sections represented by dashed arrows. By adjunction, there is a commutative square

F F

iJ,!i
set
! iset,∗Gr(F ) iJ,! Gr(F )

id

τ

whose right vertical arrow is an equivalence in virtue of Corollary 9.3.8. Item (3) is thus proved. �
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Corollary 9.7.8. In the setting of Construction 9.7.1, assume that F : J → E punctally split.
Then, F \I lies in the essential image of k! : Fun(K,E)→ Fun(J,E).

Proof. By Lemma 9.7.7, we know that F \I punctually split. By Lemma 9.7.6, we have (GrF \I)(a) '
0 for every a ∈ I. Then, Corollary 9.7.8 follows from Lemma 9.5.1. �

Construction 9.7.9. In the setting of Construction 9.7.1, let l : L ↪→ K and m : M ↪→ K be
fully faithful functors in PosFibf over X such that Kset = Lset tMset. We suppose that the
canonical morphism lset ∗i∗J(F )→ lset ∗Gr(F ) admits a section

(9.7.10) λ : lset ∗Gr(F )→ lset ∗i∗J(F ) .

Let ι : I∪L ↪→ J be the full subcategory of I spanned by objects of I and L. Then, the vertical
arrows of the commutative square

ι∗i∗J(F ) ι∗i∗J(F \I)

ι∗Gr(F ) ι∗Gr(F \I)

σ⊕λ 0⊕λ

admit sections represented by dashed arrows. By adjunction, we thus deduce a morphism of
cofiber sequence

(9.7.11) ∆(F, σ ⊕ λ)→ ∆(F \I, 0⊕ λ) .

Lemma 9.7.12. In the setting of Construction 9.7.9, the natural transformation

F \I∪L → (F \I)\I∪L

deduced from (9.7.11) is an equivalence.

Proof. Immediate from Lemma 9.7.6 and Proposition 9.1.16. �

Notation 9.7.13. We denote by αI,L : F \I → F \I∪L the canonical morphism obtained by
composing F \I → (F \I)\I∪L with the inverse of F \I∪L → (F \I)\I∪L supplied by Lemma 9.7.12.

Lemma 9.7.14. In the setting of Construction 9.7.9, assume that F \I split. Then there is a
commutative square

iJ,! Gr(F \I) F \I

iJ,! Gr(F \I∪L) F \I∪L

iJ,! Gr(αI,L) αI,L

whose horizontal arrows are equivalences.

Proof. Recall that Jset = Iset t Lset tMset. Consider the commutative diagram

i∗J(αI,L) : i∗J(F \I) i∗J(F \I)\I∪L i∗J(F \I∪L)

Gr(αI,L) : Gr(F \I) Gr(F \I)\I∪L Gr(F \I∪L) .

∼

0⊕λ⊕µ′

∼

0⊕0⊕µ′ 0⊕0⊕µ

Since F \I split, Lemma 9.7.7 ensures that so do (F \I)\I∪L. By Lemma 9.7.12, the functor F \I∪L
split as well. By Corollary 9.3.8, we thus deduce the existence of the section µ represented as a
dashed arrow. Since the right horizontal arrows are equivalences, there exists a section µ′ making
the right square commutative. On the other hand, Lemma 9.7.6 implies that Gr(F \I)\I∪L is a
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direct factor of Gr(F \I). Since F \I split, we deduce from Lemma 9.7.7 the existence of a section
λ making the left square commutative. Then, Lemma 9.7.14 follows from Corollary 9.3.8. �

Lemma 9.7.15. In the setting of Construction 9.7.9, the morphism

(9.7.16) F → F \I ×F\I∪L F \L

is an equivalence.

Proof. Follows immediately from Lemma 9.7.6 and Proposition 9.1.16. �

Corollary 9.7.17. In the setting of Construction 9.7.9, the following are equivalent:
(1) the functor F split;

(2) the functors F \I and F \L split.

Proof. If (1) holds, so do (2) in virtue of Lemma 9.7.7. Assume that (2) holds. From Lemma 9.7.15,
we are left to show that F \I ×F\I∪L F \L split. Since F \I and F \L split, Lemma 9.7.14 ensures
that the diagram

F \I F \I∪L F \L
αI,L αL,I

is equivalent to

iJ,! Gr(F \I) iJ,! Gr(F \I∪L) F \L .
iJ,! Gr(αI,L) iJ,! Gr(αL,I)

Since the induction functor iJ,! commutes with finite limits, Corollary 9.7.17 thus follows. �

10. Level structures

We now introduce an axiomatization of the notion of level structure from the theory of good
meromorphic flat bundles [37]. The key concept is that of level morphism for a morphism of
cocartesian fibrations in posets.

10.1. Level morphisms. We start with the following pair of definitions:

Definition 10.1.1. A morphism of posets p : I→ J is a level morphism if it is surjective and for
every a, b ∈ I, we have

p(a) < p(b) in J⇒ a < b in I .

Definition 10.1.2. Let X be an ∞-category and let p : I→ J be a morphism in PosFibX. We
say that p is a level morphism if for every x ∈ X, the induced morphism px : Ix → Jx is a level
morphism.

Example 10.1.3. Let I → X be an object of PosFib. Then, the morphisms of cocartesian
fibrations idI : I→ I and I→ X× ∗ ' X are level morphisms.

Remark 10.1.4. The class of level morphisms is stable under pullback.

Construction 10.1.5. Fix an ∞-category X and let p : I→ J be a level graduation morphism
in PosFibX. Fix also a presentable stable ∞-category E. Recall from Construction 9.1.1 the
following pullback diagram

Ip I

Jset J ,

π p
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as well as the commutative diagram

expE(I/X) expE(J/X)

expE(Ip/X) expE(Jset/X) .

E
p
!

expGrp expGr

Eπ!

supplied by Proposition 9.3.5. It induces a canonical transformation

φp : expE(I/X)→ expE(J/X)×expE(Iset/X) expE(Ip/X)

in PrFibL
X. Observe as well that combining Propositions 3.2.6-(2) and Proposition 9.4.1, we see

that all the functors in the above square preserve cocartesian edges. Thus, the same goes for φp.
Since ΣX : PrFibL

X → PrL is a right adjoint, ΣX(φp) is a functor

ΣX(φp) : Fun(I,E)→ Fun(J,E)×Fun(Iset,E) Fun(Ip,E) ,

and Propositions 6.4.2 and 9.2.2-(2) imply that it canonically coincides with the functor induced
by the commutative diagram

Fun(I,E) Fun(J,E)

Fun(Ip,E) Fun(Jset,E) .

p!

Grp Gr

π!

Proposition 10.1.6. The functors φp and ΣX(φp) are fully faithful.

Proof. Thanks to Proposition 21.1.1, we are immediately reduced to prove the statement when X

is a point. In this case, unraveling the definitions, we have to check that for every pair of functors
F,G : I→ E the square

(10.1.7)

MapFun(I,E)(F,G) MapFun(J,E)(p!(F ), p!(G))

MapFun(Ip,E)(Grp(F ),Grp(G)) MapFun(Jset,E)(Gr p!(F ),Gr p!(G))

is a pullback. Notice that the collection of functors F for which the statement is true is closed
under colimits. Invoking Proposition 8.1.9 and Example 8.1.3 we can therefore assume without
loss of generality that F ' evI

a,!(E) for some a ∈ I and some E ∈ E. Notice that

p!

(
evI
a,!(E)

)
' evJ

p(a),!(E)

and that Lemma 9.3.6 supplies canonical identifications

Grp
(
evI
a,!(E)

)
' ev

Ip
a,!(E) and Gr

(
evJ
p(a),!(E)

)
' evJset

p(a),!(E) .

Thus (10.1.7) can be rewritten as follows:

MapE(E,Ga) MapE(E, (p!(G))a)

MapE(E,Grp(G)a) MapE(E,Gr(p!(G))a) ,
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and to prove that it is a pullback becomes equivalent to prove that for every a ∈ I and every
G : I→ E, the square

(10.1.8)
Ga (p!(G))a

Grp(G)a Gr(p!(G))a

is a pullback in E. Since E is stable, we see that the collection of functors G for which the
above square is a pullback is closed under colimits. Invoking once again Proposition 8.1.9 and
Example 8.1.3, we can suppose that G ' evI

b,!(M), for some b ∈ I and M ∈ E. We now proceed
by analysis case-by-case:

(1) Case p(a) < p(b) or p(a) and p(b) incomparable. Since p is a level morphism, this implies
respectively that a < b or that a and b are incomparable. In either cases, (10.1.8) becomes

0 0

0 0

which is indeed a pullback.

(2) Case p(a) > p(b). Since p is a level morphism, this implies that a > b. Then (10.1.8)
becomes

M M

0 0

idM

which is indeed a pullback.

(3) Case p(a) = p(b). We then distinguish two further cases:
(i) Case a ≥ b. Then (10.1.8) becomes

M M

M M ,

idM

idM idM

idM

which is indeed a pullback.

(ii) Case a < b or a and b incomparable. Then (10.1.8) becomes

0 M

0 M ,

idM

which is indeed a pullback.

Thus, the conclusion follows. �

10.2. Level induction. The goal of this subsection is to prove the following result:
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Theorem 10.2.1. Let X be an ∞-category and let p : I→ J be a level graduation morphism in
PosFibX. Then the square

expPS
E (I/X) expPS

E (J/X)

expPS
E (Ip/X) expPS

E (Jset/X)

E
p
!

expGrp expGr

Eπ!

is a pullback square in CoCartX. In particular, the induced square

StI,E StJ,E

StIp,E StJset,E

p!

Grp Gr

is a pullback square in Cat∞.

Proof. The second half follows directly from the first since Σcocart
X : CoCartX → Cat∞ is a

right adjoint. Moreover, the straightening/unstraightening equivalence immediately reduces the
proof of the first half to the case where X is a point. In this case, we have to show that the top
horizontal arrow of the commutative square

FunPS(I,E) FunPS(J,E)×FunPS(Iset,E) FunPS(Ip,E)

Fun(I,E) Fun(J,E)×Fun(Iset,E) Fun(Ip,E) .

is an equivalence. Note that the vertical arrows are fully faithful. From Proposition 10.1.6, the
bottom arrow is fully faithful. Thus, so is the top horizontal arrow. We are thus left to show
essentially surjectivity. From Lemma 9.3.6, the lateral faces of the following cube

Fun(Iset,E) Fun(Jset,E)

FunPS(I,E) FunPS(J,E)

Fun(Iset,E) Fun(Jset,E)

FunPS(Ip,E) Fun(Jset,E)

pset
!

iI! iJ!

p!

iIp!

pset
!

id

π!

Grp Gr

are commutative. Hence, all faces are commutative. We thus obtain a commutative square

Fun(Iset,E) Fun(Iset,E)×Fun(Jset,E) Fun(Jset,E)

FunPS(I,E) FunPS(Ip,E)×Fun(Jset,E) FunPS(J,E)

iI!

Since iIp! : Fun(Iset,E)→ FunPS(Ip,E) and iJ! : Fun(Jset,E)→ FunPS(J,E) are essentially surjec-
tive by definition, we deduce that so is the right vertical arrow of the above square. Since the top
horizontal arrow is an equivalence, the conclusion follows. �
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10.3. Level induction and Stokes detection.

Construction 10.3.1. Fix an ∞-category X and let p : I→ J be a level graduation morphism
in PosFibX. Fix also a presentable stable ∞-category E. We consider the following commutative
cube:

Fun(I,E) Fun(J,E)

StI,E StJ,E

Fun(Ip,E) Fun(Jset,E)

StIp,E StJset,E

p!

Grp

Gr
p!

Grp
π!

π!

Gr

Passing to fiber products on the front and back squares, we obtain the following commutative
square:

(10.3.2)

StI,E StJ,E ×StIset,E
StIp,E

Fun(J,E) Fun(J,E)×Fun(Jset,E) Fun(Ip,E) .

LSt

i j

LFil

Since
C := Fun(J,E)×Fun(Jset,E) Fun(Ip,E)

is a finite limit in Cat∞ whose transitions functors commute with filtered colimits, filtered colimits
in C are computed objectwise. Since E is stable, we deduce that colimits in C are computed
objectwise. Hence, since p! : Fun(I,E) → Fun(J,E) and Grp : Fun(I,E) → Fun(Ip,E) commute
with colimits, so does LFil. Thus, LFil admits a right adjoint

RFil : Fun(J,E)×Fun(Jset,E) Fun(Ip,E)→ Fun(I,E) .

Remark 10.3.3. By abstract nonsense, RFil sends a triple G = (F1, F2, α) to the pullback square

RFil(G) p∗(F1)

Gr∗p(F2) Gr∗p π
∗Gr(F1)α

in Fun(I,E).

From Theorem 10.2.1, the functor LSt in (10.3.2) is an equivalence. Let RSt be an inverse.
Then for every G ∈ StJ,E ×StIset,E

StIp,E, the chain of equivalences

Map(RSt(G), RFil(G)) ' Map(G,LFil(RFil(G))) By Proposition 10.1.6
' Map(RFil(G), RFil(G))

gives rise to a canonical morphism

(10.3.4) RSt(G)→ RFil(G) .

Proposition 10.3.5. Let X be an ∞-category. Let p : I→ J be a level graduation morphism in
PosFibf over X. Let E be a presentable stable ∞-category. Let F : I→ E be a functor. Then the
following are equivalent :
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(1) F is a Stokes functor.

(2) Grp(F ) : Ip → E and p!(F ) : J→ E are Stokes functors.

Proof. That (1) implies (2) follows from Corollary 8.3.4 and Proposition 9.4.9. Assume that (2)
holds. Then LFil(F ) lies in StI,E ×StIset,E

StIp,E. From (10.3.4) applied to G := LFil(F ), there is
a zig-zag

RSt(LFil(F ))→ RFil(LFil(F ))← F

whose right arrow is an equivalence in virtue of Proposition 10.1.6. Hence, there is a canonical
morphism

α : RSt(LFil(F ))→ F .

Since RSt(LFil(F )) is a Stokes functor, we are left to show that α is an equivalence. Since
Grp(α) : Grp(RSt(LFil(F ))) → Grp(F ) identifies canonically with the identity of Grp(F ), we
conclude from Proposition 9.1.16 by conservativity of Grp. �
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Part 3. Geometric aspects

In this part we approach the study of Stokes functors in the geometric setting. In Section 11.3 we
introduce the fundamental notion of elementarity and its variants. Working under the assumption
of the existence of ramified piecewise elementary level structures, we establish the main categorical
and geometrical properties of the ∞-category of Stokes functors: presentability and stability (see
Theorem 12.1.1), non-commutative smoothness (see Theorem 12.3.5) and the representability of
the derived moduli stack of Stokes structures (see Theorem 13.1.4). In Section 15 we develop a
criterion to test the elementarity of a Stokes stratified space, which is inspired by [36, Proposition
3.16] and relates the elementarity property with the geometry of the Stokes loci. Finally, in
Section 16 we analyze the Stokes stratified spaces arising from the study of flat bundles, and
establish the existence of ramified piecewise linear level structures for them.

11. Stokes analytic stratified spaces

We start deepening our analysis of the category StStrat of Stokes (analytic) stratified spaces
introduced in Section 4, and introducing the key notion of elementary morphisms.

11.1. Functorialities of Stokes stratified spaces. Recall from Definition 4.1.1 and Re-
mark 4.1.5 that a Stokes stratified space is a triple (X,P, I) where (X,P ) is an exodromic
stratified space and I→ Π∞(X,P ) is a cocartesian fibration in posets.

Definition 11.1.1. If C ⊂ Mor(ExStrat) is a class of morphisms, we say that a morphism
(X,P, I) → (Y,Q, J) in StStrat lies in C if the induced morphism of analytic stratified spaces
(X,P )→ (Y,Q) lies in C.

Example 11.1.2. The most relevant classes for our purposes are those of proper morphisms,
refinements and Galois cover.

Fix a presentable ∞-category E. Recall from Definitions 5.1.2 and 5.2.3 that to every Stokes
stratified space (X,P, I) we can attach two P -hyperconstructible sheaves with values in Cat∞:

FilI,E,StI,E ∈ Conshyp
P (X;Cat∞) .

Construction 11.1.3. Let f : (Y,Q, J) → (X,P, I) be a morphism in StStrat. Recall that f
amounts to the datum of a morphism of stratified spaces f : (Y,Q)→ (X,P ) and a commutative
diagram

I IY J

Π∞(X,P ) Π∞(Y,Q)

vfuf

Π∞(f)

where the square is cartesian. Applying Corollary 8.3.4 yields the following commutative diagram

(11.1.4)

expPS
E (I/Π∞(X,P )) expPS

E (IY /Π∞(Y,Q)) expPS
E (J/Π∞(Y,Q))

expE(I/Π∞(X,P )) expE(IY /Π∞(Y,Q)) expE(J/Π∞(Y,Q))

Π∞(X,P ) Π∞(Y,Q)

E
vf
!E

uf

E
uf E

vf
!

Π∞(f)

The functoriality of the exodromy equivalence with coefficients in PrL recalled in Remark 2.3.7
shows that the middle row zig-zag induces transformations

u∗f : f∗,hyp(FilI,E)→ FilIY ,E and vf,! : FilIY ,E → FilJ,E
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in Conshyp
Q (Y ;PrL). Similarly the functoriality of the exodromy equivalence with coefficients in

Cat∞ recalled in Recollection 2.3.5 shows that the top row zig-zag induces transformations

u∗f : f∗,hyp(StI,E)→ StIY ,E and vf,! : StIY ,E → StJ,E

in Conshyp
Q (Y ;Cat∞). Notice that the commutativity of (11.1.4) shows that these natural

transformation are compatible with the natural inclusion of St(−),E into Fil(−),E.

Proposition 11.1.5. Let f : (Y,Q, J)→ (X,P, I) be a morphism in StStrat (see Remark 4.1.6).
Then the canonical morphisms

u∗f : f∗,hyp(FilI,E)→ FilIY ,E and u∗f : f∗,hyp(StI,E)→ StIY ,E

are equivalences. If in addition f is cartesian, then the morphisms

vf,! : FilIY ,E → FilJ,E and vf,! : StIY ,E → StJ,E

are equivalences.

Proof. Since the exodromy equivalence with coefficients in PrL and in Cat∞ is functorial by
Recollection 2.3.5 and Remark 2.3.7, the first statement follows directly from the fact that the
left squares in (11.1.4) are pullback, see Corollary 8.3.4. The second statement follows from the
functoriality of expE, since when f is cartesian vf : IY → J is itself an equivalence. �

Corollary 11.1.6. Let (X,P, I) ∈ StStrat. For every x ∈ X, the stalk of StI,E at x is
canonically identified with StIx,E, i.e. with the essential image of iIx,! : Fun(Iset

x ,E)→ Fun(Ix,E).

By design, StI,E satisfies hyperdescent. The next proposition shows that actually more is true.

Proposition 11.1.7. Let (X,P, I) ∈ StStrat and let E be a presentable ∞-category. Then, the
following holds:

(1) for every étale hypercover U• of X such that (Un, P ) is exodromic for every [n] ∈∆s, the
canonical functor

StI,E → lim
[n]∈∆op

s

StIUn ,E

is an equivalence.

(2) If furthermore E is stable and (Un, P, IUn) is E-bireflexive for every [n] ∈∆s, then so is
(X,P, I) and the above limit can be computed in PrL,R.

(3) If furthermore (Un, P, IUn) is stably universal for every [n] ∈∆s, then so is (X,P, I).

Proof. By Proposition 2.3.13, we know that

colim Π∞(Un, P )→ Π∞(X,P )

is an equivalence. Then, (1) follows from Proposition 8.5.1. Item (2) is an immediate consequence
of Corollary 8.5.3. Item (3) follows from Proposition 8.6.7. �

Notation 11.1.8. Let f : (Y,Q, J)→ (X,P, I) be a morphism in StStrat. Under the adjunction
f∗,hyp a f∗, the morphisms u∗f introduced in Construction 11.1.3 determine transformations

f∗ : FilI,E → f∗(FilIY ,E) and f∗ : StI,E → f∗(StIY ,E)

in Conshyp
P (X;Cat∞). When f is a cartesian morphism Proposition 11.1.5 shows that we can

rewrite the above morphism as

(11.1.9) f∗ : FilI,E → f∗(FilJ,E) and f∗ : StI,E → f∗(StJ,E) .
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When in addition f is a cartesian refinement, the underlying morphism of topological spaces is
the identity of X, and therefore f∗ simply becomes a transformation

f∗ : FilI,E → FilJ,E and f∗ : StI,E → StJ,E .

In either case, passing to global sections and committing a slight abuse of notation, we denote by

f∗ : Filco
I,E → Filco

J,E and f∗ : StI,E → StJ,E

the induced functors.

Proposition 11.1.10. Let f : (X,Q, J)→ (X,P, I) be a cartesian refinement in StStrat. Then,
the natural transformations

f∗ : FilI,E → FilJ,E and f∗ : StI,E → StJ,E

introduced in Notation 11.1.8 are equivalences in ConsQ(X;Cat∞).

Proof. It suffices to check on stalks. Fix a point x ∈ X. The functoriality of the exodromy
equivalence paired with Corollary 6.1.6 supplies a canonical identification of

f∗x : (FilI,E)x → (FilJ,E)x

with
f∗x : Fun(Ix,E)→ Fun(Jx,E) .

Since f is cartesian, fx : Ix → Jx is an equivalence, so the same goes for (f∗x and hence for) f∗x.
Using Corollary 11.1.6 as a starting point, the same reasoning shows that

f∗x : (StI,E)x → (StJ,E)x

is an equivalence. �

Observation 11.1.11. Let f : (X,Q, J)→ (X,P, I) be a cartesian refinement in StStrat. For
every open W in X, write fW : (W,Q, JW ) → (W,P, IW ) for the induced cartesian refinement.
Unraveling the definitions and using Proposition 6.1.2-(1), we identify the global sections over W
of

f∗W : FilIW ,E → FilJW ,E

with
u∗fW : Funcocart(IW ,E)→ Funcocart(JW ,E) .

Combining Proposition 2.3.8 and Proposition 7.7.3, we see that u∗fW is an equivalence, and that
its inverse is given by the left Kan extension

ufW ,! : Funcocart(IW ,E)→ Funcocart(JW ,E) .

Since each ufW ,! is an equivalence, we deduce that they can all be glued together to define a
natural transformation

f! : FilJ,E → FilI,E

in Conshyp
Q (X;PrL). Passing to global sections and committing a slight abuse of notation, we

denote by
f! : Filco

J,E → Filco
I,E

the induced functor.
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Corollary 11.1.12. Let f : (X,Q, J) → (X,P, I) be a cartesian refinement in StStrat. Then
the natural transformation f! : FilJ,E → FilI,E of Observation 11.1.11 induces a transformation

f! : StJ,E → StI,E

which is an inverse to f∗ : StI,E → StJ,E. In particular, passing to global sections, the adjunction

f! : StJ,E � StI,E : f∗

is an equivalence of ∞-categories.

Proof. Unraveling the definitions, we see that it is enough to check that for each point x ∈ X,
the functor

(f!)x : (FilJ,E)x → (FilI,E)x

takes (StJ,E)x to (StI,E)x. By construction (f!)x is an inverse to f∗x, which as in the proof of
Proposition 11.1.10 is canonically identified with

f∗x : Fun(Jx,E)→ Fun(Ix,E) ,

where fx is the induced morphism Ix → Jx. We therefore find a canonical identification of (f!)x
with the left Kan extension fx,!. From, Corollary 11.1.6 we are thus left to check that fx,! takes
StJx,E to StIx,E. Since fx : Jx → Ix is an equivalence, the conclusion follows. �

Corollary 11.1.13. Let (X,P ) be an exodromic stratified space, considered as a Stokes stratified
space (X,P,Π∞(X,P )). Then, StΠ∞(X,P ),E is canonically equivalent to LocX,E (see Defini-
tion 5.1.6).

Proof. Observe that (X,P,Π∞(X,P )) → (X, ∗,Π∞(X)) is a cartesian refinement in StStrat.
From Proposition 11.1.10, we deduce that StΠ∞(X,P ),E is canonically equivalent to StΠ∞(X),E.
The punctually split condition being empty in that case, StΠ∞(X),E is canonically equivalent to
FilΠ∞(X),E. Then, the conclusion follows from Proposition 5.1.7. �

Corollary 11.1.14. Let (X,P, I) be a Stokes stratified space such that I→ Π∞(X,P ) is locally
constant in the sense of Definition 19.1.4. Then, StI,E is locally hyperconstant on X.

Proof. By definition, the straightening of I→ Π∞(X,P ) sends every exit path to an isomorphism
of posets. From Proposition 2.3.8, we deduce the existence of a cartesian refinement (X,P, I)→
(X, ∗, J). Hence, Proposition 11.1.10 ensures that StI,E is canonically equivalent to StJ,E. By
construction, StJ,E lies in Loc(X;PrL) so the conclusion follows. �

11.2. Hyperconstructible hypersheaves and tensor product. Let (X,P ) ∈ ExStrat be
an exodromic stratified space. Let E be a presentable ∞-category. Composition with the
colimit-preserving functor

(−)⊗ E : PrL → PrL

induces a colimit preserving functor

Fun(Π∞(X,P ),PrL)→ Fun(Π∞(X,P ),PrL) .

The exodromy equivalence with coefficients in PrL from Remark 2.3.7 allows therefore to define
a functor

(−)⊗hyp E : Conshyp
P (X;PrL)→ Conshyp

P (X;PrL)

making the diagram

(11.2.1)
Conshyp

P (X;PrL) Fun(Π∞(X,P ),PrL)

Conshyp
P (X;PrL) Fun(Π∞(X,P ),PrL)

∼

(−)⊗hypE (−)⊗E

∼
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commutative.

Notation 11.2.2. There is a natural forgetful functor Conshyp
P (X;PrL)→ PSh(X;PrL), and

(−)⊗ E induces a well defined functor

(−)⊗ E : PSh(X;PrL)→ PSh(X;PrL) .

In other words, given F ∈ Conshyp
P (X;PrL), F ⊗ E is the presheaf sending an open U of X to

F(U)⊗ E.

Construction 11.2.3. Let F ∈ Conshyp
P (X;PrL). Let E be a presentable∞-category. Unraveling

the definitions, we see that for every point x ∈ X, there is a natural equivalence

(F ⊗hyp E)x ' Fx ⊗ E ∈ PrL .

Fix an open U in X. Then we have a canonical identification

(F ⊗hyp E)(U) ' lim
x∈Π∞(U,P )

Fx ⊗ E ,

and in particular we find a natural comparison map

F(U)⊗ E→ (F ⊗hyp E)(U) ,

which is a particular case of the Beck-Chevalley transformation considered in Lemma 7.5.6. In
other words, we obtain a natural transformation

(11.2.4) F ⊗ E→ F ⊗hyp E

Notation 11.2.5. We denote Conshyp
P (X;PrL,R) as the full-subcategory of Conshyp

P (X;PrL) of
hyperconstructible hypersheaves corresponding to objects in Fun(Π∞(X,P ),PrL,R) through the
exodromy equivalence (11.2.1).

Lemma 11.2.6. Let F ∈ Conshyp
P (X;PrL,R). Let E be a presentable ∞-category. Then the

comparison map (11.2.4) is an equivalence, and in particular the presheaf F ⊗ E is a hypersheaf.

Proof. This is a particular case of Lemma 7.5.6. We can argue directly as follows: it is enough to
show that for every open subset U of X, the canonical map(

lim
x∈Π∞(U,P )

Fx
)
⊗ E→ lim

x∈Π∞(U,P )
Fx ⊗ E

is an equivalence, and this follows directly from Lemma 7.5.6. �

Corollary 11.2.7. Let (X,P, I) be a Stokes stratified space. Let E and E′ be presentable ∞-
categories.

(1) The canonical comparison map

FilI,E ⊗hyp E′ → FilI,E⊗E′

is an equivalence.

(2) Assume that (X,P, I) is a Stokes stratified space in finite posets and that E and E′ are
presentable stable. Then FilI,E belongs to Conshyp

P (X;PrL,R) and the comparison map

FilI,E ⊗ E′ → FilI,E⊗E′

is an equivalence.

Proof. The first point follows from Remark 3.3.1. The second point follows combining Lemma 7.3.5
with Lemma 11.2.6. �

We conclude by recording the following handy sufficient condition ensuring that a categorical
sheaf F ∈ Conshyp

P (X;PrL) belongs to Conshyp
P (X;PrL,R).
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Lemma 11.2.8. Let (X,P ) be a subanalytic stratified space. Let F ∈ ConsP (X;PrL) such that
for every open subsets U ⊂ V , the functor F(V )→ F(U) is a left and right adjoint. Then, F lies
in Conshyp

P (X;PrL,R).

Proof. Let F : Π∞(X,P )→ PrL be the functor corresponding to F via the exodromy equivalence
(2.3.6). Let γ : x → y be a morphism in Π∞(X,P ). By Proposition 2.5.6, choose an open
neighbourhood V of x such that x is initial in Π∞(V, P ). At the cost of writing γ as the
composition of a small enough exit-path followed by an equivalence, we can suppose that γ lies
in V . Let U ⊂ V such that y is initial in Π∞(U,P ). Then, the vertical arrows of the following
commutative diagram of E

F(V ) F(U)

F (x) F (y)
F (γ)

are equivalences. Lemma 11.2.8 thus follows. �

11.3. Elementarity. We now introduce a fundamental concept in the study of Stokes stratified
spaces: the notion of elementarity and its variants. We start discussing the absolute notion:

Definition 11.3.1 (Absolute elementarity). Let (X,P, I) be a Stokes stratified space. We say
that (X,P, I) is:

(1) elementary if for every presentable stable ∞-category E, the functor

iI,! : StIset,E → StI,E

is an equivalence;

(2) locally elementary if X admits a cover by open subsets U such that (U,P, IU ) is elementary.

Elementarity is a really strong condition, as the following two examples show:

Example 11.3.2. A poset I seen as a Stokes stratified space (∗, ∗, I) as in Example 4.1.4 is
elementary if and only if I is discrete. Indeed, if I is discrete then iI : Iset → I is an isomorphism
and therefore the three arrows in the commutative triangle

Fun(Iset,E) StI,E

Fun(I,E)

iI,!

are equivalences. Conversely, assume that I is elementary. Then the top horizontal arrow is an
equivalence, and therefore iI,! is forced to be fully faithful. Fix a non-zero object E 6= 0 in E and
assume by contradiction that there exists two elements a, b ∈ I satisfying a < b. Then

MapFun(Iset,E)(evIset

b,! (E), evIset

a,! (E)) ' 0 ,

while

MapFun(I,E)

(
iI,!evIset

b,! (E), iI,!evIset

a,! (E)
)
' MapFun(I,E)

(
evI
b,!(E), evI

a,!(E)
)

' MapFun(I,E)

(
E, evI,∗

b evI
a,!(E)

)
' MapE(E,E) 6= 0 ,

which contradicts the full faithfulness of iI,!.
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Example 11.3.3. We consider again the situation of Example 5.2.7. Then the analysis carried
out there shows that (S1, P, I) is not elementary while (W1, P, IW1) and (W−1, P, IW−1) are
elementary. In other words, (S1, P, I) is locally elementary.

Example 11.3.4. Take X = (0, 1) stratified in four points and take I the constructible sheaf in
posets depicted below:

×

c

b

a

Ca,b

c

a b

c

a

b

Ca,b

c

b a

c

b

a

Cb,c

b c

a

b

c

a

Ca,c

b

a c

b

a

c

Here we marked with Cα,β the Stokes locus for the pair {α, β}. It follows from Theorem 15.2.4
that the shadowed interval is elementary, because it contains exactly one Stokes direction for
every possible pair of elements of Iset = {a, b, c}. On the other hand, Corollary 15.2.8 shows
that the leftmost Ca,b cannot have an elementary open neighborhood. In other words, this is an
example of a Stokes stratified space which is not locally elementary.

Warning 11.3.5. Let (X,P, I) be a Stokes stratified space. In general, the intersection of two
elementary open subsets is no longer elementary: for instance, with the notations of Example 5.2.7,
the intersection W1 ∩W−1 is no longer elementary. Also, Example 11.3.2 implies that any point
x ∈ X such that Ix is not discrete does not have a fundamental system of elementary open
neighborhoods. In other words, even when (X,P, I) is locally elementary, the collection of
elementary open subsets of X does not form a basis for the topology of X.

Let us discuss two variations on Definition 11.3.1. The first one concerns adapting the notion
of elementarity to a family of Stokes stratified spaces:

Definition 11.3.6. A morphism (X,P )→ (Y,Q) in ExStrat is said to be a family of exodromic
stratified spaces if for every y ∈ Y the stratified space (Xy, P ) is exodromic.

Notation 11.3.7. Recall from Example 4.1.3 that every exodromic stratified space (Y,Q) gives
rise to a Stokes stratified space (Y,Q, ∅). We will commit a slight abuse of notation and write
(Y,Q) in place of (Y,Q, ∅).
Definition 11.3.8. A family of Stokes stratified spaces is a morphism

f : (X,P, I)→ (Y,Q)

in StStrat whose underlying morphism f : (X,P )→ (Y,Q) is a family of exodromic stratified
spaces. We denote the (1-)category of families of Stokes stratified spaces by FStStrat ⊂
StStrat[1].

Example 11.3.9. Let f : (X,P )→ (Y,Q) be a morphism of subanalytic stratified spaces. Then
for each y ∈ Y , the fiber (Xy, P ) is again a subanalytic stratified space, so Remark 2.5.4
guarantees that (Xy, P ) is again exodromic. Therefore f is a family of exodromic stratified spaces.
In particular, for any Stokes fibration I on (X,P ), the resulting morphism f : (X,P, I)→ (Y,Q)
is a family of Stokes analytic stratified spaces.

Definition 11.3.10 (Relative elementarity). Let f : (X,P, I) → (Y,Q) be a family of Stokes
stratified spaces. We say that f is (locally) elementary at y ∈ Y if (Xy, P, Iy) is (locally)
elementary. We say that f is (locally) elementary if it is (locally) elementary at y for every y ∈ Y .

Remark 11.3.11. It follows from Example 11.3.2 that the empty poset I = ∅ is elementary.
Thus, a family of Stokes stratified spaces f : (X,P, I) → (Y,Q) is automatically elementary at
every point y ∈ Y not in the image of f (i.e. for which Xy = ∅).
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Before moving on to the second variation on the notion of elementarity, let us record a couple of
important facts concerning relative elementarity. The first is the following easy stability property:

Lemma 11.3.12. Consider a morphism of families of Stokes stratified spaces

(11.3.13)
(Y,Q, J) (X,P, I)

(Y ′, Q′) (X ′, P ′)

g

f ′ f

with cartesian horizontal arrows. Consider the following conditions:
(1) The square of stratified spaces underlying (11.3.13) is a pullback.

(2) The horizontal arrows are refinements.
Then, in both cases if f is elementary the same goes for f ′. In case (2), the converse holds.

Proof. In case (1), the fibers of f ′ are fibers of f so there is nothing to prove. For (2), let x ∈ X ′
and let E be a presentable stable ∞-category. Then, restricting above x yields a refinement of
exodromic stratified spaces gx : (Yx, Q)→ (Xx, P ). Thanks to Corollary 11.1.12 the horizontal
arrows in the commutative square

StJset
x ,E StIset

x ,E

StJx,E StIx,E

gset
x,!

iJx,! iIx,!

gx,!

are equivalences, so the conclusion follows. �

The second property of relative elementarity is the following important local-to-global principle.
An idea that plays a major role subsequent developments is that to establish absolute elementarity
of some (X,P, I), it is useful to fiber (X,P, I) over a stratified space (Y,Q), and then establish
relative elementarity to apply the following:

Proposition 11.3.14. Let f : (X,P, I) → (Y,Q) be an elementary family of Stokes stratified
spaces. Assume that the underlying morphism f : X → Y is proper and that at least one of the
following conditions hold:

(1) The induced morphism of ∞-topoi

f∗ : Shhyp(X)→ Shhyp(Y )

is proper in the sense of [31, Definition 7.3.1.4].

(2) f : (X,P )→ (Y,Q) is a morphism of subanalytic stratified spaces.
Then, (X,P, I) is elementary.

Proof. Let E be a presentable stable ∞-category. We have to show that

iI,! : StIset,E → StI,E

is an equivalence. To do this, it is enough to show that the morphism

f∗(II,!) : f∗(StIset,E)→ f∗(StI,E)

in Shhyp(Y ;Cat∞) is an equivalence. This can be done at the level of stalks. Fix therefore
y ∈ Y . For every F ∈ Shhyp(X;Cat∞), we have a canonical comparison map

(11.3.15) y∗,hypf∗(F)→ ΓXy,∗(j
∗,hyp
y (F)) ,
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where jy : Xy ↪→ X is the inclusion of the fiber. Notice that Proposition 11.1.5 provides an
identifications

j∗,hyp
y (StI,E) ' StIy,E and j∗,hyp

y (StIset,E) ' StIset
y ,E ,

so the result follows from our elementarity assumption as soon as we know that (11.3.15)
is an equivalence for F = StI,E and for F = StIset,E. In case (1), since Cat∞ is compactly
generated, [24, Theorem 0.5] shows that (11.3.15) is an equivalence for every categorical hypersheaf
F ∈ Shhyp(X;Cat∞). In case (2), Proposition 2.5.10 shows that (11.3.15) is an equivalence for
any F ∈ ConsP (X;Cat∞). So in both cases the conclusion follows. �

Recollection 11.3.16. Let us recall some topological conditions that ensure that assumption
(1) in Proposition 11.3.14 are satisfied. Assume that:

(a) X is locally compact and Hausdorff and f is proper;

(b) both X and Y admit an open cover by subsets of finite covering dimensions (see [31,
Definition 7.2.3.1]).

Condition (a) ensures via [31, Theorem 7.3.1.16] that the geometric morphism

f∗ : Sh(X)→ Sh(Y )

is proper. Condition (b) on the other hand guarantees that both Sh(X) and Sh(Y ) are hyper-
complete: combine [31, Theorem 7.2.3.6, Corollary 7.2.1.12 and Remark 6.5.2.22]. Finally, notice
that any paracompact and finite dimensional space has finite covering dimension, see for instance
[16, Proposition 3.2.2].

We now introduce one final variation on the idea of elementarity in the analytic setting:

Definition 11.3.17 (Absolute piecewise elementarity). Let (X,P, I) be a Stokes analytic stratified
space and let x ∈ X be a point. We say that:

(1) (X,P, I) is piecewise elementary at x if there exists a closed subanalytic subset Z containing
x such that (Z,P, IZ) is elementary;

(2) (X,P, I) is strongly piecewise elementary at x if there exists a closed subanalytic neigh-
borhood Z containing x such that (Z,P, IZ) is elementary;

We say that (X,P, I) is (strongly) piecewise elementary if it is (strongly) piecewise elementary at
every point.

Remark 11.3.18. We will see in the next section that piecewise elementarity implies local
elementarity: in other words, if one can find a closed subanalytic subset Z containing x such that
(Z,P, IZ) is elementary, then Z can be spread out to an elementary open neighborhood of x.

Moving to the relative setting, we have:

Definition 11.3.19 (Relative piecewise elementarity). Let f : (X,P, I)→ (Y,Q) be a family of
Stokes analytic stratified spaces and let x ∈ X be a point. We say that:

(1) f is vertically piecewise elementary at x if the fiber (Xf(x), P, If(x)) is piecewise elementary
at x;

(2) f is piecewise elementary at x if there exists a closed subanalytic subset Z containing
x and such that f |Z : (Z,P, IZ) → (Y,Q) is an elementary family of Stokes analytic
stratified spaces;

(3) f is strongly piecewise elementary at x if there exists a closed subanalytic neighborhood
Z of x such that f |Z : (Z,P, IZ) → (Y,Q) is an elementary family of Stokes analytic
stratified spaces.
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We say that f is (vertically, strongly) piecewise elementary if it is (vertically, strongly) piecewise
elementary at every point.

Remark 11.3.20. Saying that f : (X,P, I)→ (Y,Q) is vertically piecewise elementary amounts
to say that for every y ∈ Y the fiber (Xy, P, Iy) is piecewise elementary.

We conclude with a couple of easy facts concerning piecewise elementarity:

Lemma 11.3.21. Consider a morphism of families of Stokes analytic stratified spaces

(11.3.22)
(Y,Q, J) (X,P, I)

(Y ′, Q′) (X ′, P ′)

g

f ′ f

with cartesian horizontal arrows. Let E be a presentable ∞-category. Let y ∈ Y and put x = g(y).
Consider the following conditions :

(1) The square of stratified spaces induced by (11.3.22) is a pull-back.

(2) The horizontal arrows are refinements.

Then, in either case f ′ is (strongly) piecewise elementary at y if f is (strongly) piecewise elementary
at x. In case (2), the converse holds.

Proof. Immediate from Lemma 11.3.12. �

Clearly, if f : (X,P, I)→ (Y,Q) is strongly piecewise elementary it is also piecewise elementary.
We also have:

Corollary 11.3.23. Let f : (X,P, I)→ (Y,Q) be a family of Stokes analytic stratified spaces. If
f is piecewise elementary at a point x ∈ X, then it is vertically piecewise elementary at x.

Proof. Let Z be a closed subanalytic subset containing x such that (Z,P, IZ) is elementary. Set
y := f(x). Then Zy ' Xy ×X Z is a closed subanalytic subset of Xy, and Lemma 11.3.21 implies
that (Zy, P, IZy ) is elementary. �

11.4. Spreading out for Stokes analytic stratified spaces. The goal is to prove a spreading
out property for closed subanalytic subset of Stokes analytic stratified spaces that does not change
the category of Stokes functors. The proof combines all the functoriality results concerning Stokes
functors obtained so far, with the deep results obtained by Thom, Mather, Goresky and Verdier
on the local structure of analytic stratified spaces. We will also need terminology and results
from the theory of simplicial complexes, for which we refer the reader to Section 2.4.

Theorem 11.4.1 (Spreading out). Let (X,P, I) be a Stokes analytic stratified space. Let E be a
presentable stable ∞-category. Then any closed subanalytic subset Z ⊂ X admits a fundamental
system of open neighborhoods i : Z ↪→ U such that:

(1) U final at Z (see Definition 2.3.12).

(2) The induction i! : Fun(IZ ,E)→ Fun(IU ,E) preserves Stokes functors.

(3) The adjunction i! a i∗ induces an equivalence of ∞-categories between StIZ ,E and StIU ,E.

(4) (Z,P, IZ) is elementary if and only if (U,P, IU ) is elementary.

(5) If Z is compact, the open set U can be chosen to be subanalytic.
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Proof. Observe that the claim (4) follows from (3) and the commutativity of the following square

StIset
Z ,E StIset

U ,E

StIZ ,E StIU ,E .

iIZ,!

i!

iIU,!

i!

As a consequence of Proposition 7.6.7 and Lemma 7.6.13, every open subset U ⊂ X satisfying
(1) and (2) automatically satisfies (3). We are thus left to find a fundamental system of open
neighborhoods of Z satisfying (1) and (2).

We first observe that to construct such open neighborhoods we can replace (X,P, I) by any
cartesian refinement. Indeed, let

r : (Y,Q, J)→ (X,P, I)

be a cartesian refinement in ExStrat and set

T := Z ×X Y .

Let V be an open neighborhood of T inside Y . Since r : Y → X is a homeomorphism, U := r(V ) is
an open neighborhood of T inside X. We obtain the following commutative diagram in ExStrat:

(T,Q) (Z,P )

(V,Q) (U,P ) .

r|T

j i

r|V

Passing to the stratified homotopy types, Proposition 2.3.8 shows that the horizontal maps
becomes localizations, and hence final maps. Thus, [31, Proposition 4.1.1.3-(2)] implies that if V
is final at T the U is final at Z. Besides, Corollary 11.1.12 shows that both

(r|T )! : Fun(IT ,E)→ Fun(IZ ,E) and (r|T )! : Fun(Iset
T ,E)→ Fun(Iset

Z ,E)

preserves the full subcategories of Stokes functors and that the induced morphisms

(r|T )! : StIT ,E → StIZ ,E and (rT )! : StIset
T ,E → StIset

Z ,E

are equivalences of ∞-categories, and similarly for r|V in place of r|T . It follows that if
j! : Fun(IT ,E)→ Fun(IV ,E) preserves Stokes functors, then so does i!.

Using [53, Théorème 2.2] we can refine the stratification (X,P ) to a Whitney stratification
(X,Q) such that Z is union of strata of (X,Q). By [22, Theorem §3], (X,Q) admits a locally finite
triangulation. Thus, using the notations from Section 2.4, we can replace (X,Q) by the geometric
realization (|K|, F ) of a simplicial complex K = (V, F ) and we can furthermore assume that
(Z,Q) corresponds to the geometric realization (|S|, FS) a simplicial subcomplex S = (VS , FS) of
K. At the cost of replacing K by its barycentric subdivision, we can suppose that S is full in K.
Fix a real number 0 < ε 6 1 and define

UεS,K :=

{
w : V → [0, 1] | supp(w) ∩ VS 6= ∅ and

∑
v∈VrVS

w(v) < ε

}
.

Then {UεS,K}0<ε<1 is a fundamental system of open neighborhoods of |S| inside |K|. We claim
that each UεS,K satisfies conditions (1) and (2). Notice that for ε < ε′ the inclusion

(UεS,K , F ) ⊂ (Uε
′

S,K , F )
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is a stratified homotopy equivalence. It is therefore enough to show that US,K := U1
S,K satisfies

conditions (1) and (2). Since S is full in K, Lemma 2.4.3 shows that US,K is final at |S|, i.e.
property (1) holds. Concerning (2), observe first that via the equivalence

Π∞(|K|, F ) ' F
supplied by Theorem 2.4.1, Π∞(|US,K |, F ) corresponds to the subposet GS ⊂ F of faces having
non-empty intersection with S. Then the inclusion of posets

FS ↪→ GS

satisfies the assumptions of Corollary 7.8.10: indeed, since S is full in K we see that for every
σ ∈ GS the intersection σ∩S is a face of S and therefore provides a final object for (FS)/σ. Thus,
denoting iS : |S| ↪→ U the canonical inclusion, we deduce from Corollary 7.8.10 that the induction
functor

iS,! : Fun(I|S|,E)→ Fun(IUS,K ,E)

preserves cocartesian functors. At this point, Lemma 8.2.4 guarantees that iS,! also preserves
Stokes functor, so property (2) is satisfied as well.

We are left to prove (5). Assume now that Z is compact. In particular, the set GS is finite.
On the other hand, we have

US,K =
⋃
σ∈GS

◦
|σ| .

Furthermore, the triangulation can be constructed so that the interior of each simplex is subanalytic
[26, Theorem 2]. See also paragraph 10 and Remark p1585 of [55]. Hence (5) follows from the
fact that a finite union of subanalytic subsets is again subanalytic. �

Corollary 11.4.2. Let f : (X,P, I)→ (Y,Q) be a vertically piecewise elementary family of Stokes
analytic stratified spaces. Then:

(1) (X,P, I) is locally elementary.

(2) If f : X → Y is proper, there exists a cover of X by subanalytic open subsets U such that
(U,P, IU ) is elementary.

Proof. Let x be a point of X and set y := f(x). Choose a closed subanalytic subset Z of Xy such
that (Z,P, IZ) is elementary. Then Theorem 11.4.1-(4) implies the existence of an elementary
open neighborhood U of Z, so (1) follows. If furthermore f is proper, then Xy is compact and
therefore the same goes for Z, so (2) follows from Theorem 11.4.1-(5). �

11.5. Level structures. Local elementarity is a fundamental concept in the theory of Stokes
analytic stratified spaces, but it is only rarely satisfied. Level structures provide the key technical
tool needed to bypass this difficulty: performing induction on the length of a level structure
allows to reduce the complexity of the Stokes analytic stratified space, eventually reducing to
the locally elementary case. Conceptually, one takes care of the induction step via the Stokes
detection criterion Proposition 10.3.5, developed in Part 2 and that uses the theory of graduation
in an essential way. We start importing these ideas in the geometric setting via the following:

Definition 11.5.1. Let (X,P ) be an exodromic stratified space. Let E be a presentable stable
∞-category. Let p : I→ J be a graduation morphism over Π∞(X,P ) (see Definition 9.1.4). The
graduation relative to p is the morphism

Grp : FilI,E → FilIp,E

in Conshyp
P (X;PrL) corresponding to the exponential graduation functor expGrp from Defini-

tion 9.2.1 under the exodromy equivalence.
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Observation 11.5.2. It follows from Corollary 9.3.7 that Grp induces a well defined morphism

Grp : StI,E → StIp,E

in Conshyp
P (X;Cat∞).

Definition 11.5.3. Let (X,P )→ (Y,Q) be a family of exodromic stratified spaces and let

p : I→ J

be a morphism of Stokes fibrations over (X,P ). Fix a full subcategory C ⊆ FStStrat. We say
that p is a simple C-level morphism relative to (Y,Q) if the following conditions hold:

(1) p is a level morphism in the sense of Definition 10.1.2;

(2) both Iset and Jset are pullback of Stokes structures (in sets) over (Y,Q);

(3) for every q ∈ Q, the family of Stokes stratified spaces

(Xq, Pq, (I|Xq )p|Xq )→ Yq

belongs to C (see Construction 9.1.1 for the meaning of the notation (I|Xq )p|Xq ).
We say that p is a C-level morphism relative to (Y,Q) if it can be factored as a finite composition

(11.5.4) I = Id Id · · · I1 I0 = J
pd pd−1 p2 p1

where each Ik is a Stokes fibration over (X,P ) and each pk : Ik → Ik−1 is a simple C-level
morphism relative to (Y,Q). When C = FStStrat, we simply say that p is a (simple) level
morphism relative to (Y,Q).

Remark 11.5.5. Assume that the stratification on Y is trivial. Then Condition (2) ensures that
if p : I→ J is a simple level morphism, then it is also a level graduation morphism above each
stratum of Y .

Definition 11.5.6. In the situation of Definition 11.5.3, we refer to a factorization of p : I→ J of
the form (11.5.4) as a C-level structure for p and we say that d is its length. When J = Π∞(X,P ),
we say that (11.5.4) is a C-level structure for I.

Definition 11.5.7. Let C ⊆ FStStrat be a full subcategory. We say that a family of Stokes
stratified spaces (X,P, I)→ (Y,Q) admits a C-level structure if the morphism

p : I→ Π∞(X,P )

is a C-level morphism relative to (Y,Q). Similarly, we say that (X,P, I)→ (Y,Q) locally admits
a C-level structure if Y can be covered by open subset U such that each (XU , P, IU ) → (U,Q)
admits a C-level structure.

Example 11.5.8. Let (X,P, I) be a Stokes stratified space. Then the canonical morphism
I→ Π∞(X,P ) is a level morphism, so (X,P, I) always admits a level structure of length 1.

Example 11.5.9. Let C ⊆ FStStrat be the full subcategory spanned by locally elementary
families. Then a Stokes stratified space (X,P, I) admits a level structure of length 1 if and only if
the canonical morphism p : I→ Π∞(X,P ) is a simple locally elementary level morphism. Since
in this case Ip = I, this happens if and only if (X,P, I) is locally elementary.

As a consequence of Theorem 11.4.1, we obtain:

Corollary 11.5.10. Let f : (X,P, I) → (Y,Q) be a family of Stokes analytic stratified spaces.
Then:

(1) If f has a vertically piecewise elementary level structure then it has a locally elementary
level structure;
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(2) if f has a piecewise elementary level structure, then it has a vertically piecewise elementary
level structure;

(3) if f has a strongly piecewise elementary level structure, then it has a piecewise elementary
level structure.

Proof. (1) follows from Corollary 11.4.2, (2) follows from Corollary 11.3.23 and (3) is automatic
unraveling the definitions. �

In the classical theory of Stokes structures, level structures exist only after some suitable
ramified cover. The following definition axiomatizes this phenomenon.

Definition 11.5.11. A morphism in FStStrat

(X ′, P ′, J) (X,P, I)

(Y ′, Q′) (Y,Q)

is a finite Galois stratified cover if the upper arrow is cartesian in StStrat and if for ever q ∈ Q,
the horizontal arrows of the induced diagram

X ′q Xq

Y ′q Yq

are finite étale Galois covers.

Definition 11.5.12. Let C ⊆ FStStrat be a full subcategory. We say that a family of Stokes
stratified spaces (X,P, I) → (Y,Q) admits a ramified C-level structure if there exists a finite
Galois stratified cover as in Definition 11.5.11 such that (X ′, P ′, J)→ (Y ′, Q′) admits a C-level
structure. We say that (X,P, I)→ (Y,Q) locally admits a ramified C-level structure if Y can be
covered by opens U such that each (XU , PU , IU )→ (U,Q) admits a ramified C-level structure.

11.6. Hybrid descent for Stokes functors. As observed in Warning 11.3.5 that even when
they exist, elementary open subsets do not form a basis of the topology. For this reason, we need
to discuss a hybrid descent property for the ∞-category of Stokes functors that combines St on
elementary opens and Fil on their further intersections. This is achieved via the following:

Construction 11.6.1. Let (X,P, I) be a Stokes stratified space and let E be a presentable
∞-category. Let U = {U•} be a hypercover of X. We define the semi-simplicial diagram

StFilUI,E : ∆op
s → Cat∞

as the subfunctor of
FilI,E ◦U• : ∆op

s → Cat∞

defined by

StFilUI,E([n]) :=

{
StI,E(U0) if n = 0

FilI,E(Un) if n > 0 .

Notice that it is well defined thanks to the commutativity of (11.1.4).
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Proposition 11.6.2. Let (X,P, I) be a Stokes stratified space and let E be a presentable ∞-
category. Let U = {U•} be a hypercover of X. Then the canonical functor

StI,E → lim
∆op
s

StFilUI,E

is an equivalence of ∞-categories.

Proof. For every n ≥ 0, the functors

StI,E(Un)→ FilI,E(Un)

are fully-faithful. Since StI,E and FilI,E are hypersheaves, passing to the limit thus yields
fully-faithful functors

StI,E ↪→ lim
[n]∈∆op

s

StFilUI,E([n]) ↪→ Funcocart(I,E) .

By definition, an object of the middle term is a cocartesian functor F : I→ E such that F |U0 is a
Stokes functor. In particular, F is punctually split at every point of X. Hence, F is a Stokes
functor. This concludes the proof of Proposition 11.6.2. �

Remark 11.6.3. If U• is the hypercover induced by a finite cover U1, . . . , Un of X, then the
limit appearing in Proposition 11.6.2 can be performed over the finite subcategory ∆op

≤n,s of ∆op
s .

Under some suitable finiteness and stability conditions, the diagram StFilI,E takes value in
PrL,R (Definition 7.5.2):

Corollary 11.6.4. Let (X,P, I) be a Stokes stratified space in finite posets. Let E be a presentable
stable ∞-category. Let U = {U•} be a hypercover of X such that (U0, P, IU0

) is elementary.
Then the semi-simplicial diagram of Construction 11.6.1 lifts to a functor

StFilUI,E : ∆op
s → PrL,R .

In particular, the equivalence
StI,E ' lim

∆op
s

StFilUI,E

supplied by Proposition 11.6.2 is an equivalence in PrL, where the limit is computed in PrL.

Proof. Since U0 is elementary, the definition of StFilUI,E yields:

StFilUI,E(Un) '

{
Funcocart(Iset

U0
,E) if n = 0

Funcocart(IUn
,E) if n > 0 .

In both cases, StFilI,E takes values in PrL by Corollary 7.2.4. Let f : [n]→ [m] be a morphism
in ∆op and let if : Un → Um be the associated morphism. When m > 0 the corresponding
transition functor for StFilUI,E is just

i∗f : Funcocart(IUm
,E)→ Funcocart(IUn

,E) ,

while for m = 0 Corollary 8.3.4-(1) identifies it with

i∗f ◦ iIU0
,! : Funcocart(Iset

U0
,E)→ Funcocart(IUn ,E) .

In both cases, Lemma 7.3.5 shows they are both left and right adjoints. To conclude the proof of
Corollary 11.6.4, use Proposition 11.6.2 and the fact that PrL → Cat∞ commutes with limits. �
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12. Stokes structures as a smooth non-commutative space

Let (X,P, I) be a Stokes stratified space and fix an animated ring k. We consider the∞-category

StI,k := StI,Modk .

We saw in Example 5.2.6 that in general StI,k does not inherit any of the good properties of Modk:
for instance, it is neither presentable nor stable. The goal of this section is to prove that on the
other hand StI,k is well behaved when (X,P, I) admits a locally ramified piecewise elementary
level structure. This is a strong condition forcing a highly non-trivial interaction between the
geometry of X and I.

12.1. Stability. The goal of this section is to prove one of the key results of this work, namely:

Theorem 12.1.1. Let f : (X,P, I) → (Y,Q) be a family of Stokes stratified spaces in finite
posets. Assume that f locally admits a ramified locally elementary level structure. Then for every
presentable stable ∞-category E, the ∞-category StI,E is presentable and stable.

Theorem 12.1.1 will follow from a more precise statement (see Corollary 12.1.4 below) exhibiting
StI,E as a localization of Fun(I,E). With this goal in mind, we start setting up the stage with a
couple of preliminaries lemmas.

Lemma 12.1.2. Let (X,P, I) be a locally elementary Stokes stratified space and let E be a
presentable ∞-category. Then:

(1) StI,E is closed under colimits in Fun(I,E);

(2) if in addition the fibers of I are finite and E is stable, then StI,E is closed under limits in
Fun(I,E). In other words, (X,P, I) is stably bireflexive.

Proof. Thanks to Proposition 7.2.9 we see that Funcocart(I,E) is closed under colimits in Fun(I,E).
Similarly, when the fibers of I are finite posets, Remark 17.2.4 and Proposition 7.2.14 imply that
Funcocart(I,E) is stable under limits in Fun(I,E). Let now F• : I → Fun(I,E) be a diagram such
that for every i ∈ I, the functor Fi : I→ E is Stokes and set

FC := lim
i∈I

Fi , FB := colim
i∈I

Fi ,

where the limit and the colimit are computed in Fun(I,E). To check that FC and FB are Stokes,
we are left to check that they are pointwise split. This question is local on X and since (X,P, I)
is locally elementary, we can therefore assume that it is elementary to begin with. In this case,
the top horizontal arrow in the commutative triangle

Fun(Iset,E) StI,E

Fun(I,E)

iI,!

is an equivalence. Thus, we deduce that FB is Stokes from the fact that iI,! commutes with
colimits. Similarly, when the fibers of I are finite posets, we deduce that FC is Stokes from
Proposition 17.2.3 and Remark 17.2.4. �

Theorem 12.1.3. Let f : (X,P, I)→ (Y,Q) be a family of Stokes stratified spaces in finite posets
locally admitting a ramified locally elementary level structure. Then (X,P, I) is stably bireflexive.

Proof. Let E be a presentable stable ∞-category. Let F• : I → Fun(I,E) be a diagram such that
for every i ∈ I the functor Fi : I→ E is Stokes and set

FC := lim
i∈I

Fi , FB := colim
i∈I

Fi ,
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where the limit and the colimit are computed in Fun(I,E). By Proposition 7.2.9 and Proposi-
tion 7.2.14, the functors FC and FB are cocartesian. We are thus left to show that they are
punctually split. Hence, we can suppose that Y is a point and that (X,P, I) admits a ramified
locally elementary level structure. Since we are checking a punctual condition on X, we can
further suppose that (X,P, I) admits a locally elementary level structure. We argue by induction
on the length d of the locally elementary level structure. If d = 0, then I = Π∞(X,P ) is a fibration
in sets, so the result follows from Proposition 8.4.1. Otherwise, our assumption guarantees the
existence of a level morphism p : I→ J such that:

(1) J admits a locally elementary level structure of length < d;

(2) (X,P, Ip) is locally elementary.
Notice that since level morphisms are surjective, the fibers of J are again finite posets, so the
inductive hypothesis applies to the Stokes stratified space (X,P, J). Consider the pullback square

StI,E StJ,E

StIp,E StJset,E

p!

Grp Gr

π!

supplied by Theorem 10.2.1. The Stokes detection criterion of Proposition 10.3.5 implies that
FC is Stokes if and only if both Grp(FC) and p!(FC) are Stokes, and similarly for FB in place of
FC. Propositions 9.1.12 and 9.1.15 guarantee that Grp commutes with both limits and colimits.
Similarly, p! commutes with colimits because it is a left adjoint; since the fibers of I are finite
posets Proposition 17.2.3 and Remark 17.2.4 imply that p! commutes with limits as well. Thus,
we are reduced to check that

Grp(FC) ' lim
i

Grp(Fi) ∈ Fun(Ip,E) and p!(FC) ' lim
i
p!(Fi) ∈ Fun(J,E)

are Stokes functors, and similarly for the colimit in place of the limit and FB in place of
FC. Proposition 9.4.9 ensures that Grp(Fi) is Stokes for every i ∈ I, while Corollary 8.3.4-(2)
guarantees that p!(Fi) is Stokes for every i ∈ I. Thus, the induction hypothesis implies that
p!(FC) and p!(FB) are Stokes. On the other hand, since Ip is locally elementary, Lemma 12.1.2
implies that Grp(FC) and Grp(FB) are Stokes as well, and the conclusion follows. �

At this point, Theorem 12.1.1 follows from the following more precise statement:

Corollary 12.1.4. Let f : (X,P, I) → (Y,Q) be a family of Stokes stratified spaces in finite
posets locally admitting a ramified locally elementary level structure. Let E be a presentable stable
∞-category. Then StI,E is a localization of Fun(I,E), and in particular it is presentable and
stable.

Proof. Combine Lemma 8.4.6 with Theorem 12.1.3. �

Corollary 12.1.5. Let f : (X,P, I) → (Y,Q) be a family of Stokes stratified spaces in finite
posets locally admitting a ramified locally elementary level structure. Let E be a presentable stable
compactly generated ∞-category. Let {Eα}α∈I be a set of compact generators for E. Then StI,E is
presentable stable compactly generated by the {LStI,E(eva,!(Eα))}α∈I,a∈I where the eva : {a} → I

are the canonical inclusions.

Proof. Combine Lemma 8.4.8 with Theorem 12.1.3. �

Thanks to the results of Section 8.7, we obtain the following:
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Corollary 12.1.6. Let f : (X,P, I)→ (Y,Q) be a family of Stokes stratified spaces in finite posets
locally admitting a ramified locally elementary level structure. Let A be a Grothendieck abelian
category. Then StI,A is a Grothendieck abelian category.

Proof. Combine Corollary 8.7.14 with Theorem 12.1.3. �

Remark 12.1.7. Thanks to Corollary 11.5.10, all the results stated so far hold for families of
Stokes analytic stratified spaces in finite posets f : (X,P, I)→ (Y,Q) locally admitting a ramified
vertical piecewise elementary level structure.

The following lemma is an amplification of Corollary 12.1.4 in the analytic setting:

Proposition 12.1.8. Let f : (X,P, I)→ (Y,Q) be a proper family of Stokes analytic stratified
spaces in finite posets locally admitting a ramified locally elementary level structure. Let E be a
presentable stable ∞-category. Then, the following hold:

(1) For every open subsets U ⊂ V , the functor f∗(StI,E)(V ) → f∗(StI,E)(U) is a left and
right adjoint.

(2) There exists a subanalytic refinement R→ Q such that f∗(StI,E) ∈ Conshyp
R (X;PrL).

(3) For every subanalytic refinement R → Q such that f∗(StI,E) ∈ Conshyp
R (X;PrL), the

hypersheaf f∗(StI,E) is an object of Conshyp
R (X;PrL,R).

Proof. Item (1) is an immediate consequence of Theorem 12.1.3 and Corollary 12.1.4. The
existence of an analytic refinement as in (2) is a consequence of Proposition 2.5.10. Then (3)
follows from (1) and Lemma 11.2.8. �

12.2. Stokes functors and tensor product. In this section, we analyze more thoroughly the
interaction between the category of Stokes functor and the tensor product in PrL.

Lemma 12.2.1. Let (X,P, I) be a locally elementary Stokes stratified space in finite posets. Then
(X,P, I) is stably universal.

Proof. Note that (X,P, I) is stably bireflexive by Lemma 12.1.2. Let E,E′ be presentable stable
∞-categories. Since (X,P, I) is locally elementary, we can find a cover {Ui} such that (Ui, P, IUi) is
elementary. Let U = {U•} be its Čech nerve. Recall from Construction 11.6.1 the semi-simplicial
diagram

StFilUI,E : ∆op
s → Cat∞ .

By Corollary 11.6.4, this functor takes values in PrL,R. Therefore, we can tensor it with E′,
finding:

StI,E ⊗ E′ '
(

lim
∆op
s

StFilI,E
)
⊗ E′ By Cor. 11.6.4

' lim
∆op
s

(
StFilUI,E⊗E′

)
By Lem. 7.5.5

' lim
∆op
s

StFilUI,E⊗E′ By Cor. 7.5.7 & E.g. 8.2.3

' StI,E⊗E′ By Cor. 11.6.4

The conclusion follows. �

Proposition 12.2.2. Let (X,P, I) be a Stokes stratified space in finite posets admitting a locally
elementary level structure. Then (X,P, I) is stably universal.
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Proof. Note that (X,P, I) is bireflexive by Theorem 12.1.3. Let E,E′ be presentable stable ∞-
categories. We proceed by induction on the length d of the locally elementary level structure. When
d = 0, I = Π∞(X,P ) and (X,P, I) is elementary, so the conclusion follows from Lemma 12.2.1.
Otherwise, our assumption guarantees the existence of a level morphism p : I→ J such that:

(1) J admits a locally elementary level structure of length < d;

(2) (X,P, Ip) is locally elementary.
Notice that since level morphisms are surjective, the fibers of J are again finite posets, so the
inductive hypothesis applies to the Stokes stratified space (X,P, J). Consider the following
commutative cube:

(12.2.3)

StI,E ⊗ E′ StJ,E ⊗ E′

StI,E⊗E′ StJ,E⊗E′

StIp,E ⊗ E′ StJset,E ⊗ E′

StIp,E⊗E′ StJset,E⊗E′ .

p!⊗E′

Grp⊗E′
Gr⊗E′

p!

Gr
π!⊗E′

π!

Grp

whose front face is a pull-back in virtue of Theorem 10.2.1. Combining Theorem 12.1.3, Corol-
lary 8.4.11 and Lemma 7.5.5 we deduce that the back face is a pullback in PrL,R. Lemma 12.2.1
shows that the bottom diagonal arrows are equivalences while the upper right diagonal arrow is
an equivalence by the inductive hypothesis. Hence, so is the top left diagonal arrow. �

Working in the analytic setting, we can formulate a stronger version of the above result. To
begin with, let us improve the construction of the comparison functor of Construction 8.6.3:

Construction 12.2.4. Let f : (X,P, I)→ (Y,Q) be a family of Stokes analytic stratified spaces
in finite posets admitting a vertically piecewise elementary level structure. Fix stable presentable
∞-categories E and E′. For every open subset V ⊂ Y , the induced family (XV , P, IV )→ (Y,Q)
admits again a vertically piecewise elementary level structure. Thus, Theorem 12.1.3 shows
that StIV ,E and StIV ,E⊗E′ is closed under limits and colimits in Fun(IV ,E) and Fun(IV ,E⊗ E′),
respectively. The assumptions of Construction 8.6.3 are therefore satisfied, and they yield a
comparison map

StIV ,E ⊗ E′ → StIV ,E⊗E′ .

Furthermore, Proposition 8.6.5 shows that it is fully faithful. Since this comparison map depends
functorially on V , we deduce the existence of a commutative diagram

f∗(StI,E)⊗ E′ f∗(StI,E⊗E′)

f∗(FilI,E)⊗ E′ f∗(FilI,E⊗E′)
∼

in PSh(Y ;PrL).

Lemma 12.2.5. Let f : (Y, P, J)→ (X,P, I) be a cartesian finite Galois cover in StStrat where
(X,P ) is conically refineable and where (Y, P, J) is stably universal. Then (X,P, I) is stably
universal and for every presentable stable ∞-category E, the canonical functor

Loc(Y ;Sp)⊗Loc(X;Sp) StI,E → StJ,E
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is an equivalence.

Proof. Let Y• : ∆op
s → Top/X be the Cech complex of f : Y → X and put

I• := Π∞(Y•, P )×Π∞(X,P ) I .

Since f : Y → X is Galois, Yn is a finite coproduct of copies of Y over X. Hence, (Yn, P ) is
conically refineable for every [n] ∈∆s and (Yn, P, In) is stably universal for every [n] ∈∆s. Then
(X,P, I) is stably universal in virtue of Proposition 8.6.7. Since the Y → X is a finite étale cover,
Lemma 19.2.9 implies that

Π∞(Y, P )→ Π∞(X,P )

is a finite étale fibration in the sense of Definition 19.2.1. We deduce from Corollary 8.8.5 that
the canonical functor

Loc(Y ;Sp)⊗Loc(X;Sp) StI,Sp → StJ,Sp

is an equivalence. Tensoring the above equivalence with E and using the stable universality thus
concludes the proof of Lemma 12.2.5. �

Theorem 12.2.6. Let f : (X,P, I)→ (Y,Q) be a proper family of Stokes analytic stratified spaces
in finite posets locally admitting a ramified vertically piecewise elementary level structure. Let E
and E′ be stable presentable ∞-categories. Then the canonical functor

(12.2.7) f∗(StI,E)⊗ E′ → f∗(StI,E⊗E′)

is an equivalence. In particular, (X,P, I) is stably universal.

Proof. The second half follows from the first because f∗(StI,E)⊗ E′ is by definition the tensor
product computed in PSh(Y ;Cat∞). To prove the first half, observe that in fact both sides of
(12.2.7) are hyperconstructible hypersheaves, thanks to Proposition 12.1.8 and Lemma 11.2.6.
Hence, the equivalence can be checked at the level of stalks. Since f is proper, Propositions 2.5.10
and 11.1.5 allow to reduce ourselves to the case where Y is a point. That is, we are left to show that
(X,P, I) is stably universal. In that case, there exists a cartesian finite Galois cover (Y, P, J)→
(X,P, I) such that (Y, P, J) admits a vertically piecewise elementary level structure. Recall that
(X,P ) is conically refineable in virtue of Remark 2.5.4. By Lemma 12.2.5, it is thus enough to
show that (Y, P, J) is stably universal. Hence, we can suppose that (X,P, I) admits a vertically
piecewise elementary level structure. In this case, Corollary 11.5.10 guarantees that (X,P, I)
admits a locally elementary level structure, so the conclusion follows from Proposition 12.2.2. �

12.3. Finite type property for Stokes structures. We proved Theorem 12.1.1 under two
key assumptions on the Stokes stratified space (X,P, I): the local existence of a ramified locally
elementary level structure and the fibers of I are finite posets. Under these same assumptions, we
also proved that StI,E is compactly generated provided that E is. We now analyze the categorical
finiteness properties of StI,E: under some stricter geometrical assumptions on (X,P, I) and
working in the analytic setting we establish that it is of finite type and hence smooth in the
non-commutative sense (see e.g. [33, Definition 11.3.1.1]).

Definition 12.3.1. Let f : (M,X) → (N,Y ) be a subanalytic morphism. We say that f
is strongly proper if it is proper and for every finite subanalytic stratifications X → P and
Y → Q such that f : (X,P )→ (Y,Q) is a subanalytic stratified map, there exists a categorically
finite subanalytic refinement R → Q such that for every F ∈ Conshyp

P (X;Cat∞), we have
f∗(F) ∈ Conshyp

R (Y ;Cat∞).

Example 12.3.2. By Proposition 2.5.10 and Proposition 2.5.7, every proper subanalytic map
f : (M,X)→ (N,Y ) with Y compact is strongly proper.

The following lemma is our main source of strongly proper morphisms.
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Lemma 12.3.3. Let f : (M,X) → (N,Y ) be a proper subanalytic morphism. Assume the
existence of a commutative diagram

(M,X) (M,X)

(N,Y ) (N,Y )

j

f g

i

such that g is proper, Y is compact and the horizontal arrows are open immersions with closed
subanalytic complements. Then f : (M,X)→ (N,Y ) is strongly proper.

Proof. Let X → P and Y → Q be finite subanalytic stratifications such that f : (X,P )→ (Y,Q)
is a subanalytic stratified map. Extend X → P to a subanalytic stratification X → PC by
sending X \ X to the initial object of PC. Extend Y → Q to a subanalytic stratification
Y → QC by sending Y \ Y to the initial object of QC. By Proposition 2.5.10 applied to the
proper map g : (M,X) → (N,Y ), there is a finite subanalytic refinement S → QC such that
for every F ∈ Conshyp

P (X;Cat∞), we have g∗(j!(F )) ∈ Conshyp
S (Y ;Cat∞). Let R ⊂ S be the

(finite) open subset of elements not mapped to the initial object of QC by S → QC. Then,
f∗(F) ∈ Conshyp

R (Y ;Cat∞) with (Y,R) categorically finite by Proposition 2.5.7. �

From now on, we fix an animated commutative ring k and a compactly generated k-linear
stable ∞-category E.

Observation 12.3.4. For every Stokes stratified space (X,P, I), we see that Fun(I,E) is again
compactly generated and k-linear. When the fibers of I are finite, Proposition 7.2.14 implies that
Funcocart(I,E) is a localization of Fun(I,E) and therefore inherits a k-linear structure. Finally,
when (X,P, I) admits a locally elementary level structure Corollary 12.1.4 implies that StI,E
inherits an k-linear structure as well.

Theorem 12.3.5. Let f : (X,P, I) → (Y,Q) be a strongly proper family of Stokes analytic
stratified spaces in finite posets locally admitting a ramified piecewise elementary level structure.
Let k be an animated ring and let E be a compactly generated k-linear stable ∞-category of finite
type (Definition 17.3.1). Then StI,E is of finite type relative to k as well.

Remark 12.3.6. It is possible to formulate an analogous statement without analyticity assump-
tion assuming that f is strongly proper in the topological sense: for every finite exodromic
stratifications X → P and Y → Q such that (X,P ) → (Y,Q) is a morphism of stratified
spaces, there exists a categorically finite exodromic refinement R → Q such that for every
F ∈ Conshyp

P (X;Cat∞), f∗(F) belongs to Conshyp
R (Y ;Cat∞). However, to ensure the existence

and the abundance of strongly proper maps, analyticity is extremely handy, as it enables to use
techniques of [23] that are not available in the purely topological setting.

Corollary 12.3.7. In the setting of Theorem 12.3.5,

StI,k := StI,Modk

is a smooth k-linear presentable stable ∞-category.

Proof. This simply follows because finite type k-linear categories are smooth over k in the
non-commutative sense, see e.g. [51, Proposition 2.14]. �

Lemma 12.3.8. Let (X,P, I) be a compact piecewise elementary Stokes analytic stratified space
in finite posets. Let k be an animated ring and let E be a compactly generated k-linear stable
∞-category of finite type. If StI,E is of finite type relative to k.
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Proof. Thanks to Theorem 11.4.1, X admits a finite cover by relatively compact subanalytic
open subsets U1, . . . , Un such that (Ui, P, IUi) is elementary for every i = 1, . . . , n. In particular,
each term of the associated hypercover U = {U•} is a relatively compact subanalytic open subset.
From Proposition 11.6.2 and Remark 11.6.3, we have a canonical equivalence

StI,E ' lim
∆op
≤n,s

StFilUI,E |∆op
≤n,s

.

Since ∆op
≤n,s is a finite category, Lemma 17.3.3 reduces us to show that the transition maps in the

diagram
StFilUI,E |∆op

≤n,s
: ∆op
≤n,s → Cat∞

are both left and right adjoints and that StFilUI,E([m]) is of finite type for every m 6 n. The
first point follows from Corollary 11.6.4, while the second one follows from Corollary 17.3.4 and
Proposition 2.5.7 stating that for every relatively compact open subanalytic subset U ⊂ X, the
stratified space (U,P ) is categorically compact. �

Lemma 12.3.9. Let f : (Y, P, J)→ (X,P, I) be a cartesian finite Galois cover in StStrat where
(X,P ) is conically refineable with Π∞(X) compact and where (Y, P, J) is stably universal. Let
Y• : ∆op

s → Top/X be the Cech complex of f : Y → X and put

I• := Π∞(Y•, P )×Π∞(X,P ) I .

Then (X,P, I) is stably universal and there exists an integer m ≥ 1 such that for every E presentable
stable ∞-category, StI,E is a retract of

lim
[n]∈∆s,≤m

StIn,E

in PrL,R.

Proof. The Stokes stratified space (X,P, I) is stably universal in virtue of Lemma 12.2.5. Since
f : Y → X is Galois, Yn is a finite coproduct of copies of Y over X, so that (Yn, P, In) is stably
universal for every [n] ∈ ∆s. Since the Yn → X is a finite étale cover for every [n] ∈ ∆s,
Lemma 19.2.9 implies that

Π∞(Yn, P )→ Π∞(X,P )

is a finite étale fibration in the sense of Definition 19.2.1. Corollary 8.8.6 thus implies the existence
of an integer m ≥ 1 such that there exists a retract

StI,Sp → lim
[n]∈∆s,≤m

StIn,Sp → StI,Sp .

in PrL,R. Lemma 12.3.9 follows from Lemma 7.5.5 by tensoring the above retract with E. �

We are now ready for:

Proof of Theorem 12.3.5. Since f is strongly proper, we can choose a categorically finite subana-
lytic refinement R→ Q such that f∗(StI,E) is R-hyperconstructible. Let F : Π∞(Y,R)→ Cat∞
be the functor corresponding to f∗(StI,E) via the exodromy equivalence (2.3.6). By Recollec-
tion 2.3.5, we have

StI,E ' f∗(StI,E)(Y ) ' lim
Π∞(Y,R)

F (y) .

Recall from Proposition 12.1.8 that f∗(StI,E) belongs to Conshyp
R (Y ;PrL,R

k ), and therefore that
F factors through PrL,R

k as well. By Lemma 7.5.5, the above limit can thus equally be computed
in PrL. Since (Y,R) is categorically finite, Lemma 17.3.3 reduces us to check that for each y ∈ Y ,
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F (y) is compactly generated and of finite type relative to k. By Proposition 2.5.6, we can choose
an open neighborhood U of y such that y is initial in Π∞(U,R). Then

F (y) ' (f∗(StI,E))y ' (f∗(StI,E))(U) ,

so compact generation of F (y) follows from Corollary 12.1.5. To check that F (y) is of finite
type relative to k, we first observe that the base-change results Propositions 11.1.5 and 2.5.10
and Lemma 11.3.12 allow to reduce to the case where Y is a point and X is compact. In that
case, there exists a cartesian finite Galois cover (Y, P, J)→ (X,P, I) such that (Y, P, J) admits
a piecewise elementary level structure. Recall that (X,P ) is conically refineable in virtue of
Remark 2.5.4 and that Π∞(X) is finite by Proposition 2.5.7. Hence, Lemma 12.3.9 implies the
existence of an integer m ≥ 1 such that StI,E is a retract of

(12.3.10) lim
[n]∈∆s,≤m

StIn,E

in PrL,R, where Y• : ∆op
s → Top/X is the Cech complex of f : Y → X and where

I• := Π∞(Y•, P )×Π∞(X,P ) I .

Hence, it is enough to show that (14.2.7) is of finite type relative to k. Since Y → X is a finite
Galois cover, each Yn is a finite coproduct of copies of Y . By Lemma 17.3.3, it is thus enough
to show that StJ,E is of finite type relative to k. Hence, we can suppose that (X,P, I) admits a
piecewise elementary level structure. We now argue by induction on the length d of the piecewise
elementary level structure of (X,P, I). When d = 0, I = Π∞(X,P ) is a fibration in sets, so
(X,P, I) is (globally) elementary and the conclusion follows from Lemma 12.3.8. Otherwise, we
can assume the existence of a level morphism p : I→ J such that:

(1) J admits a piecewise elementary level structure of length < d;

(2) (X,P, Ip) is piecewise elementary.

Notice that since level morphisms are surjective, the fibers of J are again finite posets, so the
inductive hypothesis applies to the Stokes stratified space (X,P, J). Consider the pullback square

StI,E StJ,E

StIp,E StJset,E

p!

Grp Gr

π!

supplied by Theorem 10.2.1. Both StIp,E and StJset,E are of finite type thanks to Lemma 12.3.8,
while the inductive hypothesis guarantees that StJ,E are of finite type. Finally, Theorem 12.1.3
implies that the assumptions of Corollary 8.4.11 are satisfied, so that the above square is a
pullback in PrL,R. Thus, it follows from Lemma 17.3.3 that StI,E is of finite type. �

13. Geometricity

We now turn to the main theorem of this paper, namely the construction of a derived Artin
stack parametrizing Stokes functors. Similarly to Theorems 12.1.1 and 12.3.5 we prove this result
in the analytic setting and assuming the existence of a locally elementary level structure. The
geometricity is essentially a consequence of Theorem 12.3.5, but we need to run more time the
level induction to provide an alternative description of the functor of points.
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13.1. Description of the moduli functor. We fix an animated commutative ring k. For
every animated commutative k-algebra A, we let ModA denote the associated stable ∞-category
of A-modules and by PerfA the full subcategory of perfect A-modules (see e.g. [32, Definition
7.2.4.1]).

Recollection 13.1.1. When A is an ordinary commutative k-algebra, ModA is the derived
∞-category of the abelian category of A-modules. In particular, its homotopy category coincides
with the ordinary derived category of A, seen as a triangulated category.

Fix now a Stokes stratified space (X,P, I).

Notation 13.1.2. Let E be a compactly generated stable ∞-category. We set

StI,E,ω := StI,E ×Fun(I,E) Fun(I,Eω) .

When E = ModA, we write

StI,A := StI,ModA and StI,A,ω := StI,ModA,ω .

Let f : E→ E′ be a functor of stable presentable ∞-categories. Via Proposition 8.6.1 we see
that f functorially induces a morphism

f : StI,E → StI,E′ .

When in addition both E and E′ are compactly generated and f preserves compact objects, this
further descends to a morphism

f : StI,E,ω → StI,E′,ω .

This gives rise to a well defined functor

Stcat
I,k : dAffop

k → Cat∞

that sends the spectrum of an animated commutative k-algebra Spec(A) to StI,A,ω. Passing to
the maximal ∞-groupoid, we obtain a presheaf

StI,k : dAffop
k → Spc

that sends Spec(A) to
StI,k(Spec(A)) := (StI,A,ω)' ∈ Spc .

When k is clear out of the context, we write StI instead of StI,k.

Example 13.1.3. When I is the trivial fibration, Corollary 11.1.13 shows that StI coincide with
the derived stack of perfect local systems.

With these notations, we can state the main theorem of this section as follows:

Theorem 13.1.4. Let f : (X,P, I) → (Y,Q) be a strongly proper family of Stokes analytic
stratified spaces in finite posets locally admitting a ramified piecewise elementary level structure.
Let k be an animated commutative ring. Then, StI is locally geometric locally of finite presentation
over k. Moreover, for every animated commutative k-algebra A and every morphism

x : Spec(A)→ StI

classifying a Stokes functor F : I→ PerfA, there is a canonical equivalence

x∗TStI ' HomFun(I,ModA)(F, F )[1] ,

where TStI denotes the tangent complex of StI and the right hand side denotes the ModA-enriched
Hom of Fun(I,ModA).
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Remark 13.1.5. Theorem 13.1.4 implies in particular that StI satisfies étale hyperdescent and
that it is infinitesimally cohesive and nilcomplete. Using the locally elementary level structure and
proceeding by induction on the length of this level structure, it is possible to verify these three
properties by hand, but they typically fail in absence of such a structure. See Theorem 14.2.2 for
a more general statement.

Remark 13.1.6. The cotangent complexes of StI can be given a cohomological interpretation
at the cost of constructing a monoidal structure on Stokes functors. This is delicate since the
source cocartesian fibration for F ⊗G is bigger than that of F and G, which in turn forces the
base stratification to be finer. This specific issue will be addressed in a later work.

We will deduce Theorem 13.1.4 from Theorem 12.3.5 and of the work of Toën-Vaquié on the
moduli of objects of a stable k-linear ∞-category [51]. To do so, we need a brief digression on the
behavior of Stokes functors and the tensor product of presentable ∞-categories.

13.2. Stokes moduli functor as a moduli of objects. Throughout this section we fix an
animated commutative ring k.

Recollection 13.2.1. Let C be a compactly generated presentable stable k-linear category. Its
moduli of objects is the derived stack

MC : dAffop
k → Spc

given by the rule
MC(Spec(A)) := Funst

k ((Cω)op,PerfA)'

where Funst
k ((Cω)op,Perf(A)) denotes the fully subcategory of Fun((Cω)op,Perf(A)) spanned by

exact k-linear functors. When C is of finite type relative to k in the sense of Definition 17.3.1,
[51, Theorem 0.2] states that MC is a locally geometric derived stack which is furthermore locally
of finite presentation.

Let (X,P, I) be a stably bireflexive Stokes stratified space. Then Lemma 8.4.8 implies that
the ∞-category StI,k is stable presentable and compactly generated. In particular, its moduli of
objects is well defined. We have:

Proposition 13.2.2. Let (X,P, I) be a stably universal Stokes stratified space. Then the derived
prestacks StI and MStI,k are canonically equivalent.

Proof. Fix a derived affine Spec(A) ∈ dAffk and consider the following chain of canonical
equivalences:

Funst
k

(
(StI,k)ω)op,ModA

)
' Funst

k

(
(StI,k)ω,Modop

A

)op

' FunL
k (StI,k,Modop

A )op By [1, §3.1]

' FunR
k (Stop

I,k,ModA)

' StI,k ⊗k ModA By [32, 4.8.1.7]
' StI,A

Let LStI,E : Fun(I,E) → StI,E be the left adjoint to the canonical inclusion StI,E ↪→ Fun(I,E).
By Lemma 8.4.8, a system of compact generators of StI,ModA is given by {LStI,E(eva,!(A))}a∈I,
where the eva : {a} → I are the canonical inclusions. Then via the embedding

Funst
k

(
(StI,k)ω)op,Perf(A)

)
↪→ Funst

k

(
(StI,k)ω)op,ModA

)
induced by Perf(A) ↪→ ModA, the above chain of equivalences exhibits

Funst
k

(
(StI,k)ω)op,Perf(A)

)
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as the full-subcategory of StI,A spanned by Stokes functors F : I→ ModA such that

HomStI,A(LStI,E(eva,!(A)), F ) ∈ Perf(A)

for every a ∈ I. Hence for every F ∈ StI,A, we have

F ∈MStI,k(SpecA)⇔ HomStI,A(LStI,E(eva,!(A)), F ) ∈ Perf(A) ∀a ∈ I

⇔ HomStI,A(eva,!(A), F ) ∈ Perf(A) ∀a ∈ I

⇔ F (a) ∈ Perf(A) ∀a ∈ I

⇔ F ∈ StI,k(Spec(A))

This concludes the proof of Proposition 13.2.2. �

We are now ready for:

Proof of Theorem 13.1.4. By Corollary 12.1.5 and Proposition 13.2.2, the prestack MStI,k and
StI,k are canonically equivalent. By Theorem 12.3.5, the ∞-category StI,k is stable presentable
and of finite type relative to k. The conclusion thus follows from [51, Theorem 0.2]. �

13.3. The moduli of Stokes vector bundles. We fix once more an animated commutative
ring k. A k-point of StI,k is a Stokes functor F : I→ Perfk. In particular, even when k is a field
the stack StI,k classifies I-Stokes structures on perfect complexes, rather than vector bundles.
Thus, when the Stokes stratified space is of dimension 1, StI,k provides an extension of [3]. We
are going to see how to extract from StI,k a more classical substack.

Let (X,P, I) be a Stokes stratified space. For every animated commutative k-algebra A,
consider the standard t-structure τ = ((ModA)>0, (ModA)60) on the stable derived ∞-category
ModA. It is accessible and compatible with filtered colimits, and Fun(I,ModA) inherits an induced
t-structure defined objectwise and satisfying the same properties. Besides, Fun(I,ModA) has a
canonical A-linear structure, with underlying tensor product

(−)⊗A (−) : ModA ⊗ Fun(I,ModA)→ Fun(I,ModA) ,

that sends (M,F ) to the functor M ⊗A F (−) : I→ ModA. Using Proposition 8.6.1, we deduce
that if F is a Stokes functor, then the same goes for M ⊗A F . Following [15], we introduce the
following:

Definition 13.3.1. Let A be an animated commutative k-algebra and let F : I→ ModA be a
filtered functor. We say that F is flat relative to A (or A-flat) if for every M ∈ Mod♥A, the functor
M ⊗k F : I→ ModA belongs to Fun(I,ModA)♥.

Remark 13.3.2. Since Fun(I,ModA)♥ ' Fun(I,Mod♥A), we see that a filtered functor F is A-flat
if and only if it takes values in Mod♥A.

Example 13.3.3. Assume that A is an discrete commutative algebra. If a Stokes functor
F : I→ ModA is flat relative to A, then automatically F ∈ St♥I,A. The vice-versa holds provided
that A is a field.

Sending Spec(A) ∈ dAffop
k to the full subgroupoid of StI,k(Spec(A)) spanned by flat Stokes

functors defines a full sub-prestack Stflat
I,k of StI,k. The goal is to prove the following:

Theorem 13.3.4. Let k be an animated commutative algebra and let f : (X,P, I) → (Y,Q) be
a strongly proper family of Stokes analytic stratified spaces in finite posets admitting a ramified
piecewise elementary level structure. Then the morphism

Stflat
I,k → StI,k
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is representable by open immersions. In particular, Stflat
I,k is a derived 1-Artin stack locally of

finite type.

We start discussing some preliminaries.

Lemma 13.3.5. Let (X,P, I) be a Stokes stratified space and let A be an animated commutative
k-algebra. Assume that Π∞(X,P ) has an initial object x. Then a Stokes functor F : I→ ModA
is A-flat if and only if j∗x(F ) is A-flat.

Proof. Notice that for every M ∈ ModA, the canonical comparison map

M ⊗A j∗x(F )→ j∗x(M ⊗A F )

is an equivalence. Then the lemma follows directly from Corollary 8.7.17. �

Notation 13.3.6. Let (X,P, I) be a Stokes stratified space. For every a ∈ I, Proposition 6.5.2
shows that eva : {a} → I induces a morphism of derived prestacks

eva : StI,k → Perfk .

Proposition 13.3.7. Let (X,P, I) be a compact Stokes stratified space. Then the map

Stflat
I,k → StI,k

is representable by open immersions.

Proof. Thanks to Proposition 2.5.6 and since X is compact we can find an open cover of X by
finitely many open subsets U1, U2, . . . , Un such that each Π∞(Ui, P ) has an initial object xi. Let

e : StI,k →
n∏
i=1

∏
a∈Ixi

Perfk

be the product of the evaluation maps of Notation 13.3.6. Notice that both products are finite,
so the map

n∏
i=1

∏
a∈Ixi

BGL→
n∏
i=1

∏
a∈Ixi

Perfk

is representable by open immersions (see e.g. [33, Proposition 6.1.4.5]). Besides, Lemma 13.3.5
implies that the square

Stflat
I,k StI,k

n∏
i=1

∏
a∈Ixi

BGL

n∏
i=1

∏
a∈Ixi

Perfk

is a fiber product. The conclusion follows. �

This proves Theorem 13.3.4 when the base is reduced to a single point. To prove the general
case, we need a couple of extra preliminaries.

Lemma 13.3.8. Let (X,P, I) be a Stokes stratified space. Then the derived prestack Stflat
I,k is

1-truncated.

Proof. We have to prove that for every discrete commutative k-algebra A, Stflat
I,k (Spec(A)) is a

1-groupoid. Since StI,A is fully faithful inside Fun(I, A), using [31, Proposition 2.3.4.18] we see
that it is enough to show that for every pair of A-flat Stokes functors F,G : I → ModA, the
mapping space MapFun(I,ModA)(F,G) is discrete. Since A is discrete, both F and G belongs to
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St♥I,A, as already observed in Example 13.3.3. Thus, Corollary 8.7.12 implies that both F and G
take values in the 1-category Mod♥A. Then the conclusion follows from [31, Corollary 2.3.4.8]. �

Lemma 13.3.9. Let I be a finite ∞-category and let

f• : F• → G•

be a natural transformation between diagrams I → dStk. Let

F := lim
i∈I

Fi and G := lim
i∈I

Gi

be the limits computed in dStk. Assume that:
(1) for every i ∈ I, Fi is geometric and locally of finite type and Gi is locally geometric and

locally of finite type;

(2) for every i ∈ I, fi : Fi → Gi is representable by open immersions;

(3) G is locally geometric and locally of finite presentation.
Then F is a geometric derived stack and the induced morphism f : F → G is an open immersion.

Proof. It follows from [52, Proposition 1.3.3.3 and Lemma 1.4.1.12] that geometric stacks locally
of finite type are closed under finite limits. Thus, F is geometric and locally of finite type. We are
left to check that f is an open immersion. Since both F and G are locally geometric and locally
of finite type, it follows that f is an open immersion if and only if it is étale and the diagonal

δf : F → F ×G F

is an equivalence. Besides, since f is automatically locally of finite presentation, [52, Corollary
2.2.5.6] shows that f is étale if and only if it is formally étale, i.e. the relative cotangent complex
Lf vanishes. Since limits commutes with limits, we see that δf is the limit of the diagonal maps

δfi : Fi → Fi ×Gi Fi ,

and since each fi is an open immersion, it automatically follows that each δfi is an equivalence.
Therefore, the same goes for f . Similarly, the property of being formally étale is clearly closed
under retracts. On the other hand, [52, Lemma 1.4.1.12] implies that formally étale maps are
closed under pullbacks and hence under finite limits. The conclusion follows. �

We are now ready for:

Proof of Theorem 13.3.4. Since f is strongly proper, we can choose a categorically finite subana-
lytic refinement R→ Q such that f∗(StI,k) is R-hyperconstructible. Let F : Π∞(Y,R)→ Cat∞
be the functor corresponding to f∗(StI,k) via the exodromy equivalence. As we argued in
Theorem 12.3.5, we obtain a canonical equivalence

StI,k ' lim
y∈Π∞(Y,R)

Fy ,

the limit being computed in PrL,R. Besides, the base-change results of Propositions 11.1.5 and
2.5.10 and Lemma 11.3.12 provide a canonical identification Fy ' StIy,k. Passing to the moduli
of objects and applying Proposition 13.2.2, we deduce that

StI,k ' lim
y∈Π∞(Y,R)

StIy,k .

Using Proposition 8.7.11, we deduce from here that the induced morphism

Stflat
I,k → lim

y∈Π∞(Y,R)
Stflat

Iy,k
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is an equivalence as well. Besides, Stflat
I,k and Stflat

Iy,k are 1-truncated for every y ∈ Π∞(Y,R)
thanks to Lemma 13.3.8. Thus, Lemma 13.3.9 reduces us to the case where Y is reduced to a
single point. Since in this case X is compact, the conclusion follows from Proposition 13.3.7. �

14. Permanence theorem

Theorems 12.1.1, 12.3.5 and 13.1.4 were all proven via the level induction. We now provide
an axiomatization of this technique, that takes the form of a meta-theorem that can be used to
prove general statements about Stokes structures.

14.1. The general setup. To maximize the range of applicability, we fix throughout this entire
section an ∞-category of test objects C. Recall from Section 6.5 that we have an ∞-functor

exp: CoCart×PrL → PrFibL .

Composing with the evaluation

ev : C× Fun(C,PrL)→ PrL ,

we obtain a functor

exp ◦ev : CoCart× C× Fun(C,PrL)→ PrFibL .

By adjunction, it determines a functor

exp: CoCart× Fun(C,PrL)→ Fun(C,PrFibL) .

Given F ∈ Fun(C,PrL), we denote by

expF : CoCart→ Fun(C,PrFibL)

the resulting functor, and we refer to it as the exponential construction with coefficients in F.

Notice that Fun(C,Cat∞) is compactly generated. Therefore, any exodromic stratified space
(X,P ) gives rise to an equivalence

Conshyp
P (X; Fun(C,Cat∞)) ' Fun(Π∞(X,P ),Fun(C,Cat∞)) ' CoCartΠ∞(X,P )×C .

It is straightforward to adapt the definition of Conshyp
P (X;PrL) given in [25, Definition 4.2.4] to

this more general setting. Then, the same argument given in [25, Proposition 4.2.5] yields an
equivalence

Conshyp
P (X; Fun(C,PrL)) ' Fun(Π∞(X,P ),Fun(C,PrL)) ' PrFibL

Π∞(X,P )×C ,

making the diagram

Conshyp
P (X; Fun(C,PrL)) Fun(Π∞(X,P ),Fun(C,PrL))

Fun(C,PrL)

∼

ΓX,∗ lim

commutative.

Fix now a Stokes stratified space (X,P, I) and a coefficient functor F : C → PrL. The
exponential construction gives rise to

expF(I/Π∞(X,P )) ∈ PrFibL
Π∞(X,P )×C .

Following Definition 5.1.2, we let

FilI,F ∈ Conshyp
P (X; Fun(C,PrL))
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be the Fun(C,PrL)-valued P -hyperconstructible hypersheaf associated to expF(I/Π∞(X,P )).
We denote its global sections by

Funcocart(I,F) ∈ Fun(C,PrL) ,

and we refer to them as the F-valued cocartesian functors on (X,P, I). The morphism iI : Iset → I

gives rise to a transformation

FiI! : expF(Iset/Π∞(X,P ))→ expF(I/Π∞(X,P )) .

Applying Lemma 5.2.1 we obtain an object

EssIm(FiI! ) ∈ CoCartΠ∞(X,P )×C .

Following Definition 5.2.3, we let

StI,F ∈ Conshyp
P (X; Fun(C;Cat∞))

be the Fun(C,Cat∞)-valued P -hyperconstructible hypersheaf associated to EssIm(FiI! ). We
denote its global sections by

StI,F ∈ Fun(C,Cat∞) ,

and we refer to them as the F-valued Stokes functors on (X,P, I).

Example 14.1.1. When C is reduced to a single point, the given of F amounts to fix a presentable
∞-category E. In this case, StI,F = StI,E coincides with the ∞-category of E-valued Stokes
functors previously considered.

Example 14.1.2. Fix an animated commutative ring k and take C = dAffop
k . Consider the

functor
QCoh : dAffop

k → Cat∞ ,

that sends Spec(A) to QCoh(Spec(A)) := ModA (whose existence is guaranteed by [32, Theorem
4.5.3.1]). Then

StI,QCoh : dAffop
k → Cat∞

is the categorical derived prestack sending Spec(A) to StI,A.

14.2. The abstract permanence theorem. Before stating the permanence theorem, we need
to set the following:

Notation 14.2.1. Let C be an ∞-category and let F : C → PrL. Given any other small
∞-category A, we let FA be the functor

FA : C→ PrL

defined by
FA(c) := Fun(A,F(c)) .

Theorem 14.2.2. Let f : (X,P, I) → (Y,Q) be a strongly proper family of Stokes analytic
stratified spaces in finite posets locally admitting a ramified piecewise elementary level structure.
Let C be an ∞-category and let D ⊂ Fun(C,Cat∞) be a subcategory stable under finite limits
and retracts. Let F : C→ PrL

st. Assume that:
(1) either f is strongly proper;

(2) both F and F∆1

belong to D.
Then, StI,F ∈ D.

We need several preliminaries. In what follows, we fix an ∞-category of test objects.

Lemma 14.2.3. Let F : C → PrL
st and let D ⊂ Fun(C,Cat∞) be a subcategory closed under

finite limits and containing F and F∆1

. Then:
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(1) for every finite ∞-category A, FA ∈ D;

(2) if in addition D is closed under retracts, then for every compact ∞-category A, FA ∈ D.

Proof. First notice that if I is a finite set, then

FI '
∏
I

F .

Since D is closed under finite limits and F ∈ D, it follows that FI ∈ D as well. Second, observe
that if we are given a pushout

B B′

A A′

in Cat∞, then one has
FA′ ' FA ×FB FB′

in Fun(C,PrL). Thus, if FB, FB′ and FA belong to D, it follows that FA′ belong to D as well.
This immediately implies (1), and (2) follows from the fact that every compact ∞-category is a
retract of a finite one. �

Lemma 14.2.4. Let (X,P, I) be a Stokes stratified space in finite posets where (X,P ) is cat-
egorically finite. Let F : C → PrL

st and let D ⊂ Fun(C,Cat∞) be a subcategory stable under
finite limits and containing both F and F∆1

. Then, Funcocart(I,F) belongs to D as well. If D is
furthermore closed under retracts, (X,P ) can be taken to be categorically compact.

Proof. Since limits in Fun(C,PrL) are computed objectwise, applying Corollary 7.2.4 we find

Funcocart(I,F) ' lim
x∈Π∞(X,P )

FIx .

Since Ix is a finite category, Lemma 14.2.3 implies that FIx ∈ D, and the conclusion follows from
our assumptions. �

The following is a restatement of Lemma 12.3.8 with essentially the same proof (we leave to
the reader to adapt Construction 11.6.1 and Proposition 11.6.2 to the setting of a test∞-category
C):

Lemma 14.2.5. Let (X,P, I) be a compact piecewise elementary analytic Stokes stratified space
in finite posets. Let F : C→ PrL

st and let D ⊂ Fun(C,Cat∞) be a subcategory stable under finite
limits and containing both F and F∆1

. Then, StI,F ∈ D.

Proof. Thanks to Theorem 11.4.1, X admits a finite cover by relatively compact subanalytic open
subsets U1, . . . , Un such that (Ui, P, IUi) is elementary for every i = 1, . . . , n. Let U = {U•} be
the associated hypercover of X. From Proposition 11.6.2 and Remark 11.6.3, we have a canonical
equivalence in Fun(C,Cat∞):

StI,F ' lim
∆op
≤n,s

StFilUI,F |∆op
≤n,s

.

Since ∆op
≤n,s is a finite category, it is enough to check that StFilUI,E([m]) belongs to D. Since each

(Ui, P, IUi) is elementary,
StFilI,F([0]) ' Funcocart(IU0

,F) ,

while for m > 0,
StFilI,F([m]) ' Funcocart(IUm

,F)

by definition. Thus, the conclusion follows from Lemma 14.2.4. �



HOMOTOPY THEORY OF STOKES STRUCTURES AND DERIVED MODULI 123

The following is the analogue of Lemma 12.3.9:

Lemma 14.2.6. Let f : (Y, P, J)→ (X,P, I) be a cartesian finite Galois cover in StStrat where
(X,P ) is conically refineable with Π∞(X) compact and where (Y, P, J) is stably universal. Let
Y• : ∆op

s → Top/X be the Cech complex of f : Y → X and put

I• := Π∞(Y•, P )×Π∞(X,P ) I .

Then there exists an integer m ≥ 1 such that for every F : C→ PrL
st, StI,F is a retract of

lim
[n]∈∆s,≤m

StIn,F

in Fun(C,PrL,R).

Proof. The Stokes stratified space (X,P, I) is stably universal in virtue of Lemma 12.2.5. Since
f : Y → X is Galois, Yn is a finite coproduct of copies of Y over X, so that (Yn, P, In) is stably
universal for every [n] ∈ ∆s. Since the Yn → X is a finite étale cover for every [n] ∈ ∆s,
Lemma 19.2.9 implies that

Π∞(Yn, P )→ Π∞(X,P )

is a finite étale fibration in the sense of Definition 19.2.1. Corollary 8.8.6 thus implies the existence
of an integer m ≥ 1 such that there exists a retract

StI,Sp → lim
[n]∈∆s,≤m

StIn,Sp → StI,Sp .

in PrL,R. Thus, we conclude from Lemma 7.5.5 by tensoring the above retract with F. �

We are now ready for:

Proof of Theorem 14.2.2. Since f is strongly proper, we can choose a categorically compact
subanalytic refinement R → Q such that for every c ∈ C, f∗(StI,F(c)) is R-hyperconstructible.
Thus, f∗(StI,F) is itself R-hyperconstructible. Let F : Π∞(Y,R)→ Fun(C,Cat∞) be the functor
corresponding to f∗(StI,F) via the exodromy equivalence (2.3.6). By Recollection 2.3.5, we have

StI,F ' f∗(StI,F)(Y ) ' lim
y∈Π∞(Y,R)

F (y) .

Since Π∞(Y,R) is categorically compact and D is closed under finite limits and retracts, we are
reduced to show that F (y) ∈ D for every y ∈ Y . The base-change results Propositions 11.1.5 and
2.5.10 and Lemma 11.3.12 allow to reduce to the case where Y is a point and X is compact.

In this case, there exists a cartesian finite Galois cover (Y, P, J)→ (X,P, I) such that (Y, P, J)
admits a piecewise elementary level structure. Recall that (X,P ) is conically refineable in virtue
of Remark 2.5.4 and that Π∞(X) is finite by Proposition 2.5.7. Hence, Lemma 14.2.6 implies the
existence of an integer m ≥ 1 such that StI,F is a retract of

(14.2.7) lim
[n]∈∆s,≤m

StIn,F

in Fun(C,PrL,R), where Y• : ∆op
s → Top/X is the Cech complex of f : Y → X and where

I• := Π∞(Y•, P )×Π∞(X,P ) I .

Since D is closed under finite limits and retracts, it is enough to show that for every integer n,
StIn,F belongs to D. Since Y → X is a finite Galois cover, each Yn is a finite coproduct of copies
of Y . So it is enough to treat the case of Y . Equivalently, we can suppose that (X,P, I) admits a
piecewise elementary level structure.

We now argue by induction on the length d of the locally elementary level structure of (X,P, I).
When d = 0, I = Π∞(X,P ) is a fibration in sets, so (X,P, I) is (globally) elementary and the
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conclusion follows from Lemma 14.2.5 (or from Lemma 14.2.4). Otherwise, we can assume the
existence of a level morphism p : I→ J such that:

(1) J admits a piecewise elementary level structure of length < d;

(2) (X,P, Ip) is piecewise elementary.
Notice that since level morphisms are surjective, the fibers of J are again finite posets, so the
inductive hypothesis applies to the Stokes stratified space (X,P, J). Consider the pullback square

StI,F StJ,F

StIp,F StJset,F

p!

Grp Gr

π!

supplied by an objectwise application of Theorem 10.2.1. Both StIp,F and StJset,F belong to D

thanks to Lemma 14.2.5, while the inductive hypothesis guarantees that StJ,E are of finite type.
Thus, the conclusion follows from the closure of D under finite limits. �

15. Elementarity and polyhedral Stokes stratified spaces

The goal of this section is to prove an elementarity criterion for a specific class of Stokes
stratified spaces that we now introduce.

15.1. Polyhedral Stokes stratified spaces.

Recollection 15.1.1. For n ≥ 0, recall that a polyhedron of Rn is a non empty subset obtained
as the intersection of a finite number of closed half spaces.

In what follows, {−, 0,+} will denote the span poset where 0 is declared to be the initial object.
Let n ≥ 0. For a non zero affine form ϕ : Rn → R, we denote by Hϕ the zero locus of ϕ.

Definition 15.1.2. Let n ≥ 0 and let C ⊂ Rn be a polyhedron. Let Φ be a finite set of non
zero affine forms on Rn. Let (Rn,Φ) be the stratified space given by the continuous function
C → {−, 0,+}Φ sending x ∈ C to the function sending ϕ to the sign of ϕ(x) if x /∈ Hϕ, and to 0
otherwise.

Remark 15.1.3. The stratified space (C,Φ) is conical and the induced functor Π∞(C,Φ) →
{−, 0,+}Φ is an equivalence of ∞-categories.

Definition 15.1.4. A polyhedral Stokes stratified space is a Stokes stratified space in finite posets
of the form (C,Φ, I) where (C,Φ) is as in Definition 15.1.2 and such that Iset → Π∞(C,Φ) is
locally constant (Definition 19.1.4).

15.2. Elementarity criterion: statements and counter-examples. The main result of this
section is the following theorem whose statement is inspired from [36, Proposition 3.16].

Theorem 15.2.1. Let (C,Φ, I) be a polyhedral Stokes stratified space. Suppose that for every
distinct a, b ∈ I (C), there exists ϕ ∈ Φ such that

(1) The Stokes locus of {a, b} is C ∩Hϕ (Definition 4.2.2).

(2) C \Hϕ admits exactly two connected components C1 and C2.

(3) a <x b for every x ∈ C1 and b <x a for every x ∈ C2.
Then (C,Φ, I) is elementary (Definition 11.3.10).

Remark 15.2.2. In the setting of Theorem 15.2.1, the order of Ix is total for every x lying in
an open stratum of (C,Φ).
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Remark 15.2.3. Fully-faithfulness in Theorem 15.2.1 will not require any extra technology that
the one developed so far and will be proved in Proposition 15.5.1. On the other hand, essential
surjectivity will require more work and will be ultimately proved in Proposition 15.5.3.

Theorem 15.2.1 will be used via the following:

Theorem 15.2.4. Let (C,P, I) be a Stokes analytic stratified space in finite posets where C ⊂ Rn
is a polyhedron and Iset → Π∞(C,P ) is locally constant. Assume that for every distinct a, b ∈
I (C), there exists a non zero affine form ϕ : Rn → R such that

(1) The Stokes locus of {a, b} is C ∩Hϕ.

(2) C \Hϕ admits exactly two connected components C1 and C2.

(3) a <x b for every x ∈ C1 and b <x a for every x ∈ C2.
Then (C,P, I) is elementary.

Proof. Let Φ be a finite set of non zero affine forms such that for every distinct a, b ∈ I (C),
there is ϕ ∈ Φ satisfying (1),(2),(3) for a, b. By Lemma 11.3.12, the conclusion of Theorem 15.2.4
is insensitive to subanalytic refinements. Hence, at the cost of refining (C,P ), we can suppose
that there exists a refinement (C,P )→ (C,Φ). By Proposition 2.3.8, the induced functor

Π∞(C,P )→ Π∞(C,Φ)

exhibits Π∞(C,Φ) as the localization of Π∞(C,P ) at the set of arrows sent to equivalences by
Π∞(C,P )→ P → Φ. On the other hands, conditions (1) and (3) say that for every morphism
γ : x → y in Π∞(C,P ) sent to an equivalence by Π∞(C,P ) → P → Φ, the induced morphism
of posets Ix → Iy is an isomorphism. Hence, there is a cocartesian fibration in finite posets
J→ Π∞(C,Φ) and a cartesian morphism

(C,P, I)→ (C,Φ, J) .

Hence, we are left to show that (C,Φ, J) is elementary, which is a consequence of Theorem 15.2.1.
�

Polyhedral Stokes stratified spaces are rarely elementary, as the following Lemmas below show:

Lemma 15.2.5. Let (C,Φ, I) be a polyhedral Stokes stratified space of R. Let E be a presentable
stable ∞-category. Assume that iI,! : StIset,E → StI,E is fully faithful. Then for every a, b ∈ I (C)
distinct, the Stokes locus Ca,b is not empty.

Proof. Assume the existence of a, b ∈ I (C) distinct such that Ca,b is empty. We show that
iI,! : StIset,E → StI,E is not fully faithful. Let i : J ↪→ I be the cocartesian subfibration defined
by a and b. By Corollary 9.5.3, it is enough to show that iJ,! : StJset,E → StJ,E is not fully
faithful. Since Ca,b is empty, the cocartesian fibration J → Π∞(C,Φ) is locally constant. By
Proposition 2.3.8, we deduce the existence of a cartesian refinement

(C,Φ, J)→ (C, ∗,K)

in PosFib. From Corollary 11.1.12, we have StJ,E ' StK,E. On the other hand, Π∞(C) is
contractible. Hence, if we pick x ∈ C, we deduce StJ,E ' StJx,E and StJset,E ' StJset

x ,E. Hence,
we are left to show that

i∆1,! : Fun({0, 1},E)→ Fun(∆1,E)

is not fully faithful, which is obvious. �

Lemma 15.2.6. Let (C,Φ, I) be a polyhedral Stokes stratified space of R. Let E be a presentable
stable ∞-category. Assume that iI,! : StIset,E → StI,E is essentially surjective. Then for every
a, b ∈ I (C) distinct, the Stokes locus Ca,b admits at most one point.
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Proof. Assume the existence of a, b ∈ I (C) distinct such that Ca,b has at least two points. We
show that iI,! : StIset,E → StI,E is not essentially surjective. Let i : J ↪→ I be the cocartesian
subfibration defined by a and b. By Corollary 9.5.3, it is enough to show that iJ,! : StJset,E → StJ,E
is not essentially surjective. Hence we are reduced to the case where I (C) has exactly two
elements a and b. Let n ≥ 2 and put Ca,b = {x1 < · · · < xn}. Put D = C ∩ {x ≤ (xn−1 + xn)/2}
and consider the commutative square

StIset,E StIset
D ,E

StI,E StID,E .

iI,! iID,!

Since D contains all Stokes points but the last one, one readily checks that the bottom arrow of the
above square is essentially surjective. Hence, to show that the left vertical arrow is not essentially
surjective, it is enough to show that the right vertical arrow is not essentially surjective. Arguing
by descending recursion on n, we can thus suppose that n = 2. In that case, I → Π∞(C,Φ)
is locally constant away from x1 and x2. Arguing as in the proof of Lemma 15.2.5, we can
thus suppose that x1 and x2 are the only closed strata of (C,Φ). Put U := C ∩ {x < x2} and
V := C ∩ {x > x1}. Then, x1 is an initial object in Π∞(U,Φ) and x2 is an initial object in
Π∞(V,Φ). By Proposition 8.2.5, we deduce

StIU ,E ' StIx1
,E ' Fun({0, 1},E)

and
StIV ,E ' StIx2

,E ' Fun({0, 1},E) .

Furthermore, since U ∩ V is contractible, we have

StIU∩V ,E ' Fun(∆1E) .

Since StI,E is a hypersheaf, we thus deduce the existence of a pull-back square

StI,E Fun({0, 1},E)

Fun({0, 1},E) Fun(∆1,E) .

i∆1,!

i∆1,!

We are thus left to show that the diagonal functor

(15.2.7) Fun({0, 1},E)→ Fun({0, 1},E)×Fun(∆1,E) Fun({0, 1},E)

is not essentially surjective. This comes from the observation that any object (V, V, f) with
f1 : V0⊕ V1 → V0⊕ V1 not diagonal does not lie in the essential image of (15.2.7). This concludes
the proof of Lemma 15.2.6. �

Corollary 15.2.8. Let (C,Φ, I) be a polyhedral Stokes stratified space of R. If (C,Φ, I) is
elementary, then for every a, b ∈ I (C) distinct, the Stokes locus Ca,b is reduced to a point.

Proof. Combine Lemma 15.2.5 and Lemma 15.2.6. �

15.3. Distance on the set of open strata.

Definition 15.3.1. Let (C,Φ) be a stratified polyhedron. For A,B ⊂ C, we say that A and B
are separated by ϕ ∈ Φ if they lie in distinct connected components of C \Hϕ. We let Φ(A,B) ⊂ Φ
be the set of forms separating A and B and denote by d(A,B) its cardinality.
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Remark 15.3.2. If U, V,W are open strata of (C,Φ), then

Φ(U, V ) ⊂ Φ(U,W ) ∪ Φ(W,V ) .

In particular, d induces a distance on the set of open strata of (C,Φ).

Lemma 15.3.3. Let (C,Φ) be a stratified polyhedron and let U, V,W be open strata of (C,Φ).
Suppose that V and W are distinct and adjacent along a face lying in Hϕ for some ϕ ∈ Φ. Then
Φ(U, V ) and Φ(U,W ) differ exactly by ϕ.

Proof. Let ψ ∈ Φ(U, V ). If ψ does not appear in Φ(U,W ), then ψ separates V and W . Hence,
V ∩W ⊂ Hϕ ∩ Hψ. Since V and W are assumed to be adjacent, V ∩W has codimension 1.
Hence, so does Hϕ ∩Hψ. Thus ψ = ϕ. �

Definition 15.3.4. Let (C,Φ) be a stratified polyhedron and let U be an open stratum. For
k = −1, put U≤−1 = U . For k ≥ 0, put

U≤k :=
⋃

V,d(U,V )≤k

V

where the union runs over the open strata V of (C,Φ) satisfying d(U, V ) ≤ k.

Remark 15.3.5. Let V be an open stratum of (C,Φ) mapping to f ∈ {−,+}Φ. Then, V is the
set of points of C lying above the closed subset S(V ) := ({−, 0,+}Φ)≤f . In particular U≤k is the
set of points of C lying above the closed subset

S(U, k) :=
⋃

V,d(U,V )≤k

S(V ) .

Lemma 15.3.6. Let (C,Φ) be a stratified polyhedron and let U, V be distinct open strata. Put
k := d(U, V ) − 1. Let F be a face of V . Let ϕ ∈ Φ be the unique form such that F = V ∩Hϕ.
Then, F ⊂ U≤k if and only if ϕ separates U and V . In particular,

V ∩ U≤k =
⋃

ϕ∈Φ(U,V )

V ∩Hϕ .

Proof. Suppose that ϕ separates U and V . Hence, there is an open stratum W 6= V adjacent to
V along F . From Lemma 15.3.3, we have d(U,W ) = k. Hence, F ⊂ W ⊂ U≤k. On the other
hand, suppose that F ⊂ U≤k. By definition, there is an open stratum W with d(U,W ) ≤ k such
that F is a face of W . In particular, W 6= V . Thus, Lemma 15.3.3 ensures that Φ(U, V ) and
Φ(U,W ) differ exactly by ϕ. Since d(U, V ) > d(U,W ), we necessarily have ϕ ∈ Φ(U, V ) and
Lemma 15.3.6 is proved. �

Lemma 15.3.7. Let (C,Φ) be a stratified polyhedron and let U, V be distinct open strata. Put
k := d(U, V )− 1. Then, V ∩ U≤k → V admits a deformation retract. In particular, V ∩ U≤k is
contractible.

Proof. Fix x ∈ U . At the cost of replacing some forms in Φ by their opposite, we can suppose
that V is the set of points x ∈ C such that ϕ(x) ≥ 0 for every ϕ ∈ Φ. For y ∈ V , define the
following degree k + 1 polynomial

PV (y) : t 7→
∏

ϕ∈Φ(U,V )

ϕ((1− t) · x+ t · y) .

Then, PV (y) has exactly k+ 1 roots in (0, 1] counted with multiplicities. Let tV (y) ∈ (0, 1] be the
biggest root of PV (y) and put

pV (y) := (1− tV (y)) · x+ tV (y) · y .
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Since the coefficients of PV (y) depend continuously on y, so does tV (y). Hence, pV varies
continuously in y. Let y ∈ V . We want to show that [y, pV (y)] ⊂ V . If y = pV (y), there is
nothing to prove. Suppose that y 6= pV (y) and pick z ∈ (y, pV (y)). If ϕ separates U and V , the
non zero real numbers ϕ(y) and ϕ(z) have the same sign by construction. Hence ϕ(z) > 0. If
ϕ does not separate U and V , we have ϕ(x) > 0. Since ϕ(y) ≥ 0, we deduce ϕ(z) ≥ 0. Hence,
(y, pV (y)) ⊂ V , so that [y, pV (y)] ⊂ V . By Lemma 15.3.6, we deduce that pV (y) ∈ V ∩U≤k. Note
that if y ∈ V ∩ U≤k, then y lies on a face of V separating U and V by Lemma 15.3.6. Hence,
PV (y) vanishes at t = 1, so that pV (y) = y. Thus, the continuous function [0, 1]× V → V defined
as

(u, y) 7→ u · pV (y) + (1− u) · y

provides the sought-after deformation retract. �

Construction 15.3.8. Let (C,Φ) be a stratified polyhedron and let U be an open strata. Let
k ≥ 0 and put S(U, k+1)◦ := S(U, k+1)\S(U, k). Observe that S(U, k+1)◦ is open in S(U, k+1).
Consider the following pushout of posets

S(U, k + 1)◦ S(U, k + 1)

∗ P (U, k + 1) .

Since S(U, k + 1)◦ is open in S(U, k + 1), the stratified space (Uk+1, P (U, k + 1)) is conically
stratified and admits U≤k+1 \ U≤k as open stratum.

Lemma 15.3.9. Let (C,Φ) be a stratified polyhedron and let U be an open stratum. Let k ≥ 0.
Then, the induced functor

(15.3.10) Π∞(U≤k, S(U, k))→ Π∞(U≤k+1, P (U, k + 1))

is final.

Proof. To prove Lemma 15.3.9, it is enough to prove that for x ∈ U≤k+1, the ∞-category

X := Π∞(U≤k, S(U, k))×Π∞(U≤k+1,P (U,k+1)) Π∞(U≤k+1, P (U, k + 1))/x

is weakly contractible. Since S(U, k) is closed in P (U, k+ 1), the functor (15.3.10) is fully-faithful.
Hence, we can suppose that x ∈ U≤k+1 \ U≤k. In that case, let V ⊂ U≤k+1 be an open stratum
at distance k + 1 from U such that x ∈ V . By Remark 15.1.3, the ∞-category X is equivalent
to the full subcategory of Π∞(U≤k, S(U, k)) spanned by points y at the source of some exit-
path γ : y → x in Π∞(U≤k+1, P (U, k + 1)). In particular γ((0, 1]) ⊂ U≤k+1 \ U≤k. Note that
γ((0, 1]) ⊂ V . Indeed if this was not the case, there would exist an open stratum W 6= V adjacent
to V with d(U,W ) = k + 1. This is impossible by Lemma 15.3.3. Hence y ∈ V ∩ U≤k. On the
other hand, for y ∈ V ∩ U≤k, the line joining y to x is a morphism in Π∞(U≤k+1, P (U, k + 1)).
Hence, X is equivalent to the full subcategory of Π∞(U≤k, S(U, k)) spanned by points y ∈ V ∩U≤k,
that is

X ' Π∞(V ∩ U≤k, S(V ) ∩ S(U, k)) .

Hence,

Env(X) ' Π∞(V ∩ U≤k) ' ∗

where the last equivalence follows from Lemma 15.3.7. �
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15.4. Splitting propagation.

Definition 15.4.1. Let (C,Φ) be a stratified polyhedron and let U be an open stratum. Let
W (U) be the class of morphisms γ : x→ y in Π∞(C,Φ) such that for every ϕ ∈ Φ with x ∈ Hϕ,
one of the following condition is satisfied:

(i) We have y ∈ Hϕ.

(ii) The point y and U are not separated by Hϕ.
In particular, W (U) contains every equivalence of Π∞(C,Φ).

Here are some examples of arrows in the class W (U).

Lemma 15.4.2. Let (C,Φ) be a stratified polyhedron and let U be an open stratum. Let k ≥ 0.
Then, every exit path of (U≤k+1 \ U≤k,Φ) lies in W (U).

Proof. Let γ : x → y be an exit path of (U≤k+1 \ U≤k,Φ). Let V be a stratum at distance
k + 1 from U with x ∈ V . Let ϕ ∈ Φ with x ∈ Hϕ and assume that y /∈ Hϕ. Since x /∈ U≤k,
Lemma 15.3.6 ensures that ϕ does not separate U and V . Since γ : x→ y lies in U≤k+1 we deduce
that ϕ does not separate y and U . �

The class of maps from Definition 15.4.1 is useful because of the following

Lemma 15.4.3. Let (C,Φ) be a stratified polyhedron and let U be an open stratum. Let E be
a presentable ∞-category. Let F : Π∞(C,Φ) → E be a functor inverting every arrow in W (U).
Then, the canonical morphism

lim
Π∞(C,Φ)

F → lim
Π∞(U,Φ)

F |U

is an equivalence.

Proof. To prove Lemma 15.4.3, it is enough to prove that

(15.4.4) lim
Π∞(U≤k,S(U,k))

F |U≤k → lim
Π∞(U≤k−1,S(U,k−1))

F |U≤k−1

is an equivalence for every k ≥ 0, where we used the notations of Construction 15.3.8. Assume
that k ≥ 1. Since

(U≤k, S(U, k))→ (U≤k, P (U, k))

is a refinement, we know by Proposition 2.3.8 that the functor

(15.4.5) Π∞(U≤k, S(U, k))→ Π∞(U≤k, P (U, k))

exhibits the target as the localization of the source at the exit paths in U≤k \ U≤k−1. By
Lemma 15.4.2, the functor (15.4.5) is thus a localization functor at some arrows in W (U). Hence,
the functor

F |U≤k : Π∞(U≤k, S(U, k))→ E

factors uniquely through Π∞(U≤k, P (U, k)). Since a localization functor is final, to prove that
(15.4.4) is an equivalence thus amounts to prove that the functor

Π∞(U≤k−1, S(U, k − 1))→ Π∞(U≤k, P (U, k))

is final, which follows from Lemma 15.3.9. The case where k = 0 is treated similarly. �

The following lemma provides two examples of functors to which Lemma 15.4.3 applies :

Lemma 15.4.6. Let (C,Φ, I) be a polyhedral Stokes stratified space satisfying the conditions of
Theorem 15.2.1. Let U be an open stratum. Let a ∈ I (C) minimal on U . Let E be a presentable
stable ∞-category. Let F : I→ E be a Stokes functor. Then F<a and Fa invert arrows in W (U).
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Proof. Consider the fibre sequence

F<a → Fa → Gra F .

By Corollary 18.1.2, the functor Gra F inverts every arrow of Π∞(C,Φ). Hence, we are left to
show that Fa invert arrows in W (U). Let γ ∈W (U). At the cost of writing γ as the composition
of a smaller path followed by an equivalence, we can suppose that γ lies in an open subset V such
that x is initial in Π∞(V,Φ). From Proposition 8.2.5, we have F |V = iI!(V ) where V : Iset → E.
Then, Fa(γ) reads as ⊕

b∈I (C)
b≤xa

Vb →
⊕

b∈I (C)
b≤ya

Vb .

Let b ∈ I (C) with b 6= a. To prove Lemma 15.4.6, we are left to show that b <x a if and only if
b <y a. The direct implication is obvious. We thus suppose that b <y a. Let ϕ ∈ Φ such that the
Stokes locus of {a, b} is C ∩Hϕ. Since a is minimal on U , the assumption (1) from Theorem 15.2.1
implies that ϕ separates y and U . If x ∈ Hϕ, then the definition of W (U) yields y ∈ Hϕ, which
contradicts b <y a. Hence, x /∈ Hϕ. In particular, b <x a or a <x b. Note that the inequality
a <x b contradicts b <y a. Hence, b <x a and the proof of Lemma 15.4.6 is complete. �

Lemma 15.4.7. Let (C,Φ, I) be a polyhedral Stokes stratified space satisfying the conditions of
Theorem 15.2.1. Let U be an open stratum. Let a ∈ I (C) minimal element on U . Let E be a
presentable stable ∞-category. Let F : I→ E be a Stokes functor. Then, the fiber sequence

(15.4.8) F<a → Fa → Gra F

admits a splitting.

Proof. Since a is minimal on U , the restriction of F<a to U is the zero functor. Hence, (15.4.8)
admits a canonical splitting on U . By Corollary 9.4.6, the functor GrF : Iset → E is cocartesian.
By Corollary 18.1.2, we deduce that Gra F : Π∞(C,Φ)→ E inverts every arrows. Since

Env(Π∞(C,Φ)) ' Π∞(C) ' ∗ ,
we deduce that Gra F : Π∞(C,Φ)→ E is a constant functor. Hence, it is enough to show that

Map(Gra F, Fa)→ Map(Gra F |U , Fa|U )

is an equivalence This amounts to show that

lim
Π∞(C,Φ)

Fa → lim
Π∞(U,Φ)

Fa|U

is an equivalence. By Lemma 15.4.3, we are thus left to show that Fa inverts every arrow in
W (U). This in turn holds by Lemma 15.4.6. �

15.5. Proof of Theorem 15.2.1. The proof will be the consequence of the following propositions
below.

Proposition 15.5.1. Let (C,Φ, I) be a polyhedral Stokes stratified space satisfying the conditions
of Theorem 15.2.1. Let E be a presentable stable ∞-category. Then, the induction functor

iI,! : StIset,E → StI,E

is fully faithful.

Proof. Let V,W : Iset → E be Stokes functors. We have to show that the canonical map

Map(V,W )→ MapStI,E
(iI,!(V ), iI,!(W )) ' Map(V, i∗IiI,!(W ))

is an equivalence. This is equivalent to show that for every a ∈ I (C), the map

Map(Va,Wa)→ Map(Va, (iI,!(W ))a)
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is an equivalence. By Corollary 18.1.2, the cocartesian functor Va : Π∞(C,Φ)→ E inverts every
arrow in Π∞(C,Φ). Since C is contractible, we deduce that Va : Π∞(C,Φ) → E is a constant
functor. Thus, we are left to show that for every a ∈ I (C), the map

(15.5.2) lim
Π∞(C,Φ)

Wa → lim
Π∞(C,Φ)

(iI,!(W ))a

is an equivalence. At the cost of writing W : Iset → E as a finite direct sum over I (C), we can
suppose the existence of b ∈ I (C) such that Wa ' 0 for a 6= b. In that case, let ib : Ib ↪→ I be
the cocartesian fibration constant to b, so that W ' iset

b,! (Wb) with Wb : Π∞(C,Φ)→ E constant
to an object e ∈ E. Thus, iI,!(W ) ' ib,!(Wb). In particular,

(iI,!(W ))b ' i∗b ib,!(Wb) 'Wb .

Hence, we are left to prove that (15.5.2) is an equivalence for a ∈ I (C) with a 6= b. Let ϕ ∈ Φ
such that the Stokes locus of {a, b} is Hϕ. Let C1 and C2 be the two connected components of
C \Hϕ such that a <x b for every x ∈ C1 and b <x a for every x ∈ C2. Then

(iI,!(W ))a(x) ' (ib,!(Wb))a(x) ' 0 if x ∈ Hϕ or x ∈ C1,
' e if x ∈ C2 .

Hence both functors in (15.5.2) invert every exit-path in C1, in C2 and in Hϕ. Consider the map

evϕ : {−, 0,+}Φ → {−, 0,+}
given by evaluation at ϕ. By Proposition 2.3.8, the refinement

(C,Φ)→ (C, {−, 0,+})
induces a functor

Π∞(C,Φ)→ Π∞(C, {ϕ})
exhibiting the target as the localization of the source at the exit paths in C1, in C2 and in Hϕ.
Since localization functors are final, we are left to prove that (15.5.2) is an equivalence when
Φ = {ϕ} and W = W ' iset

b,! (Wb). In that case, Π∞(C,Φ)→ {−, 0,+} is an equivalence. Thus,
any point x of Hϕ is initial in Π∞(C,Φ). Hence, the map (15.5.2) identifies canonically with

(iset
b,! (Wb))a(x)→ (iI,!(W ))a(x) .

Since both terms are 0, Proposition 15.5.1 follows. �

Proposition 15.5.3. Let (C,Φ, I) be a polyhedral Stokes stratified space satisfying the conditions
of Theorem 15.2.1. Let E be a presentable stable ∞-category. Then, the induction functor

iI,! : StIset,E → StI,E

is essentially surjective.

Proof. The proof follows the method from [36, Proposition 3.16]. Let F : I → E be a Stokes
functor. By Corollary 9.4.10, it is enough to show that F splits. We argue by recursion on the
cardinality of I (C). If I (C) has one element, there is nothing to prove. Suppose that I (C) has
at least two elements. Then, there exist open strata U and V and a, b ∈ I (C) distinct such that
a is minimal on U and b is minimal on V . Let ia : Ia ↪→ I (resp. ib : Ib ↪→ I) be the cocartesian
fibration constant to a (resp. b) and let i : M ↪→ I be the full subcategory spanned by objects not
in Ia nor Ib. In particular, we have Iset = Iset

a t Iset
b tMset. By Lemma 15.4.7, the fiber sequences

F<a → Fa → Gra F and F<b → Fb → Grb F

admit some splittings. Let us choose some and let F \Ia : I → E and F \Ib : I → E be the
corresponding functors as constructed in Section 9.7. By Corollary 9.7.17, we have to show that
F \Ia and F \Ib split. We are going to show that F \Ia splits as the argument is the same for F \Ib .
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Let i : Ib ∪M ↪→ I be the subcategory spanned by the objects of I not in Ia. Since F is a Stokes
functor, Lemma 9.7.7 implies that F \Ia is a Stokes functor as well. By Lemma 9.7.6, we have
(GrF \Ia)(c) ' 0 for every c not in Ib ∪M. By Proposition 9.5.2, we deduce that F \Ia lies in the
essential image of i! : StIb∪M,E → StI,E. By recursion assumption applied to (C,Φ, Ib ∪M), we
deduce that F \Ia splits. This concludes the proof of Proposition 15.5.3. �

16. Stokes structures and flat bundles

16.1. Real blow-up.

Definition 16.1.1. A strict normal crossing pair is the data of (X,D) where X is a complex
manifold and D is a strict normal crossing divisor in X.

Notation 16.1.2. Let (X,D) be a strict normal crossing pair and put U := X\D. Let D1, . . . , Dl

be the irreducible components of D. For I ⊂ {1, . . . , l}, we put

DI :=
⋂
i∈I

Di and D◦I :=
⋂
I(J

DI \DJ .

We denote by iI : DI ↪→ X and i◦I : DI ↪→ X the canonical inclusions. We note (X,D) for
the stratification X → Fun({D1, . . . , Dl},∆1) induced by the irreducible components of D (see
Remark 2.2.5).

Remark 16.1.3. The canonical functor Π∞(X,D) → Fun({1, . . . , l},∆1) is an equivalence of
∞-categories.

Construction 16.1.4 ([44, §8.b]). Let (X,D) be a strict normal crossing pair. Let D1, . . . , Dl

be the irreducible components of D. For i = 1, . . . , l, let L(Di) be the line bundle over X
corresponding to the sheaf OX(Di) and let S1L(Di) be the associated circle bundle. Put

S1L(D) :=

l⊕
i=1

S1L(Di) .

Let U ⊂ X be an open polydisc with coordinates (z1, . . . , zn) and let zi = 0 be an equation of Di

in U . Let X̃U ⊂ S1L(D)|U be the closure of the image of (zi/|zi|)1≤i≤l : U \D → S1L(D). Then,
the X̃U are independent of the choices made and thus glue as a closed subspace X̃ ⊂ S1L(D)

called the real-blow up of X along D. We denote by π : X̃ → X the induced proper morphism
and by j : X \D → X̃ the canonical open immersion. For I ⊂ {1, . . . , l} of cardinal 1 ≤ k ≤ l, we
put D̃I := π−1(DI) and D̃◦I := π−1(D◦I ) and observe that the restriction

π|D◦I : D̃◦I → D◦I

is a Sk-bundle.

Example 16.1.5. Let ∆ ⊂ Cl be a polydisc with coordinates (z1, . . . , zl), let Y be a complex
manifold and put X = ∆× Y . Let D be the divisor defined by z1 · · · zl = 0. Then, S1L(D) =
∆× (S1)l × Y and

X̃ = {(z, y, u) ∈ S1L(D) such that zk = |zk|uk, 1 ≤ k ≤ l} .

In particular,
X̃ ' (R≥0 × S1)l × Cn−l

and via the above identification, the inclusion X̃ ↪→ S1L(D) reads

(r, u, y)→ (r1u1, . . . , rlul, y, u) .
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Remark 16.1.6. In the situation from Example 16.1.5, let 1 ≤ k ≤ l. Then, the map

zk/|zk| : X \Dk → S1

extends as a map S1L(D)→ S1 given by (z, y, u)→ uk.

Example 16.1.5 implies the following

Lemma 16.1.7. Let (X,D) be a strict normal crossing pair. Then, X̃ is a closed subanalytic
subset of S1L(D) and π : X̃ → X is a subanalytic map.

Lemma 16.1.8. Let (X,D) be a strict normal crossing pair such that X admits a smooth
compactification. Then, π : X̃ → X is strongly proper (Definition 12.3.1).

Proof. Let X ↪→ Y be a smooth compactification of X. At the cost of applying resolution of
singularities, we can suppose that Z := Y \X is a divisor such that E := Z +D is a strict normal
crossing divisor. In particular, there is a pull-back square

(S1L(D), X̃) (S1L(E), Ỹ )

X Y .

Then Lemma 16.1.8 follows from Lemma 12.3.3. �

Recollection 16.1.9 ([44, §8.c]). Let (X,D) be a strict normal crossing pair and put U := X \D.
Let π : X̃ → X be the real blow-up along D and let j : U ↪→ X̃ be the canonical inclusion.
We denote by Amod

X̃
⊂ j∗OU the sheaf of analytic functions with moderate growth along D.

By definition for every open subset V ⊂ X̃, a section of Amod
X̃

on V is an analytic function
f : V ∩U → C such that for every open subsetW ⊂ V with D defined by h = 0 in a neighbourhood
of π(W ), for every compact subset K ⊂W , there exist CK > 0 and NK ∈ N such that for every
z ∈ K ∩ U , we have

|f(z)| ≤ CK · |h(z)|−NK .

The following lemma is obvious:

Lemma 16.1.10. In the setting of Recollection 16.1.9, let (j∗OU )lb ⊂ j∗OU be the subsheaf of
locally bounded functions. Then Amod

X̃
is a unitary sub (j∗OU )lb-algebra of j∗OU such that

A
mod,×
X̃

⊂ (j∗OU )lb .

Recollection 16.1.11 ([44, Definition 9.2]). Let (X,D) be a strict normal crossing pair and put
U := X \D. Let π : X̃ → X be the real blow-up along D and let j : U ↪→ X̃ be the canonical
inclusion. For f, g ∈ j∗OU , we write

f ≤ g if and only if ef−g ∈ Amod
X̃

.

By Lemma 16.1.10, the relation ≤ induces an order on (j∗OU )/(j∗OU )lb. From now on, we view
(j∗OU )/(j∗OU )lb as an object of Shhyp(X̃,Poset).

Remark 16.1.12. Viewing π∗OX(∗D) inside j∗OU , we have

π∗OX(∗D) ∩ (j∗OU )lb = π∗OX .

Hence, π∗(OX(∗D)/OX) can be seen as a subsheaf of (j∗OU )/(j∗OU )lb. From now on, we view it
as an object of Shhyp(X̃,Poset).
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16.2. Sheaf of unramified irregular values.

Definition 16.2.1. Let X be a topological space. Let F ∈ Shhyp(X,Cat∞). We say that F is
locally generated if there is a cover by open subsets U ⊂ X such that for every x ∈ U , the functor
F(U)→ Fx is essentially surjective. We say that F is globally generated if for every x ∈ X, the
functor F(X)→ Fx is essentially surjective.

Local and global generation enjoy the following functoriality property:

Lemma 16.2.2. Let f : Y → X be a morphism of topological spaces. Let F ∈ Shhyp(X,Cat∞).
If F is locally (resp. globally) generated, then so is f∗,hyp(F).

Proof. We argue in the locally generated situation, the globally generated situation being similar.
Let y ∈ Y and put x = f(y). Let U ⊂ X be an open neighbourhood of x as in Definition 16.2.1.
Let V ⊂ Y be an open neighbourhood of y such that f(V ) ⊂ U . For z ∈ V , there is a factorization

F(U)→ (f∗,hyp(F))(V )→ (f∗,hyp(F))z ' Ff(z) .

Since the composition is essentially surjective, so is the second functor. �

Recollection 16.2.3 ([37, Definition 2.4.2]). Let (X,D) be a strict normal crossing pair. A
sheaf of unramified irregular values is a locally generated subsheaf of finite sets I ⊂ OX(∗D)/OX
in the sense of Definition 16.2.1.

The goal of what follows is to show that a sheaf of unramified irregular values is automatically
constructible on (X,D). Before this, a couple of lemmas are needed.

Lemma 16.2.4. Let X be a complex manifold. Let i : Y ↪→ X be a submanifold. Let E be a
quasi-coherent sheaf on X and consider the presheaf-theoretic restriction i−1E. Then,

(1) the presheaf i−1E is a sheaf.

(2) Assume furthermore that for every connected open subset U ⊂ X and every x ∈ U ∩ Y ,
the map E(U)→ Ex is injective. Then for every connected open subset U ⊂ Y and every
x ∈ U , the map (i−1E)(U)→ Ex is injective.

Proof. We first prove (2). Let s ∈ (i−1E)(U) such that sx = 0. Then, there is an open subset
V ⊂ X containing U and e ∈ E(V ) such that s = [(V, e)] in (i−1E)(U). At the cost of replacing V
by a union of sufficiently small balls centred at points of U , we can suppose that V is connected.
By assumption on E we have e = 0 so that s = 0. We now prove (1). Consider the sheaf-theoretic
restriction i∗E. We have to show that the sheafification morphism i−1E→ i∗E is an isomorphism
of presheaves. The question is local. Since sheafification commutes with colimits, it is enough to
treat the case where E = OX . Hence, we can suppose that X ⊂ Cn is a polydisc with coordinates
(z1, . . . , zn) and Y defined by z1 = · · · = zl = 0 for some 1 ≤ l ≤ n. By (2), we know that i−1OX
is separated, so that i−1OX → i∗OX is injective. We show the surjectivity. Let U ⊂ Y be an
open subset and let s ∈ (i∗OX)(U). Then, s is an equivalence class of open cover U of U in Y ,
and for every V ∈ U the datum of a section sV = [(W, fW )] ∈ (i−1OX)(V ) such that for every
V, V ′ ∈ U, we have sV |V ∩V ′ = sV ′ |V ∩V ′ . At the cost of shrinking the W ’s, we can suppose that
each W is a union of balls centred at points of V and Y ∩W = V . At the cost of passing to a
finer cover, we can suppose that each W is a ball and V = Y ∩W . In that case, for every such
W,W ′, the intersection W ∩W ′ is either empty or connected containing a point of U . In the
latter case, the analytic functions fW and fW ′ coincide on an open subset of W ∩W ′. Since
W ∩W ′ is connected, they coincide on W ∩W ′ and thus glue as an analytic function f on the
union Ω of the W ’s. Then, the class [(Ω, f)] ∈ (i−1OX)(U) maps to s. �

Lemma 16.2.5. Let V ⊂ Cn be an open subset. Let y, z ∈ V such that [y, z] ⊂ V . Then, there
is a polydisc δ ⊂ V containing [y, z].
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Proof. At the cost of applying a suitable affine transformation, we can suppose that y = 0 and
z = (1, 0, . . . , 0). For n > 0, consider the polydisc

∆k := {x ∈ Cn such that |x1 − 1/2| < 1/2 + 1/k, |xi| < 1/k, i = 2, . . . , n} .

If ∆k * V for every k > 0, one can construct a sequence of Cn \ V converging to a point of [y, z],
thus producing a point of [y, z] not in V . Contradiction. Hence, ∆k for k big enough does the
job. �

Proposition 16.2.6. Let (X,D) be a strict normal crossing pair. Let I ⊂ OX(∗D)/OX be a
sheaf of unramified irregular values. Then, I ∈ Conshyp

D (X,Set).

Proof. Let D1, . . . , Dl be the irreducible components of D. Let I ⊂ {1, . . . , l} be a subset. We
have to show that i◦,∗I (I ) is locally constant. The question is local. Hence, we can suppose
that X ⊂ Cn is a polydisc with coordinates (z1, . . . , zn) and D defined by z1 · · · zl = 0 for some
1 ≤ l ≤ n with I = {1, . . . , l}. Let x ∈ D◦I . Let B ⊂ X be a polydisc centred at x. At the cost of
shrinking B, we can suppose that B ∩D◦I is a polydisc as well. We have to show that at the cost
of shrinking B further, the restriction (i◦,∗I I )|B∩D◦I is a constant sheaf, which amounts to show
that

(16.2.7) (i◦,∗I I )(B ∩D◦I )→ Iy

is bijective for every y ∈ B ∩D◦I . Since I is locally generated, we can suppose that (16.2.7) is
surjective for every y ∈ B ∩ D◦I . Fix y ∈ B ∩ D◦I . We have to show that (16.2.7) is injective.
Consider the quasi-coherent sheaf E := OB(∗(B ∩ D◦I ))/OB on B. To show that (16.2.7) is
injective, it is enough to show that

(16.2.8) (i◦,∗I E)(B ∩D◦I )→ Ey

is injective. By Lemma 16.2.4, this further amounts to show that

(16.2.9) (i◦,−1
I E)(B ∩D◦I )→ Ey

is injective. Take s ∈ (i◦,−1
I E)(B ∩ D◦I ) and assume that sy = 0. Let z ∈ B ∩ D◦I . We want

to show that sz = 0. Let us represent s by (V, t) where t ∈ E(V ) and B ∩ D◦I ⊂ V ⊂ B. By
Lemma 16.2.5, there is a polydisc ∆ ⊂ V containing [y, z]. Hence, t|∆ ∈ E(∆) is represented by a
meromorphic function f ∈ (OX(∗D))(∆) which is holomorphic in a neighbourhood of y. Thus, f
is holomorphic, so that sz = 0 and the proof of Proposition 16.2.6 is complete. �

Remark 16.2.10. In the setting of Proposition 16.2.6, let us denote by (X̃, D̃) the space X̃
endowed with the stratification induced by that of D on X. Then, Proposition 16.2.6 yields
π∗I ∈ Conshyp

D̃
(X̃,Set).

Under constructibility assumption, local generation can sometimes be upgraded into global
generation, due to the following

Lemma 16.2.11. Let (M,X,P ) be a subanalytic stratified space such that Π∞(X,P ) admits an
initial object. Then, every locally generated constructible sheaf F ∈ Conshyp

P (X,Cat∞) is globally
generated.

Proof. Let y ∈ X. We want to show that F(X)→ Fy is essentially surjective. Let x ∈ X initial
in Π∞(X,P ) and let U ⊂ X be an open neighbourhood of x on which F is globally generated. At
the cost of shrinking U , we can further suppose by Proposition 2.5.6 that x is initial in Π∞(U,P ).
Choose a morphism γ : x→ y in Π∞(X,P ). At the cost of replacing y by a point of γ distinct
from x and sufficiently close to x, we can suppose that y ∈ U . Let F : Π∞(X,D) → Cat∞ be
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the functor corresponding to F via the exodromy equivalence (2.3.6). By assumption, the second
arrow of

lim
Π∞(X,P )

F → lim
Π∞(U,P )

F → F (y)

is essentially surjective, while the first one is an equivalence since x is initial in both Π∞(X,P )
and Π∞(U,P ). Lemma 16.2.11 thus follows. �

Example 16.2.12. Let ∆ ⊂ Cl be a polydisc with coordinates (z1, . . . , zl), let Y be a weakly
contractible complex manifold and put X = ∆× Y . Let D be the divisor defined by z1 · · · zl = 0.
Then 0 is initial in Π∞(X,D).

Example 16.2.13. Let ∆ ⊂ Cl be a polydisc of radius r > 0 with coordinates (z1, . . . , zl), let Y
be a weakly contractible complex manifold and put X = ∆× Y . Let D be the divisor defined
by z1 · · · zl = 0. Let π : X̃ → X be the real blow-up of X along D. Let I1, . . . , Il ⊂ S1 be strict
open intervals. Then, any point of [0, r)l × I1 × · · · × Il × Y ⊂ X̃ above the origin is initial in

Π∞([0, r)l × I1 × · · · × Il × Y, D̃) .

Corollary 16.2.14. Let Y be a weakly contractible complex manifold. Let ∆ ⊂ Cl be a polydisc
with coordinates (z1, . . . , zl) and put X = ∆ × Y . Let D be the divisor defined by z1 · · · zl = 0.
Let I ⊂ OX(∗D)/OX be a sheaf of unramified irregular values. Then, I is globally generated.

Proof. Combine Proposition 16.2.6 with Lemma 16.2.11 applied to Example 16.2.12. �

Corollary 16.2.15. Let ∆ ⊂ Cl be a polydisc with coordinates (z1, . . . , zl), let Y be a weakly
contractible complex manifold and put X = ∆× Y . Let D be the divisor defined by z1 · · · zl = 0.
Let π : X̃ → X be the real blow-up of X along D. Let I ⊂ OX(∗D)/OX be a sheaf of unramified
irregular values. Then, the canonical restriction map

I (X)→ (π∗I )(X̃)

is bijective.

Proof. By Proposition 16.2.6, the sheaf I is constructible on (X,D), so that π∗I is constructible
on (X̃, D̃) (see Remark 16.2.10). Let F : Π∞(X,D)→ Set be the functor corresponding to I
via the exodromy equivalence (2.3.6). By Recollection 2.3.5, we have to show that

lim
Π∞(X,D)

F → lim
Π∞(X̃,D̃)

F ◦ π

is an equivalence. Since Y is weakly contractible, we can suppose that Y is a point. Since Set is
a 1-category, the functor F : Π∞(X,D)→ Set factors uniquely through the homotopy category
ho(Π∞(X,D)) as a functor G : ho(Π∞(X,D))→ Set. Hence we are left to show that

lim
ho(Π∞(X,D))

G→ lim
ho(Π∞(X̃,D̃))

G ◦ π

is an equivalence. To do this, it is enough to show that

(16.2.16) ho(Π∞(X,D))→ ho(Π∞(X̃, D̃))

is final in the 1-categorical sense. If r > 0 denotes the radius of ∆, we have

X̃ = [0, r)l × (S1)l .

Since ho commutes with finite products, we obtain

ho(Π∞(X̃, D̃)) ' ho(Π∞([0, r)l, D))× ho(Π∞((S1)l)) .

Via this equivalence, the functor (16.2.16) identified with the projection on the first term. By [31,
4.1.1.13], we are thus left to show that ho(Π∞((S1)l)) is connected, which is obvious. �



HOMOTOPY THEORY OF STOKES STRUCTURES AND DERIVED MODULI 137

Corollary 16.2.15 implies immediately the following

Corollary 16.2.17. Let (X,D) be a strict normal crossing pair. Let I ⊂ OX(∗D)/OX be a
sheaf of unramified irregular values. Let π : X̃ → X be the real blow-up along D. Then the unit
transformation

I → π∗π
∗I

is an equivalence.

16.3. Good sheaf of unramified irregular values.

Definition 16.3.1. Let X ⊂ Cn be a polydisc with coordinates (z, y) := (z1, . . . , zl, y1, . . . yn−l).
Let D be the divisor defined by z1 · · · zl = 0. Let a ∈ OX,0(∗D)/OX,0 and consider the Laurent
expansion ∑

m∈Zl
am(y)zm .

We say that a admits an order if the set

{m ∈ Zl with am 6= 0} ∪ {0}
admits a smallest element, denoted by ord a.

Remark 16.3.2. The existence of an order does not depend on a choice of coordinates on X.

Recollection 16.3.3 ([37, Definition 2.1.2]). Let (X,D) be a strict normal crossing pair. Let
x ∈ X. A subset I ⊂ OX,x(∗D)/OX,x is good if

(1) every non zero a ∈ I admits an order with aord a invertible in OX,x.

(2) For every distinct a, b ∈ I, a− b admits an order with (a− b)ord(a−b) invertible in OX,x.

(3) The set {ord(a− b), a, b ∈ I} ⊂ Zl is totally ordered.

Recollection 16.3.4 ([37, Definition 2.4.2]). Let (X,D) be a strict normal crossing pair. A good
sheaf of unramified irregular values is a sheaf of unramified irregular values such that for every
x ∈ X, the set Ix ⊂ OX,x(∗D)/OX,x is good in the sense of Recollection 16.3.3.

When restricted to good sheaves of irregular values, the order from Recollection 16.1.11 admits
a handy characterisation that we now describe.

Recollection 16.3.5 ([37, §3.1.2]). Let ∆ ⊂ Cl be a polydisc with coordinates (z1, . . . , zl), let Y
be a complex manifold and put X = ∆× Y and U := X \D. Let π : X̃ → X be the real blow-up
along D and let x ∈ X̃. Let a, b ∈ (π−1(OX(∗D)/OX))x and let a and b be lifts of a and b to
OX(∗D) on some open subset V ⊂ X. By Remark 16.1.6, the function

Re(a− b)|z− ord(a−b)| : V \D → R
extends as a real analytic function

Fa,b : π−1(V )→ R .

Then, the following are equivalent:
(1) a ≤x b in the sense of Recollection 16.1.11;

(2) a = b or a 6= b and Fa,b(x) < 0 .

The goal of what follows is to show that for every good sheaf of unramified irregular values
I ⊂ π∗(OX(∗D)/OX), there exists a finite subanalytic stratification X̃ → P such that π∗I ∈
Conshyp

P (X̃,Poset). Before that, a couple of intermediate steps are needed. To this end, we
introduce the following
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Definition 16.3.6. Let (M,X) be a subanaltyic stratified space. Let F ∈ Sh hyp(X,Poset).
Note that for x ∈ X, the stalk

Fx = colim
x∈U

F(U)

is naturally endowed with an order ≤x by performing the above colimit in Poset instead of Set.
For an open subset U ⊂ X and for a, b ∈ F(U), we put

Ua<b := {x ∈ U such that ax <x bx in Fx}
and

Ua=b := {x ∈ U such that ax = bx in Fx}
and

Ua∗b := {x ∈ U such that ax and bx cannot be compared in Fx} .

Remark 16.3.7. Let (M,X) be a subanaltyic stratified space. Let F ∈ Sh hyp(X,Poset).
For every open subset U ⊂ X and for every a, b ∈ F(U), the set Ua=b is open and Ua<b and
Ua∗b = U \ (Ua<b ∪ Ua>b ∪ Ua=b) are locally closed.

Example 16.3.8. Let ∆ ⊂ Cl be a polydisc with coordinates (z1, . . . , zl), let Y be a complex
manifold and put X = ∆×Y . Let D be the divisor defined by z1 · · · zl = 0. Let I ⊂ OX(∗D)/OX
be a sheaf of unramified irregular values. Let π : X̃ → X be the real blow-up along D. Let
α, β ∈ I (X) and put a = π∗α ∈ (π∗I )(X̃) and b = π∗β ∈ (π∗I )(X̃). Let A ⊂ {1, . . . , l} be the
set of indices i such that α− β has a pole along Di. By Recollection 16.3.5, we have

X̃a=b =
⊔

I⊂{1,...,l}\A

D̃◦I

and
X̃a<b =

⊔
I⊂{1,...,l}
I∩A6=∅

D̃◦I ∩ {Fa,b < 0} .

Furthermore,
X̃a∗b = X̃ \ (X̃a<b ∪ X̃a>b ∪ X̃a=b) .

In particular the three sets above are subanalytic in S1L(D).

Lemma 16.3.9. Let (M,X,P ) be a subanaltyic stratified space where X is closed. Let F ∈
Shhyp(X,Poset). Let ? ∈ {<,=, ∗}. Assume that

(1) Fset ∈ Conshyp
P (X,Set) ;

(2) F is locally generated (Definition 16.2.1) ;

(3) there exists a fundamental system of open neighbourhoods W ⊂ M such that for every
a, b ∈ F(W ∩X), the set (W ∩X)a?b, is subanalytic in W .

Then, for every open subset U ⊂ X subanalytic in M , for every a, b ∈ F(U), the set Ua?b is locally
closed subanalytic in M .

Proof. Local closeness is automatic by Remark 16.3.7. Let x ∈M . We need to show that Ua<b is
subanalytic in a neighbourhood of x in M . Since X is closed, we can suppose that x ∈ X. At
the cost of replacing M by a sufficiently small open neighbourhood of x in M , we can suppose
by (2) that F is globally generated. At the cost of shrinking M further, we can suppose that
P is finite. Since U is a subanalytic subset of M , so are the Up = U ∩Xp for p ∈ P . On the
other hand, the set of connected components of a subanalytic subset is locally finite. Hence,
at the cost of replacing M by a smaller neighbourhood of x, we can suppose that the Up have
only a finite number of connected components C1,p, . . . , Cn(p),p. By global generation, for p ∈ P
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and 1 ≤ i ≤ n(p), the sections a|Ci,p , b|Ci,p extend to X as sections αi,p, βi,p of F. At the cost
of replacing M by a smaller neighbourhood of x, we can suppose by (3) that the Xαi,p?βi,p are
subanalytic in M . On the other hand,

Ua?b =
⊔
p∈P

Ua?b ∩ Up =
⊔
p∈P

n(p)⊔
i=1

(Ci,p)a|Ci,p?b|Ci,p =
⊔
p∈P

n(p)⊔
i=1

Xαi,p?βi,p ∩ Ci,p .

Since a finite union and intersection of subanalytic subsets is again subanalytic, Lemma 16.3.9 is
thus proved. �

Corollary 16.3.10. Let (X,D) be a strict normal crossing pair. Let I ⊂ OX(∗D)/OX be
a good sheaf of unramified irregular values. Let π : X̃ → X be the real blow-up along D and
consider π∗I ∈ Shhyp(X̃,Poset). For every open subset U ⊂ X̃ subanalytic in S1L(D), for
every a, b ∈ (π∗I )(U), the sets Ua<b,Ua=b,Ua∗b are locally closed subanalytic in S1L(D).

Proof. Let ? ∈ {<,=, ∗}. We prove that Ua?b is locally closed subanalytic in M . We check
that the conditions of Lemma 16.3.9 are satisfied. First observe that X̃ is closed in S1L(D).
Condition (1) is satisfied by Remark 16.2.10. Condition (2) is satisfied by Lemma 16.2.2. To
check (3), we can suppose that X ⊂ Cn is a polydisc with D defined by z1 · · · zl = 0. Let x ∈ X̃.
We want to find a fundamental system of open neighbourhoods of x in S1L(D) satisfying (3).
By Proposition 2.5.6, it is enough to show that any open subset W ⊂ S1L(D) such that x is
initial in Π∞(W ∩ X̃, D̃) does the job. Indeed let W ⊂ S1L(D) be such an open subset and put
U := W ∩ X̃. Let a, b ∈ (π∗I )(U). By Corollary 16.2.15, the canonical restriction map

I (X)→ (π∗I )(X̃)

is bijective with I and π∗I globally generated in virtue of Corollary 16.2.14 and Lemma 16.2.2.
Hence, there is α, β ∈ I (X) such that ax = (π∗α)x and bx = (π∗β)x. Since x is initial in
Π∞(W ∩ X̃, D̃), we obtain a = (π∗α)|U and b = (π∗β)|U . Thus, we have

Ua<b = X̃π∗α?π∗β ∩W .

Hence, to show that Ua?b is subanalytic in W , it is enough to show that X̃π∗α?π∗β is subanalytic
in S1L(D). This case follows from Example 16.3.8. �

Lemma 16.3.11. Let (M,X,P ) be a subanalytic stratified space where P is finite. Let F ∈
Shhyp(X,Poset) such that Fset is P -hyperconstructible and takes values in finite sets. Assume
the existence of a finite cover of X by open subanalytic subsets U ⊂ X such that

(1) F|U is globally generated ;

(2) for every a, b ∈ F(U), the sets Ua<b, Ua=b and Ua∗b are locally closed subanalytic in M .

Then, there is a finite subanalytic refinement Q→ P such that F ∈ Conshyp
Q (X,Poset).

Proof. Let U ⊂ X be an open subanalytic subset satisfying (1) and (2). For f : F(U)× F(U)→
{<,=, ∗, >} and p ∈ P , put

Uf,p := Up
⋂ ⋂

(a,b)∈F(U)2

Uaf(a,b)b .

Note that Up is a subanalytic subset of M since U and Xp are. Since F(U) is finite, item (2)
implies that Uf,p is a locally closed subanalytic subset of M . By assumption, we have Fset|Up ∈
Lochyp(Xp,Set). By (1), we deduce F|Uf,p ∈ Lochyp(Uf,p,Poset). Then, Lemma 16.3.11 follows
from Lemma 2.5.8. �
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Corollary 16.3.12. Let (X,D) be a strict normal crossing pair where X admits a smooth
compactification. Let I ⊂ OX(∗D)/OX be a good sheaf of unramified irregular values. Let
π : X̃ → X be the real blow-up along D. Then, there exists a finite subanalytic stratification
X̃ → P refining (X̃, D̃) such that π∗I ∈ Conshyp

P (X̃,Poset).

Proof. By Remark 16.2.10, (π∗I )set is hyperconstructible on (X̃, D̃). Let X ↪→ Y be a smooth
compactification of X. At the cost of applying resolution of singularities, we can suppose that
Z := Y \X is a divisor such that E := Z +D has strict normal crossings. Hence, X admits a
finite cover by open subanalytic subsets U ' ∆n−k × (∆∗)k with coordinates (z, y) such that
D ∩ U is defined by z1 · · · zl = 0, where ∆ ⊂ C is the unit disc. Let S+, S− ⊂ ∆∗ be a cover by
open sectors. For ε : {1, . . . , k} → {−,+}, put

Uε := ∆n−k × Sε(1) × · · · × Sε(k)

and Ũε := π−1(Uε). Note that Ũε is a subanalytic subset of S1L(D) since Uε ⊂ X is subanalytic.
To conclude, it is enough to show that Ũε satisfies the conditions (1) and (2) of Lemma 16.3.11.
By Lemma 16.2.11, the sheaf I |Uε is globally generated. By Lemma 16.2.2, we deduce that
(π∗I )|Ũε is globally generated. Let a, b ∈ (π∗I )(Ũε) and ? ∈ {<,=, ∗}. By Corollary 16.3.10,
the set Ũε,a?b is subanalytic in S1L(D). By Remark 16.3.7, it is locally closed in S1L(D). Then,
Corollary 16.3.12 follows from Lemma 16.3.11. �

16.4. Level structure.

Construction 16.4.1. The goal of what follows is to construct a local level structure for good
sheaves of unramified irregular values. Assume that X ⊂ Cn is a polydisc with coordinates (z, y) =
(z1, . . . , zl, y1, . . . , yn−l). Let D be the divisor defined by z1 · · · zl = 0. Let I ⊂ OX(∗D)/OX be
a good sheaf of unramified irregular values. Let π : X̃ → X be the real-blow up along D and let
X̃ → P be a finite subanalytic stratification adapted to I . Let X̃ → P be a finite subanalytic
stratification such that π−1I is P -constructible. By condition (3) from Recollection 16.3.3, the
set {a− b, a, b ∈ I} is totally ordered with respect to the partial order on Zl. Hence, there exists
a sequence

(16.4.2) m(0) < m(1) < · · · < m(d) = 0

in Zl such that for every k = 0, . . . , d − 1, the vectors m(k) and m(k + 1) differ only by 1 at
exactly one coordinate and every ord(a − b) for a, b ∈ I (X) distinct appears in this sequence
(such a sequence is referred to as an auxiliary sequence in [37, §2.1.2]). Fix k = 0, . . . , d and put

I k := Im(I → OX(∗D)/zm(k)OX) .

Then, I k is a constructible sheaf in finite sets on (X,D). The goal of what follows is to endow
π∗I k with a canonical structure of sheaves in finite posets. For a section a ∈ I we denote by
[a]k its image under I → I k.

Lemma 16.4.3. Let x ∈ X̃. Let a, b ∈ Iπ(x), such that a <x b and [a]k 6= [b]k. Then for every
a′, b′ ∈ Iπ(x) with [a]k = [a′]k and [b]k = [b′]k, we have a′ ≤x b′.

Proof. We can suppose that x = 0. By assumption a 6= b. Write

a− b := f(y)zord(a−b) +
∑

m>ord(a−b)

(a− b)m(y)zm .

where f(0) 6= 0. Put x = (θ1, . . . , θl) ∈ π−1(0) and write ord(a− b) = (m1, . . . ,ml). Then, the
assumption a <x b means

<(f(0)em1θ1+···+mlθl) < 0 .
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Now let a′, b′ ∈ Iπ(x) with [a]k = [a′]k and [b]k = [b′]k. In particular [a− b]k = [a′ − b′]k, that is

a′ − b′ = a− b+ zm(d−k)g , g ∈ OX,0

= f(y)zord(a−b) + zm(d−k)g +
∑

m>ord(a−b)

(a− b)m(y)zm

Since [a]k 6= [b]k, we have m(d− k) > ord(a− b). Hence ord(a− b) = ord(a′ − b′) and

a′ − b′ = f(y)zord(a−b) +
∑

m>ord(a′−b′)

(a′ − b′)m(y)zm

Hence, we also have a′ ≤x b′. �

Corollary 16.4.4. Let x ∈ X̃. Then, there is a unique order ≤kx on I k
π(x) such that

(Iπ(x),≤x)→ (I k
π(x),≤

k
x)

is a level morphism of posets in the sense of Definition 10.1.1.

Proof. The uniqueness is obvious since Iπ(x) → I k
π(x) is surjective. For α, β ∈ I k

π(x), put α ≤
k
x β

if α = β or if α 6= β and there exists a, b ∈ Iπ(x) with α = [a]k and β = [b]k such that a <x b
and [a]k 6= [b]k. Then, Corollary 16.4.4 follows from Lemma 16.4.3. �

We stay in the setting of Construction 16.4.1. For every open subset U ⊂ X̃, we define a
partial order ≤U on (π∗I k)(U) by

a ≤U b if and only if a ≤kx b in I k
π(x) for every x ∈ U .

Then, π∗I k ∈ ConsP (X̃,Poset) and the canonical morphism

π∗I → π∗I k

is a morphism of P -constructible sheaves in finite posets on X̃. Hence, the chain

OX(∗D)/OX → OX(∗D)/zm(1)OX → · · · → OX(∗D)/zm(d)OX

induces a chain of constructible sheaves on (X,D)

I = I d → I d−1 → · · · → I 0 = ∗

which in turn induces a chain

π∗I = π∗I d → π∗I d−1 → · · · → π∗I 0 = ∗

of P -constructible sheaves in finite posets over X̃. By Corollary 16.4.4, the corresponding chain
of cocartesian fibrations in finite posets on Π∞(X̃, P )

(16.4.5) I = Id → Id−1 → · · · → I0 = ∗

is a level structure on (X̃, P, I) relative to (X,D) in the sense of Definition 11.5.3.

Remark 16.4.6. The level structure (16.4.5) depends on a choice of auxiliary sequence (16.4.2).
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16.5. Piecewise elementarity.

Lemma 16.5.1. Fix X ⊂ Cn be a polydisc with coordinates (z, y) = (z1, . . . , zl, y1, . . . , yn−l).
Let D be the divisor defined by z1 · · · zl = 0 and put I = {1, . . . , l}. Let I ⊂ OX(∗D)/OX be a
good sheaf of unramified irregular values. Let π : X̃ → X be the real-blow up along D. Let x ∈ X̃
such that π(0) = 0. Let m ∈ Z≤0 non zero. Then, there is a closed subanalytic neighbourhood
S ⊂ X̃◦I of x mapping to a closed subanalytic neighbourhood B ⊂ D◦I of 0 such that for every
y ∈ B, the following holds ;

(1) the fibre Sy = S ∩ π−1(y) is homeomorphic to a closed cube in Rl,

(2) Via the homeomorphism from (1), for every a, b ∈ I defined on B with ord(a− b) = m,
the Stokes locus (Sy)a,b is a hyperplane whose complement has exactly two components
C1 and C2 such that a <x b for every x ∈ C1 and b <x a for every x ∈ C2.

Proof. We have X̃◦I = (S1)l × Cn−l and we see (S1)l as the quotient Rl. Put m = (m1, . . . ,ml).
Let A ⊂ R be a finite set. For α ∈ A, the locus of points θ ∈ (S1)l satisfying

cos(α+m1θ1 + · · ·+mlθl) = 0

is the image under the canonical projection Rl → (S1)l of the set of affine hyperplanes H(α, k) ⊂
Rl,k ∈ Z defined by

α+m1θ1 + · · ·+mlθl = π/2 + kπ .

Let x̃ ∈ Rl mapping to x. Note that for every α ∈ A and k ∈ Z, the hyperplanes H(α, k) and
H(α, k + 1) are parallel and distant by π/‖m‖. Hence, for every sufficiently generic choice of
point z close enough to x̃, the closed cube C(x,A) ⊂ Rl centred at z with edges of length π/‖m‖
and with two faces parallel to the above hyperplanes satisfies

(a) for every α ∈ A, there is a unique kα ∈ Z such that C(x,A) meets H(α, kα).

(b) C(x,A) \H(α, kα) has exactly two connected components.
Since p : Rl → (S1)l is a diffeomorphism in a neighbourhood of C(x,A), its image p(C(x,A)) is a
closed subanalytic subset of (S1)l. For a, b ∈ I defined in a neighbourhood of 0, write

a− b := fa,b(y)zord(a−b) +
∑
m′>m

(a− b)m′(y)zm
′
.

Choose some argument αa,b ∈ R for fa,b(0) and put

A := {αa,b, a, b ∈ I defined in a neighbourhood of 0 with ord(a− b) = m} .

Fix ε > 0 small enough and put

S := p(C(x,A))×B(0, ε) ⊂ X̃◦I
where B(0, ε) ⊂ Cn−l is the ball of radius ε centred at 0. Note that (1) is satisfied for every
y ∈ B(0, ε). Since the conditions (a) and (b) are satisfied for C(x,A), observe that S satisfies (2)
for y = 0. Since the conditions (a) and (b) are open in the choice of A, we deduce the existence
of ε > 0 such that (2) holds for every y ∈ B(0, ε). This concludes the proof of Lemma 16.5.1. �

Proposition 16.5.2. Fix X ⊂ Cn be a polydisc with coordinates (z, y) = (z1, . . . , zl, y1, . . . , yn−l).
Let D be the divisor defined by z1 · · · zl = 0. Let I ⊂ OX(∗D)/OX be a good sheaf of unramified
irregular values. Let π : X̃ → X be the real-blow up along D and let X̃ → P be a finite subanalytic
stratification adapted to I . Let m(0) < m(1) < · · · < m(d) = 0 be an auxiliary sequence as in
(16.4.2). Then, the level structure (16.4.5) is strongly piecewise elementary (Definition 11.5.3).
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Proof. Let k = 1, . . . , d, note p : Ik → Ik−1. Consider the pullback square

(16.5.3)
I k
p I k

I k−1,set I k−1 ,

π p

Denote by D1, . . . , Dl the components of D and fix I ⊂ {1, . . . , l}. Then, we have to show that
(X̃◦I , P, I

k
p|X̃◦I ) is piecewise elementary at every point x ∈ X̃ in the sense of Definition 11.3.19.

Since this is a local question on D◦I , we can suppose that π(x) = 0 and that I set is the constant
sheaf on D◦I . That is, we can suppose that I = {1, . . . , l}. We want to apply Theorem 15.2.4. For
this, we need to compute the Stokes loci of the sections of I k

p on X̃◦I = (S1)l ×D◦I . Since I set

is the constant sheaf on D◦I , so is I k,set = I k,set
p . Hence, the map

I set(D◦I )→ I k,set
p (D◦I )

is surjective. Let a, b ∈ I set(D◦I ) such that their images [a]k, [b]k ∈ I k,set
p (D◦I ) are distinct. In

particular, we have

(16.5.4) ord(a− b) < m(k) .

Thus,

[a]k−1 = [b]k−1 ⇔ a− b ∈ zm(k−1)OX

⇔ ord(a− b) ≥ m(k − 1)

⇔ ord(a− b) = m(k − 1) By (16.5.4)

In particular,

ord(a− b) 6= m(k − 1)⇔ [a]k−1 6= [b]k−1

⇔ the Stokes locus of [a]k,[b]k viewed as sections of π∗I k
p is X̃◦I .

Thus, by Lemma 16.5.1, there is a closed subanalytic neighbourhood S ⊂ X̃◦I of x mapping to a
closed subanalytic neighbourhood B ⊂ D◦I of 0 such that for every y ∈ B, the following holds ;

(1) the fibre Sy = S ∩ π−1(y) is homeomorphic to a closed cube in Rl,

(2) via the homeomorphism from (1), for every a, b ∈ I defined on B, the Stokes locus
(Sy)a,b is either Sy or a hyperplane whose complement has exactly two components C1

and C2 such that a <x b for every x ∈ C1 and b <x a for every x ∈ C2.

By Theorem 15.2.4, the Stokes stratified space (Sy, P, I
k
p|Sy) is elementary for every y ∈ D◦I ,

which concludes the proof of Proposition 16.5.2. �

Corollary 16.5.5. Let (X,D) be a normal crossing pair where X admits a smooth compacti-
fication. Let I ⊂ OX(∗D)/OX be a good sheaf of unramified irregular values. Let π : X̃ → X

be the real-blow up along D and let X̃ → P be a finite subanalytic stratification such that
π∗I ∈ ConsP (X̃,Poset). Let (X̃, P, I) be the associated Stokes analytic stratified space. Then,
π : (X̃, P, I)→ (Y,Q) is a strongly proper family of Stokes analytic stratified spaces in finite posets
locally admitting a piecewise elementary level structure.

Proof. Combine Lemma 16.1.8 with Proposition 16.5.2. �
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16.6. Sheaf of (ramified) irregular values. The goal of this subsection is to enhance Sec-
tion 16.2 to the ramified setting. Since this requires to work directly on X̃, we start by transporting
the notion of sheaf of unramified irregular values from X to X̃.

Lemma 16.6.1. Let (X,D) be a strict normal crossing pair. Let π : X̃ → X be the real blow-up
along D. Let I ⊂ π∗(OX(∗D)/OX) be a sheaf. Then, the following are equivalent:

(1) There is a sheaf of unramified irregular values J ⊂ OX(∗D)/OX such that I ' π∗J .

(2) the direct image π∗I ⊂ OX(∗D)/OX is a sheaf of unramified irregular values and the
counit transformation π∗π∗I → I is an equivalence.

Proof. Immediate from Corollary 16.2.17. �

Definition 16.6.2. If the equivalent conditions of Lemma 16.6.10 are satisfied, we say that
I ⊂ π∗(OX(∗D)/OX) is a sheaf of unramified irregular values. If furthermore π∗I is a good
sheaf of unramified irregular values, we say that I is a good sheaf of unramified irregular values.

Remark 16.6.3. By design, Lemma 16.6.1 and Corollary 16.2.17 imply that (π∗, π∗) induce a
bijection between (good) sheaves of irregular values on X̃ and (good) sheaves of irregular values
on X.

Construction 16.6.4 ([44, 9.c]). Let X ⊂ Cn be a polydisc with coordinates (z1, . . . , zn).
Let D be the divisor defined by z1 · · · zl = 0 and put U := X \ D. Let π : X̃ → X be the
real blow-up along D. Let j : U ↪→ X̃ be the canonical inclusion. Define ρ : Xd → X by
(z1, . . . , zn) → (zd1 , . . . , z

d
l , zl+1, . . . , zn) for d ≥ 1 and consider the (not cartesian for d > 1)

commutative square

X̃d X̃

Xd X

ρ̃

πd π

ρ

of real blow-up along D. The unit transformation OU ↪→ ρ∗OUd yields an inclusion

j∗OU ↪→ j∗ρ∗OUd .

On the other hand, the unit transformation π∗dOXd(∗D) ↪→ jd,∗OUd yields

ρ̃∗π
∗
dOXd(∗D) ↪→ ρ̃∗jd,∗OUd = j∗ρ∗OUd .

Put
IVd := j∗OU ∩ ρ̃∗π∗dOXd(∗D) ⊂ j∗OU .

As in Remark 16.1.12, we have

IVd ∩ (j∗OU )lb = j∗OU ∩ ρ̃∗π∗dOXd .
We put

I Vd := IVd/(IVd ∩ (j∗OU )lb) ⊂ (j∗OU )/(j∗OU )lb .

For an arbitrary strict normal crossing pair (X,D), the I Vd, d ≥ 1 are defined locally and glue
into subshseaves

I Vd(X,D) ⊂ (j∗OU )/(j∗OU )lb

for d ≥ 1. By Recollection 16.1.11, we view I Vd(X,D) as an object of Shhyp(X̃,Poset).

Example 16.6.5. In the setting of Construction 16.6.4, we have

I V1(X,D) = π∗(OX(∗D)/OX)

in virtue of Remark 16.1.12.
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Construction 16.6.4 suggests to introduce the following

Definition 16.6.6. Let (X,D) be a strict normal crossing pair. Let d ≥ 1 be an integer. A
d-Kummer cover of (X,D) is an holomorphic map ρ : X → X such that there is a cover of X by
open subsets U with ρ(U) ⊂ U such that ρ|U reads as

(16.6.7) (z1, . . . , zn)→ (zd1 , . . . , z
d
l , zl+1, . . . , zn)

for some choice of local coordinates (z1, . . . , zn) with D defined by z1 · · · zl = 0.

Remark 16.6.8. Following [44], in the setting of Definition 16.6.6, we will denote the source of
ρ by Xd instead of X.

Lemma 16.6.9 ([44, Lemma 9.6]). Let (X,D) be a strict normal crossing pair. Let π : X̃ → X

be the real blow-up along D. Let j : U ↪→ X̃ be the canonical inclusion. Let d ≥ 1 be an integer
and let ρ : Xd → X be a d-Kummer cover of (X,D). Then, via the inclusion

ρ̃∗j∗ρ∗OUd = ρ̃∗ρ̃∗j∗OUd ↪→ j∗OUd ,

we have

ρ̃∗(I Vd(X,D)) = π∗d(OXd(∗D)/OXd)

in Shhyp(X̃d,Poset).

Lemma 16.6.10. Let (X,D) be a strict normal crossing pair. Let d ≥ 1 be an integer and let
I ⊂ I Vd(X,D) be a sheaf. Then, the following are equivalent:

(1) For every x ∈ X, there exist local coordinates (z1, . . . , zn) centred at x with D defined by
z1 . . . zl = 0 such that for the map ρ given by (16.6.7), the pullback ρ̃∗I is a sheaf of
unramified irregular values in the sense of Definition 16.6.2.

(2) For every open subset U ⊂ X and every d-Kummer cover ρ : Ud → U , the pullback ρ̃∗I
is a sheaf of unramified irregular values in the sense of Definition 16.6.2.

Proof. Left to the reader. �

Definition 16.6.11. If the equivalent conditions of Lemma 16.6.10 are satisfied, we say that
I ⊂ I Vd(X,D) is a sheaf of irregular values. If furthermore the ρ̃∗I are good sheaves of
unramified irregular values, we say that I is a good sheaf of irregular values.

Lemma 16.6.12. Let f : (N,Y,Q)→ (M,X,P ) be a morphism of analytic stratified spaces such
that the induced morphism f : Y → X is open surjective. Let F ∈ Conshyp

P (X,Cat∞). Then, F is
locally generated if and only if f∗(F) is locally generated.

Proof. The direct implication follows from Lemma 16.2.2. Assume that f∗(F) is locally generated.
To show that F is locally generated, it is enough to show in virtue of Proposition 2.5.6 that
every open subset U ⊂ X such that Π∞(U,P ) admits an initial object x contains an open
neighbourhood of x on which F is globally generated. By surjectivity, choose x′ ∈ Y above x.
Since f∗(F) is locally generated, we can choose an open subset V ′ ⊂ Y containing x′ on which
f∗(F) is globally generated. By Lemma 16.2.2, we can suppose that V ′ ⊂ f−1(U). At the cost of
shrinking V ′ further, we can suppose by Proposition 2.5.6 that x′ is initial in Π∞(V ′, Q). Put
V := f(V ′) ⊂ U . Note that V is an open neighbourhood of x by openness of f : Y → X. To
conclude, we are left to show that F|V is globally generated. Let y ∈ V and let us show that
F(V )→ Fy is essentially surjective. Choose y′ ∈ V ′ above y. Then, by design of U and V ′ there
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is a commutative diagram

F(U) Fx ' (f∗(F))x′

F(V ) (f∗(F))(V ′)

Fy ' (f∗(F))y′

∼

o

The conclusion thus follows. �

Proposition 16.6.13. Let (X,D) be a strict normal crossing pair. Let I ⊂ I Vd(X,D) be a
sheaf of irregular values for some d ≥ 1. Then, the following hold:

(1) I set is hyperconstructible on (X̃, D̃);

(2) I is locally generated;

If furthermore I is good, then

(3) for every open subset U ⊂ X̃ subanalytic in S1L(D), for every a, b ∈ I (U), the sets
Ua<b,Ua=b,Ua∗b are locally closed subanalytic in S1L(D);

If furthermore X admits a smooth compactification, then

(4) there exists a finite subanalytic stratification X̃ → P refining (X̃, D̃) such that I ∈
Conshyp

P (X̃,Poset).

Proof. Item (1) follows from the fact that local hyperconstancy can be check locally for the
étale topology. Item (2) is a local question. Hence, we can assume the existence of a surjective
d-Kummer cover ρ : Xd → X of (X,D) of the form (16.6.7) such that ρ̃∗I is a sheaf of unramified
irregular values. In particular ρ̃−1I is locally generated. Observe that ρ̃ is open and surjective.
Then, (2) follows from Lemma 16.6.12. Let us prove (3). We are going to apply Lemma 16.3.9.
Conditions (1) and (2) from Lemma 16.3.9 are satisfied. To show that Lemma 16.3.9-(3) is
satisfied, we can suppose the existence of a surjective Kummer cover ρ : Xd → X such that ρ̃∗I
is a sheaf of unramified irregular values. Let W ⊂ S1L(D) be an open subanalyticsubset. Let
? ∈ {<,=, ∗} and let a, b ∈ I (W ∩ X). We want to show that (W ∩ X̃)a?b is a subanalytic
subset of W . Since W and X̃ are subanalytic in S1L(D), so is W ∩ X̃. Hence ρ̃∗(W ∩ X̃) ⊂ X̃d

is subanalytic as well. By Corollary 16.3.10 applied to ρ̃−1I , we know that (ρ̃∗(W ∩ X̃))π∗a?π∗b

is subanalytic. On the other hand, we have

(W ∩ X̃)a?b = ρ̃((ρ̃∗(W ∩ X̃))π∗a?π∗b)

Since the image of a subanalytic subset by a proper map is again subanalytic, we conclude that
(W ∩ X̃)a?b is subanalytic and (3) is proved. We know prove (4). Let X ↪→ Y be a smooth
compactification of X. At the cost of applying resolution of singularities, we can suppose that
Z := Y \X is a divisor such that E := Z +D has strict normal crossings. Hence, X admits a
finite cover by open subanalytic subsets U ' ∆n−k × (∆∗)k with coordinates (z, y) such that
∆ ∩ U is defined by z1 · · · zl = 0, where ∆ ⊂ C is the unit disc. Let S+, S− ⊂ ∆∗ be a cover by
open sectors. For ε : {1, . . . , k} → {−,+}, put

Uε := ∆n−k × Sε(1) × · · · × Sε(k) ⊂ U
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Let (I+, I−) ⊂ S1 be a cover by strict open intervals. For ε : {1, . . . , k} → {−,+} and
η : {1, . . . , l} → {−,+}, put

Vε,η := [0, 1)l × Iη1
× · · · × Iηl ×∆n−l−k × Sε(1) × · · · × Sε(k) ⊂ π−1(Uε)

Note that Vε,η is a subanalytic subset of S1L(D). To prove (4), it is enough to show that the
Vε,η satisfy the conditions of Lemma 16.3.11. This follows from the above points (1) (2) (3) and
Lemma 16.2.11 applied to Example 16.2.13. �

Proposition 16.6.14. Let (X,D) be a normal crossing pair where X admits a smooth com-
pactification. Let π : X̃ → X be the real-blow up along D. Let I ⊂ I Vd(X,D) be a good sheaf
of irregular values for some d ≥ 1. Let X̃ → P be a finite subanalytic stratification such that
I ∈ ConsP (X̃,Poset). Let (X̃, P, I) be the associated Stokes analytic stratified space. Then,
π : (X̃, P, I)→ (Y,Q) is a strongly proper family of Stokes analytic stratified spaces in finite posets
locally admitting a ramified piecewise elementary level structure in the sense of Definition 11.5.12.

Proof. Immediate from Corollary 16.5.5. �

Proposition 16.6.14 unlock all the results proved in Section 12 and Section 13. In particular,
we have the following

Theorem 16.6.15. In the setting of Proposition 16.6.14, let k be an animated commutative ring.
Then, StI is locally geometric of finite presentation. Moreover, for every animated commutative
k-algebra A and every morphism

x : Spec(A)→ StI

classifying a Stokes functor F : I→ PerfA, there is a canonical equivalence

x∗TStI ' HomFun(I,ModA)(F, F )[1] ,

where TStI denotes the tangent complex of StI and the right hand side denotes the ModA-enriched
Hom of Fun(I,ModA).

Proof. Combine Corollary 16.5.5 with Theorem 13.1.4. �



148 MAURO PORTA AND JEAN-BAPTISTE TEYSSIER

Part 4. Categorical complements

This fourth part is to be understood as an appendix, collecting auxiliary results needed in
the main body, mostly of categorical flavor. At the same time, we use in a couple of points
the language of the specialization equivalence that has been developed in Section 6 to obtain
important structural results for cocartesian fibrations, that are interesting in their own right. See
in particular Theorem 17.1.2, Theorem 18.2.1 and Corollary 20.2.8.

17. Compactness results for ∞-categories

17.1. Compactness in the unstable setting. Inspired by the usual terminology in non-
commutative geometry (see e.g. [33, Chapter 11]), we introduce:

Definition 17.1.1. We say that an ∞-category C is
(1) compact if it is a compact object in Cat∞;

(2) proper if for every c, c′ ∈ C, the mapping space MapC(c, c′) is a compact object in Spc.

The first goal of this section is to prove the following:

Theorem 17.1.2. Let X be an ∞-category and let A → X be a cocartesian fibration. Assume
that X is compact and that for every x ∈ X, the fiber Ax is compact in Cat∞. Then A is compact
in Cat∞ as well.

Remark 17.1.3. See [10, Remark 6.5.4] for an analogous statement for finite ∞-categories
instead of compact ones.

The proof will use the specialization equivalence. Before giving it, we need a couple of
preliminaries.

Lemma 17.1.4.
(1) Compact objects in Cat∞ are closed under finite products.

(2) An ∞-category X ∈ Cat∞ is compact if and only if for every filtered diagram C• : I →
Cat∞ with colimit C, the canonical map

(17.1.5) colim
i

Fun(X,Ci)→ Fun(X,C)

is an equivalence in Cat∞.

Proof. First we prove (1). Fix therefore two compact ∞-categories X and Y. We can suppose
that X and Y are retract of finite ∞-categories X′ and that Y′, respectively. Then X × Y is a
retract of X′ × Y, which in turn is a retract of X′ × Y′. It is therefore sufficient to prove that the
latter is again a finite ∞-category. This latter statement follows immediately from the fact that
the products ∆n ×∆m are again finite.

We now prove point (2). Since ∗ is compact, we see that the stated condition implies the
compactness of X by applying MapCat∞(∗,−) to (17.1.5). As for the converse, since Cat∞ is
compactly generated by the standard simplexes and since −×X a Fun(X,−), it is in fact enough
to prove that for every [n] ∈∆, the canonical map

colim
i

MapCat∞(∆n × X,Ci)→ MapCat∞(∆n × X,C)

is an equivalence. Since point (1) guarantees that ∆n × X is again compact, the conclusion
follows. �

Lemma 17.1.6. Let X be an ∞-category. Then:
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(1) the forgetful functor

UX : CartX → Cat∞/X

commutes with filtered colimits;

(2) if X is compact in Cat∞, then the functor

ΣX : Cat∞/X → Cat∞

commutes with filtered colimits.

Proof. Notice that UX is by definition faithful. Thus, to prove (1) it is enough to prove that for
any filtered diagram C• : I → CartX, the following two statements hold:

(i) the colimit p : C→ X of UX(C•) : I → Cat∞/X is a cartesian fibration;

(ii) for every other cartesian fibration q : D→ X equipped with a cone f• : C• → D in CartX,
the induced functor f : C→ D preserves cartesian edges.

For (i), it is enough to apply the definition. First, since the horns Λni and the simplexes ∆n

are compact in Cat∞, we see that inner fibrations are stable under filtered colimits. Second,
write λi : Ci → C for the canonical maps. Since the diagram was filtered, we see that every object
c ∈ C is of the form λi(ci) for some i ∈ I and some ci ∈ Ci. Let α : x→ p(c) be a morphism in X.
Since p(c) ' p(λi(ci)) ' pi(ci) and since pi is a cartesian fibration, we can find a pi-cartesian lift
βi : di → ci of α inside Ci. Set d := λi(di) and β := λi(βi). We claim that β is a p-cartesian lift of
α. To see this, for every (j, u : i→ j) ∈ Ii/, write λu : Ci → Cj for the induced functor. Consider
then the following commutative square:

colim
(j,u)∈Ii/

Cj/λu(βi) colim
(j,u)∈Ii/

(
Cj/λu(di) ×X/p(c)

X/α
)

C/β C/d ×X/p(c)
X/α ,

where the colimits are computed in Cat∞. Since λu preserves cartesian edges, we see that the
top horizontal map is an equivalence. It is therefore enough to prove that the vertical arrows are
equivalence. Since the colimit is filtered, it commutes with fiber products, and therefore we are
reduced to check that the canonical functors

colim
(j,u)∈Ii/

Cj/λu(βi) → C/β and colim
(j,u)∈Ii/

Cj/λu(di) → C/d

are equivalences. We deal with the one on the left, as the other follows by a similar argument.
Since Cat∞ is compactly generated by the standard simplexes, it is enough to prove that for
every ∆n, the canonical map

colim
(j,u)∈Ii/

MapCat∞(∆n,Cj/λu(βi))→ MapCat∞(∆n,C/β)

is an equivalence. Unraveling the definition of the comma category and using the identification
∆n ?∆1 ' ∆n+2, we see that this map is canonically identified with the upper left diagonal map
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in the following commutative cube:

Mapβ(∆n+2,C) Map(∆n+2,C)

colim
(j,u)∈Ii/

Mapλu(βi)(∆
n+2,Cj) colim

(j,u)∈Ii/
Map(∆n+2,Cj)

∗ Map(∆1,C)

∗ colim
(j,u)∈Ii/

Map(∆1,Cj) .

evn+1,n+2

β

λu(βj)

evn+1,n+2

Notice that the front and the back squares are pullback by definition. It is therefore sufficient
to check that the other diagonal maps are equivalences, and this follows directly from the fact
that both ∆n+2 and ∆1 are compact in Cat∞. This proves at the same time that p : C→ X is a
cartesian fibration, and that p-cartesian edges are exactly the morphisms of the form λi(βi) for
some pi-cartesian edge βi inside Ci. In particular, (ii) follows immediately.

We now prove (2). Notice that ΣX is right adjoint to the functor −× X : Cat∞ → Cat∞/X.
It is therefore enough to verify that − × X commutes with compact objects. Recall from [25,
Lemma A.3.10] that an object in Cat∞/X is compact if and only if it is compact in Cat∞
after forgetting the structural map to X. Since X itself is compact, the conclusion follows from
Lemma 17.1.4-(1). �

We are now ready for:

Proof of Theorem 17.1.2. Fix a filtered diagram E• : I → Cat∞ with colimit E. In virtue of
Lemma 17.1.4-(2), we have to prove that the canonical map

colim
I

Fun(A,Ei)→ Fun(A,E)

is an equivalence. Write ΥA for the straightening of A and recall from Notation 6.2.4 that we
write EA

c for the cartesian fibration classifying the functor

Fun(ΥA(−),E) : Xop → Cat∞ .

We similarly define the cartesian fibrations EA
i,c. Consider the canonical map

colim
I

EA
i,c → EA

c

in CartX. To see that this map is an equivalence, it is enough to test that for each x ∈ X, the
induced map between the fibers at x is an equivalence. However, at the level of fibers at x, this
map is canonically identified with

colim
I

Fun(Ax,Ei)→ Fun(Ax,E) .

Since Ax is compact by assumption, we see Lemma 17.1.4-(2) guarantees that this map is indeed
an equivalence.

We can now apply Lemma 17.1.6-(1) to deduce that the canonical map

colim
I

EA
i,c → EA

c
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is an equivalence also when the colimit is computed in Cat∞/X. At this point, the conclusion
follows from the identifications

Fun(A,Ei) ' ΣX(EA
i,c) and Fun(A,E) ' ΣX(EA

c ) ,

and Lemma 17.1.6-(2). �

17.2. Compact and proper (co)limits. One of the most fundamental results in category
theory is the commutation of filtered colimits with finite limits in Set and in Spc. In fact, the
finiteness condition can be relaxed, using various combinations of compactness and properness.

Lemma 17.2.1. Let E be a stable complete and cocomplete ∞-category. Let C be a compact
∞-category. Then:

(1) the functor colimC : Fun(C,E)→ E commutes with limits.

(2) the functor limC : Fun(C,E)→ E commutes with colimits.

Proof. The two statements are dual to each other. It is therefore enough to prove the second.
Because E is stable, it is enough to prove that limC commutes with filtered colimits, for which we
refer to [41, Lemma 6.7.4]. �

Lemma 17.2.2. Let f : A → B be a functor between ∞-categories. Let b ∈ B. Assume that
A is compact and that for every b′ ∈ B, the mapping space MapB(b, b′) is compact. Then both
A×B Bb/ and A×B B/b are compact.

Proof. Replacing A and B by Aop and Bop respectively we see that it is enough to argue that
A×B Bb/ is compact. For this, observe first that since Bb/ → B is a cocartesian fibration, the
pullback A×B Bb/ → A is a cocartesian fibration as well. Since A is compact, we are left from
Theorem 17.1.2 to show that the fibers of A×BBb/ → A are compact, which holds by assumption
on the mapping spaces of B. �

Proposition 17.2.3. Let X be an ∞-category and let p : A→ B be a morphism of cocartesian
fibrations over X. Assume that for every x ∈ X, the ∞-category Ax is compact and Bx is proper.
Let E be a complete, cocomplete and stable ∞-category. Then the functor

p! : Fun(A,E)→ Fun(B,E)

commutes with limits.

Proof. From Corollary 6.1.6, it is enough to treat the case where X is a point. In that case for
every F : A→ E and every b ∈ B, we have by definition of left Kan extension

(p!(F ))(b) ' colim
A×BB/b

F |A×BB/b

From Lemma 17.2.2, the ∞-category A×B B/b is compact. Thus, Proposition 17.2.3 follows from
Lemma 17.2.1 applied to C = A×B B/b. �

Remark 17.2.4. The assumption on B is always satisfied when the fibers of B are posets.

17.3. Stability properties for smooth and proper stable ∞-categories. Fix an animated
ring k. Recall that Modk ∈ CAlg(PrL,ω) (see e.g. [7, Proposition 2.4]). We set

PrL,ω
k := ModModk(PrL,ω) and PrL

k := ModModk(PrL) .

Given C ∈ PrL,ω
k , we write

HomC : Cop × C→ Modk
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for the canonical enrichment over Modk. Recall also that C is dualizable in PrL
k , with dual C∨

given by Ind((Cω)op) and write

coevC : Modk → C∨ ⊗k C

for the coevaluation map in PrL
k . Recall the following definitions:

Definition 17.3.1. A compactly generated k-linear stable ∞-category C ∈ PrL,ω
k is said to be:

(1) of finite type if it is a compact object in PrL,ω
k ;

(2) proper if for every compact objects x, y ∈ Cω, HomC(x, y) belongs to Perf(k);

(3) smooth if coevC preserves compact objects.

Remark 17.3.2. Let C ∈ PrL,ω
k . If C is of finite type, then it is smooth. On the other hand, if

C is smooth and proper, then it is of finite type.

Lemma 17.3.3. Let C• : A→ PrL,R
k be a diagram such that Ca is compactly generated for every

a ∈ A. Set
C := lim

a∈A
Ca ,

the limit being computed in PrL. Then C is compactly generated. Furthermore, if Ca is of finite
type for every a ∈ C and A is a compact ∞-category, then C is of finite type as well.

Proof. Since the limit is computed in PrL
R, [32, Corollary 3.4.3.6] and [31, Proposition 5.5.3.13]

show that it can alternatively be computed in Cat∞. Since all the transition morphisms are
in PrR as well, [31, Theorem 5.5.3.18] guarantees that the limit can be also computed in PrR.
Using the equivalence PrR ' (PrL)op, we conclude that passing to left adjoints we can write

C ' colim
a∈Aop

Ca ,

the colimit being computed in PrL. Notice that the transition maps in this colimit diagram, being
left adjoints to colimit-preserving functors, automatically preserve compact objects. Thus, [32,
Lemma 5.3.2.9] shows that this colimit can be computed in PrL,ω. It follows that C is compactly
generated. Besides, [32, Corollary 3.4.4.6] implies that this colimit can also be computed in PrL,ω

k ,
so the second half of the statement follows from the fact that compact objects are closed under
finite colimits and retracts. �

Corollary 17.3.4. Let p : A→ X be a presentable cocartesian fibration with compact and proper
fibers in the sense of Definition 17.1.1. Assume that X is compact. Let k be an animated
ring and let E be a compactly generated k-linear stable ∞-category of finite type. Then, so is
Funcocart(A,E).

Proof. Let ΥA : X→ PrL be the straightening of p : A→ X and consider the diagram

Fun!(ΥA(−),E) : X→ PrL

where Fun! denotes the functoriality given by left Kan extensions. From [31, 3.3.3.2], there is a
canonical equivalence

Funcocart(A,E) ' lim
X

Fun!(ΥA(−),E)

By Proposition 17.2.3, the transition functors of the above diagram are left and right adjoints.
Furthermore, Fun!(Ax,E) is of finite type for every x ∈ X. Then, Corollary 17.3.4 follows from
Lemma 17.3.3. �



HOMOTOPY THEORY OF STOKES STRUCTURES AND DERIVED MODULI 153

18. Stability of localizations under cocartesian pullback

In [27, Proposition 2.1.4], Hinich proved that the pullback of a localization functor via a
cocartesian fibration is again a localization functor. The theory surrounding the specialization
equivalence and cocartesian functors developed so far allows for a model-independent proof, which
we now give.

18.1. Preliminaries.

Lemma 18.1.1. Let p : B→ Y be a cocartesian fibration and let E be a presentable ∞-category.
Let γ : x→ y be a morphism in Y. Let F ∈ Fun(Bx,E) and G ∈ Fun(By,E), and let α : F → G
be a morphism in expE(B/Y). The following statements are equivalent:

(1) for every p-cocartesian lift φ : a→ b of γ in B, the induced morphism (see Notation 7.1.9)

α(φ) : F (a)→ G(b)

is an equivalence in E;

(2) α is a pE-cartesian morphism in expE(B/Y).
In addition, α is an equivalence in expE(B/Y) if and only if γ is an equivalence and condition
(1) holds.

Proof. Since pE : expE(B/Y)→ Y is a cartesian fibration, a morphism α : F → G in expE(B/Y)
is an equivalence if and only if it is pE-cartesian and its image in Y is an equivalence. So the
second half of the statement follows automatically from the equivalence between statements (1)
and (2). Choose a factorization of α as

F G

G′

α

α0 α1

where α1 is pE-cartesian. Then as observed in Notation 7.1.9, any p-cocartesian lift φ : a→ b of γ
induces via α1 an equivalence

α1(φ) : G′(a) ' G(b) .

It follows that condition (1) is equivalent to ask that for every a ∈ Bx the morphism

α0(a) : F (a)→ G′(a)

is an equivalence in E. In turn, this condition is equivalent to ask that α0 is an equivalence in
expE(B/Y), and hence to condition (2). �

For later use, let us store the following consequence of Lemma 18.1.1

Corollary 18.1.2. Let p : A→ X be a locally constant cocartesian fibration (see Definition 19.1.4).
Let E be a presentable ∞-category and let F : A→ E be a cocartesian functor. Let σ : X→ A be a
cocartesian section. Then, σ∗(F ) : X→ E inverts every arrow of X.

Proof. Since p : A→ X is locally constant, the same goes for the associated exponential fibration
pE : expE(A/X)→ X. Fix a morphism γ : x→ y in X, so that σ(γ) : σ(x)→ σ(y) is a p-cocartesian
lift of γ in A. Choose a specialization morphism

(spF )x G (spF )y
β α

for F relative to γ. Then Proposition 19.1.8 guarantees that β is pE-cartesian in expE(A/X).
Thus, the result follows combining Lemma 18.1.1 and Corollary 7.1.10. �
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18.2. Hinich’s theorem. We are now ready for:

Theorem 18.2.1 (Hinich). Let

A B

X Y

u

q p

f

be a pullback square in Cat∞, where p is a cocartesian fibration. Assume that f exhibits Y as a
localization of X at a collection of morphisms W . Then u is a localization functor as well, and
exhibits B as localization of A at the collection WA of cocartesian lifts of the arrows of W .

Proof. We apply the criterion given in [11, Proposition 7.1.11]. To begin with, observe that if
ϕ ∈WA then ϕ is q-cocartesian and therefore u(ϕ) is p-cocartesian and lies over f(q(ϕ)) which is
an equivalence in X since q(ϕ) ∈W . Thus u(ϕ) must be an equivalence as well, i.e. u inverts the
arrows in WA.

Next, u is essentially surjective: indeed, if b ∈ B is an element, we can find x ∈ X and an
equivalence f(x) ' p(b), because f is essentially surjective. But then b defines an element in
Bf(x) and since the given square is a pullback, we have Bf(x) ' Ax. Thus, we can write b ' u(a)
for some a ∈ A.

Since a functor g : C→ D is a localization if and only if fop : Cop → Dop is a localization (see
[11, Proposition 7.1.7]), to complete the proof it is enough to prove that

u∗ : Fun(B,Spc)→ Fun(A,Spc)

is fully faithful and the essential image consists of those functors F : A→ Spc that invert the
arrows in WA. We will more generally prove that this is the case for any presentable ∞-category
E in place of Spc. Proposition 6.1.2-(1) allows to rewrite u∗ as

Σ(Eu) : Fun/Y(Y, expE(B/Y))→ Fun/X(X, expE(A/Y)) .

In virtue of Proposition 3.2.6-(1), we can rewrite

Fun/X(X, expE(A/Y)) ' Fun/Y(X, expE(B/Y)) ,

and under this identification Σ(Eu) simply becomes

(18.2.2) f∗ : Fun/Y(Y, expE(B/Y))→ Fun/Y(X, expE(B/Y)) .

Consider now the following commutative cube:

(18.2.3)

∗ Fun(Y,Y)

Fun/Y(Y, expE(B/Y)) Fun(Y, expE(B/Y))

∗ Fun(X,Y)

Fun/Y(X, expE(B/Y)) Fun(X, expE(B/Y)) .

idY

f∗

f∗
f

f∗

The bottom and the top squares are pullbacks by definition. Since f is a localization, the functor

f∗ : Fun(Y,Y)→ Fun(X,Y)
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is fully faithful, which implies that the back square is a pullback as well. Thus, the front square is
a pullback as well, and therefore the full faithfulness of (18.2.2) follows from the full faithfulness
of

f∗ : Fun(Y, expE(B/Y))→ Fun(X, expE(B/Y)) ,

which holds because f is a localization.
Since the front square is a pullback, we also deduce that a section s ∈ Fun/Y(X, expE(A/Y))

lies in the essential image of f∗ if and only if it inverts all arrows in W . Via the specialization
equivalence of Proposition 3.3.3, we deduce that a functor F ∈ Fun(B,E) lies in the essential
image of u∗ if and only if Eu ◦ (spF ) : X→ expE(B/Y) inverts all arrows in W . Fix γ : x→ y in
W . By assumption f(γ) is an equivalence in Y, so Lemma 18.1.1 shows that Eu ◦ (spF ) inverts γ
if and only if (

Eu(spF )
)
γ

:
(
Eu(spF )

)
x
→
(
Eu(spF )

)
y

is pE-cartesian in expE(B/Y). Since pE : expE(B/Y) → Y is a cartesian fibration, it is actually
enough to check that the above morphism is locally cartesian. Therefore, we can replace B→ Y

by Bf(γ) → ∆1, and since Bf(γ) ' Aγ , Lemma 18.1.1 further shows that it is enough to check
that for every q-cocartesian lift φ : a→ a′ of γ in A, the morphism

(spF )γ(φ) : (spF )x(a)→ (spF )y(a′)

is an equivalence in E. However, Corollary 7.1.10 provides a canonical identification of this
morphism with F (φ). In other words, Eu ◦(spF ) inverts γ if and only if F inverts all q-cocartesian
lifts of γ. The conclusion follows. �

19. Locally constant and finite étale fibrations

We collect in this section some material on cocartesian fibrations that generalize the idea of
local constancy and finite covering in topology.

19.1. Local constancy. We start with the following definition:

Definition 19.1.1. Let X be an ∞-category and let E be a presentable ∞-category. We write

Loc(X;E) := Fun(Env(X),E) .

Example 19.1.2. Let (X,P ) be an exodromic stratified space. Then Proposition 2.3.8 implies
that Env(Π∞(X,P )) ' Π∞(X). Therefore, Loc(Π∞(X,P );E) correspond via the exodromy
equivalence exactly to E-valued hyperconstructible hypersheaves on X.

Notation 19.1.3. Let X be an∞-category and let λX : X→ Env(X) be the canonical localization
morphism. Then for every presentable ∞-category E, the functor

λ∗X : Loc(X;E)→ Fun(X,E)

is fully faithful. Given L ∈ Loc(X;E) we will often consider it implicitly as a functor L : X→ E

with the property of inverting every arrow in X.

Definition 19.1.4. We say that a functor p : A→ X of ∞-categories is locally constant fibration
if it is a cocartesian fibration and its straightening Υ: X→ Cat∞ belongs to Loc(X;Cat∞).

The following simply follows unraveling the definitions:

Lemma 19.1.5. Locally constant fibrations are stable under pullback.

It is possible to give a more intrinsic formulation of locally constant cocartesian fibrations as
follows.
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Recollection 19.1.6. Let p : A→ ∆1 be a cartesian and cocartesian fibration and let

f : A0 � A1 : g

be the induced adjunction. Write η : idA0 → g ◦ f and ε : f ◦ g → idA1 for the unit and the counit
of this adjunction. It follows from [31, Proposition 5.2.2.8] that for every morphism φ : a→ b in
A lying over 0→ 1 in ∆1, there is a commutative diagram in A

(19.1.7)

g(f(a)) f(a)

a b

g(b) f(g(b))

α

ηa

φ

β

εb

where:
(1) α and εb ◦ β are p-cartesian;

(2) β and α ◦ ηb are p-cocartesian.

Proposition 19.1.8. Let p : A → X be a cocartesian fibration and let Υ: X → Cat∞ be its
straightening. For every morphism γ : x→ y in X, the following statements are equivalent:

(1) pγ : Aγ → ∆1 (see Notation 7.1.4) is a cartesian fibration and an arrow in Aγ is
cocartesian if and only it is cartesian;

(2) Υ(γ) : Υ(x)→ Υ(y) is an equivalence in Cat∞;
In particular, p is locally constant if and only if condition (1) holds for every morphism γ in X.

Proof. Assume first that (1) holds. Since pγ is both Cartesian and coCartesian the functor Φ(γ)
admits a right adjoint R(γ) : Υ(y) → Υ(x). Then Recollection 19.1.6 implies that in diagram
(19.1.7) both α and α ◦ ηa are p-cartesian lifts of γ, so the universal property of p-cartesian edges
implies that ηa must be an equivalence. The dual argument shows that εb is an equivalence as
well. It follows that Υ(γ) is an equivalence.

Suppose conversely that Φ(γ) is an equivalence. Then it admits a right adjoint, which in
turn implies that pγ is a cartesian fibration. Then in Recollection 19.1.6 both η and ε are
equivalences. It immediately follows that the cocartesian lift a→ f(a) is also cocartesian, and
that the cocartesian lift g(b)→ b is also cartesian, whence the conclusion. �

19.2. Finite étale fibrations. We now introduce the following abstract formulation of the
notion of finite covering in topology:

Definition 19.2.1. We say that a cocartesian fibration between ∞-categories f : Y → X is a
finite étale fibration if:

(1) it is locally constant;

(2) it is a cartesian fibration;

(3) the fibers of f are finite sets.

Lemma 19.2.2. Finite étale fibrations are closed under pullback.

Finite étale fibrations satisfy another important stability property, that we are going to explain
now.
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Construction 19.2.3. Let f : X→ Y be a functor of small ∞-categories. Recall from Recollec-
tion 6.2.1 the adjunction

f cc
! : CoCartX � CoCartY : f∗ .

Evaluating the unit of this adjunction on a cocartesian fibration p : A→ X, we obtain the following
commutative square:

(19.2.4)
A f cc

! (A)

X Y .

fA

p q

f

When f is a localization, f∗ : CoCartY → CoCartX is fully faithful. In this case, the counit
f cc

! (X) ' f cc
! (f∗(Y)) → Y is an equivalence. Therefore, in this case, the structural map

q : f cc
! (A)→ Y is canonically identified with f cc

! (p).

Lemma 19.2.5. Assume that f exhibits Y as the localization of X at a class of morphisms W .
Let ΥA : X→ Cat∞ be the straightening of p : A→ X. Then, the following are equivalent:

(1) the square (19.2.4) is a pullback;

(2) the functor ΥA : X→ Cat∞ maps W to equivalences;

(3) For every γ ∈W , the pullback pγ : Aγ → ∆1 (see Notation 7.1.4) is a cartesian fibration
and an arrow in Aγ is cocartesian if and only it is cartesian.

Proof. The equivalence between (1) and (2) follows from the universal property of the localization.
The equivalence between (2) and (3) follows from Proposition 19.1.8. �

Corollary 19.2.6. Let p : A→ X be a cocartesian fibration between ∞-categories. Let f : X→ Y

be a functor exhibiting Y as the localization of X at a class of morphisms W . Then, the following
are equivalent:

(1) p : A→ X is a finite étale fibration;

(2) the square (19.2.4) is a pullback and f cc
! (p) : f cc

! (A)→ Y is a finite étale fibration.
If these conditions are satisfied, the functor fA : A→ f cc

! (A) exhibits f cc
! (A) as the localization

of A at every morphism above W .

Proof. That (2) implies (1) follows from the preservation of finite étale fibrations under pullback
from Lemma 19.2.2. Assume that (1) holds. Let λY : Y→ Env(Y) ' Env(X) be the localization
at every morphism. Since p : A→ X is locally constant, Lemma 19.2.5-(2) is satisfied both for
(p,W ) and (f cc

! (p),Mor(Y)). Hence, there is a commutative diagram

A f cc
! (A) λcc

X,!(A)

X Y Env(X)

p fcc
! (p) λcc

X,!(p)

f λY

whose squares are pullback squares. By Lemma 19.2.2, we are thus left to show that

(19.2.7) λcc
X,!(p) : λcc

X,!(A)→ Env(X)

is a finite étale fibration. Since the outer square is a pullback, the fibres of (19.2.7) are finite
sets. Local constancy is obvious since Env(X) is an ∞-groupoid. Note that (19.2.7) is an inner
fibration as it is cocartesian. To show that it is cartesian, it is enough to show [31, Proposition
2.4.1.5] that λcc

X,!(A) is an∞-groupoid. To do this, it is enough to show that A→ λcc
X,!(A) exhibits
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λcc
X,!(A) as the localization of A at every morphism. Hence, we are left to show more generally

that A→ f cc
! (A) exhibits f cc

! (A) as the localization of A at every morphism above a morphism
of W . By Theorem 18.2.1, it is enough to show that every morphism in A is p-cocartesian. This
follows immediately from the fact that the fibers of p : A→ X are discrete. �

Corollary 19.2.8. Let f : X→ Y be a localization functor. Then the adjunction

f cc
! : CoCartX � CoCartY : f∗

restricts to an equivalence between the ∞-subcategories spanned by finite étale fibrations.

Proof. If p : A → X is a finite étale fibration, then so is f cc
! (p) : f cc

! (A) → Y in virtue Corol-
lary 19.2.6 and the unit of f cc

! a f∗ applied to p : A→ X is an equivalence. If p : B→ Y is a finite
étale fibration, then so is f∗(p) : f∗(A)→ X by Lemma 19.2.2. Since f : X→ Y is a localization,
the counit of f! a f∗ applied to p : B→ Y is automatically an equivalence. �

The link with topological covering maps is expressed by the following:

Lemma 19.2.9. Let (X,P ) be a stratified space and let f : Y → X be a continuous morphism.
Assume that:

(1) f : Y → X is a finite covering map;

(2) (X,P ) is conically refineable (Definition 2.3.10);

Then (Y, P ) is conically refineable and the induced map

Π∞(Y, P )→ Π∞(X,P )

is a finite étale fibration.

Proof. Let R→ P be a refinement such that (X,R) is conical with locally weakly contractible
strata. Since f is a local homeomorphism, (Y,R) is also conical with locally weakly contractible
strata. Therefore, there is a commutative diagram

Π∞(Y,R) Π∞(Y, P )

Π∞(X,R) Π∞(X,P )
rcc
!

in Cat∞. Assume that the left arrow is a finite étale fibration. By Corollary 19.2.6 we deduce
the existence of a pullback square of finite étale fibrations

Π∞(Y,R) rcc
! (Π∞(Y,R))

Π∞(X,R) Π∞(X,P )
rcc
!

such that the top arrow exhibits r!(Π∞(Y,R)) as the localization of Π∞(Y,R) at every arrow above
an equivalence of P . By Proposition 2.3.8, we deduce the existence of a canonical equivalence

rcc
! (Π∞(Y, P )) ' Π∞(Y, P ) .

Hence, Π∞(Y, P )→ Π∞(X,P ) is a finite étale fibration. Thus, we are left to prove Lemma 19.2.9
in the case where (X,P ) is conically stratified. In that case, so is (Y, P ). Therefore, we have the
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following pullback square of simplicial sets

SingQ(Y ) Sing(Y )

SingP (X) Sing(X) .

Since f is a covering map, it is in particular a Serre fibration. Therefore, Sing(Y )→ Sing(X) is a
Kan fibration. It follows that the above square is a homotopy pullback, and therefore that

Π∞(Y,Q) Π∞(Y )

Π∞(X,P ) Π∞(X)

is a pullback in Cat∞. By Lemma 19.2.2, we are left to prove Lemma 19.2.9 when P = ∗
is the trivial stratification. We know that Sing(Y ) → Sing(X) is a Kan fibration, so that
Π∞(Y )→ Π∞(X) is both a left and a right fibration. Since the base is an ∞-groupoid, it follows
that it is locally constant in the sense of Definition 19.1.4. Besides, for x ∈ X we have a pullback

Sing(Yx) Sing(Y )

{x} Sing(X)

of simplicial sets. Since the right vertical map is a Kan fibration, we deduce that it is a homotopy
pullback, i.e. that

{x} ×Π∞(X) Π∞(Y ) ' Π∞(Yx) .

Since f is a finite covering map, Yx is discrete, whence the conclusion. �

20. Categorical actions

We collect some material on ∞-categorical actions that is needed throughout the text.

20.1. Generalities. We refer to [32, §4.8.1] for the theory of tensor products of presentable
∞-categories, that endows PrL with a symmetric monoidal structure PrL,⊗. Fix an object
E⊗ ∈ CAlg(PrL,⊗). We refer to E⊗ as a presentably symmetric monoidal ∞-category. In
particular, we have an underlying tensor product

⊗E : E× E→ E

commuting with colimits in both variables and a tensor unit IE ∈ E. We refer to an object in
PrL

E := ModE⊗(PrL,⊗) as an ∞-categorical module over E⊗. Ignoring homotopy coherences, such
an object can informally be described as an ∞-category D equipped with an external tensor
product

⊗ : E×D→ D

that commutes with colimits in both variables and that satisfies the usual module relations.
In particular, IE ⊗ (−) : D → D comes with an identification with idD. Similarly, a morphism
f : D → D′ of ∞-categorical E⊗-modules can informally be described as a functor f equipped
with homotopy coherent identifications

f(E ⊗D) ' E ⊗ f(D) ,
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for E ∈ E and D ∈ D. Finally, [32, Theorem 4.5.2.1] supplies PrL
E with an induced symmetric

monoidal structure PrL,⊗
E . In particular, given two ∞-categorical E⊗-modules D and D′, we can

form the relative tensor product
D⊗E D′ ∈ PrL,⊗

E .

Recollection 20.1.1. It follows from [32, Corollary 3.4.1.7] that a symmetric monoidal functor
f⊗ : E⊗ → D⊗ allows to see D⊗ as a ∞-categorical module over E⊗. The underlying tensor
product is then informally defined as

E ⊗D := f(E)⊗D D .

Similarly, if
E⊗

D⊗ D′⊗

f⊗ g⊗

h⊗

is a commutative triangle in CAlg(PrL,⊗), then h : D→ D′ inherits the structure of a E-linear
functor.

Recollection 20.1.2. Let E⊗ be a presentably symmetric monoidal ∞-category. It follows from
[32, Remark 2.1.3.4] that for every (small)∞-category A, Fun(A,E) inherits a symmetric monoidal
structure, that we denote Fun(A,E)⊗. Informally speaking, given two functors F,G : A → E,
their tensor product is defined by the rule

(F ⊗G)(a) := F (a)⊗E G(a) .

Similarly, if f : B→ A is a functor of ∞-categories, then

f∗ : Fun(A,E)→ Fun(B,E)

inherits a canonical symmetric monoidal structure.

Lemma 20.1.3. Let E⊗ be a presentably symmetric monoidal ∞-category and let f : A→ B be
a cocartesian fibration. Reviewing Fun(B,E) as a Fun(A,E)⊗-module via Recollections 20.1.1 and
20.1.2, the left Kan extension functor

f! : Fun(B,E)→ Fun(A,E)

is Fun(A,E)⊗-linear.

Proof. It follows from [33, Proposition 2.5.5.1] that f! is an oplax symmetric monoidal functor when
we see both Fun(B,E) and Fun(A,E) as symmetric monoidal ∞-categories. Using [32, Corollary
3.4.1.5], we reduce ourselves to check that for every F ∈ Fun(A,E) and every G ∈ Fun(B,E), the
canonical map

f!(f
∗(F )⊗G)→ F ⊗ f!(G)

is an equivalence. Since the tensor product of E commutes with colimits in both variables, this
follows from the formula for left Kan extensions provided by the dual of [41, Lemma 3.1.1]. �

20.2. Universal monadicity for finite étale fibrations. To motivate the results of this
section, consider the following:

Construction 20.2.1. Fix a presentably symmetric monoidal ∞-category E⊗ and let

B A

Y X

u

q p

f



HOMOTOPY THEORY OF STOKES STRUCTURES AND DERIVED MODULI 161

be a pullback square in Cat∞. Via Recollection 20.1.2, we obtain a commutative square

Fun(X,E)⊗ Fun(Y,E)⊗

Fun(A,E)⊗ Fun(B,E) .

f∗

p∗ q∗

u∗

Combining [32, Theorem 4.5.2.1 and Proposition 3.2.4.7], we obtain a canonical comparison map

(20.2.2) µ : Fun(Y,E)⊗Fun(X,E) Fun(A,E)→ Fun(B,E) .

Warning 20.2.3. When X = ∗, the comparison map (20.2.2) is an equivalence. If both f and p
are cocartesian fibrations, one can easily prove that inside ModTrivX(E⊗)(PrFib

L,⊗
X ) there is a

canonical equivalence

expE(Y/X)⊗TrivX(E) expE(A/X) ' expE(B/X) .

However, the global section functor

ΣX : ModTrivX(E⊗)(PrFib
L,⊗
X )→ ModFun(X,E)(PrL,⊗)

is only lax monoidal. Because of this, the functor (20.2.2) is typically not an equivalence.

The goal of this section is to show that the situation gets considerably better if f is assumed
to be a finite étale fibration and E to be stable. We start introducing some terminology:

Definition 20.2.4. Let f : C → D and g : D → C be functors between ∞-categories. We say
that f and g are biadjoints if the adjunctions f a g and g a f hold.

Lemma 20.2.5. Let f : Y→ X be a finite étale fibration and let E be stable presentable∞-category.
Then the functors

f! : Fun(Y,E)→ Fun(X,E) and f∗ : Fun(X,E)→ Fun(Y,E)

are biadjoints.

Proof. Fix a functor F : Y → E. Since f : Y → X is a cocartesian fibration, the dual of [41,
Lemma 3.1.1] provides for every x ∈ X a natural equivalence

f!(F )(x) ' colim
y∈Yx

Fy .

Since f is a finite étale fibration, Yx := Y×X {x} is a finite set. Thus, since E is stable, we deduce

f!(F )(x) '
⊕
y∈Yx

Fy .

Since f is a cartesian fibration as well, [41, Lemma 3.1.1] yields

f∗(F )(x) ' lim
y∈Yx

Fy '
⊕
y∈Yx

Fy .

Thus, f! and f∗ canonically agree, whence the conclusion. �

Lemma 20.2.6. Let f : Y→ X be a finite étale fibration and let E be stable presentable∞-category.
Then the composition

idFun(Y,E) → f∗ ◦ f! ' f∗ ◦ f∗ → idFun(Y,E)

is an equivalence. In particular, f! is conservative.
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Proof. Write α for the given composition. It is enough to prove that for every x ∈ X, j∗x(α) is an
equivalence in Fun(Yx,E). Using Corollary 6.1.6 (applied with A = Y, B = X and Y = {x}), we
can therefore reduce ourselves to the case where X consists of a single point.

In this case, Y is just a set. Unraveling the definitions, we see that the unit of f! a f∗ evaluated
on F : Y→ E sends y ∈ Y to the canonical inclusion

iy : F (y)→
⊕

y′∈Yf(y)

F (y′) ,

while the counit of f∗ a f∗ evaluated on F sends y ∈ Y to the canonical projection

πy :
⊕

y′∈Yf(y)

Fy′ → Fy ,

whence the conclusion. �

The following is the main result concerning finite étale fibrations:

Proposition 20.2.7 (Universal monadicity for finite étale fibrations). Let f : Y→ X be a finite
étale fibration and let E be a stable presentable∞-category. For every categorical Fun(X,E)-module
D, the induced functor

f! ⊗D : Fun(Y,E)⊗Fun(X,E) D→ D

is monadic.

Proof. Using Lemma 20.1.3, we see that both f∗ : Fun(X,E)→ Fun(Y,E) and f! : Fun(Y,E)→
Fun(X,E) are Fun(X,E)-linear. Besides, they are biadjoints to each other thanks to Lemma 20.2.5.
Therefore, we obtain well defined functors

f! ⊗D : Fun(Y,E)⊗Fun(X,E) D→ D and f∗ ⊗D : D→ Fun(Y,E)⊗Fun(X,E) D ,

that are still biadjoints to each other. Besides, Lemma 20.2.6 implies that the composition

id→ (f! ⊗D) ◦ (f∗ ⊗D)→ id

is an equivalence, so it follows that f! ⊗ idD is conservative. Therefore, it is monadic thanks to
Lurie-Barr-Beck’s theorem [32, Theorem 4.7.3.5]. �

Corollary 20.2.8. In the situation of Construction 20.2.1, assume that f : Y → X is a finite
étale fibration. Then the comparison functor

µ : Fun(Y,E)⊗Fun(X,E) Fun(A,E)→ Fun(B,E)

is an equivalence.

Proof. Notice that u : B → A is a finite étale fibration thanks to Lemma 19.2.2. Consider the
following commutative triangle:

Fun(Y,E)⊗Fun(X,E) Fun(A,E) Fun(B,E)

Fun(A,E) .

µ

f!⊗Fun(A,E) u!

Using Proposition 20.2.7, we see that both diagonal morphisms are monadic. To conclude that
the horizontal arrow is an equivalence, it is enough by [32, Corollary 4.7.3.16] to check that the
Beck-Chevalley transformation

µ ◦ (f∗ ⊗ Fun(A,E))→ u∗
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is an equivalence. Since u! is conservative, it is enough to prove that the induced transformation

(f! ◦ f∗)⊗ Fun(A,E) ' (f! ⊗ Fun(A,E)) ◦ (f∗ ⊗ Fun(A,E))→ u! ◦ u∗

is an equivalence. Fix a functor F : A→ E and an object a ∈ A. Set x := p(a) and write I for
the tensor unit of Fun(A,E) (that is, the constant functor associated to the tensor unit IE of E).
Evaluating the source of the above transformation at F and at a yields(

f!f
∗(I)⊗ F

)
(a) '

( ⊕
y∈Yx

I
)
⊗ F (a) ,

while (
u!u
∗(F )

)
(a) '

⊕
b∈Ba

F (a) .

Since the square in Construction 20.2.1 is a pullback, Ba ' Yp(a) ' Yx, whence the conclusion. �

21. Additional properties of cocartesian fibrations

Finally, we collect some auxiliary results on cocartesian fibrations that are occasionally needed
throughout the text.

21.1. Global vs. local full faithfulness. The following results provides a categorical local-to-
global principle to test fully faithfulness:

Proposition 21.1.1. Let X be an ∞-category and let f : A → B be a morphism in PrFibL
X.

Then:
(1) f is fully faithful if and only if for every x ∈ X the induced functor fx : Ax → Bx is fully

faithful;

(2) if f is fully faithful, then the same goes for

ΣX(f) : Fun/X(X,A)→ Fun/X(X,B) .

Proof. First we prove (1). Write p : A→ X and q : B→ X for the structural maps. Fix a, a′ ∈ A

and set x := p(a) and x′ := p(a′). The morphism f induces a canonical commutative triangle

MapA(a, a′) MapB(f(a), f(a′))

MapX(x, x′)

ω

in Spc. Thus, we see that ω is an equivalence if and only if for every γ : x→ x′ the fiber ωγ is
an equivalence. Let a → aγ be a cocartesian lift of γ inside A. Since f preserves cocartesian
edges, we see that f(a)→ f(aγ) is cocartesian in B. Thus, [31, Proposition 2.4.4.2] and the above
commutative triangle supply a canonical identification of ωγ with the map

MapAx′
(aγ , a

′)→ MapBx′
(f(aγ), f(a′))

induced by fx′ : Ax′ → Bx′ . Thus, if fx′ is fully faithful, we deduce that ω is an equivalence. As
for the converse, it suffices to observe that with the above notations, the square

MapAx′
(aγ , a

′) MapBx′
(f(aγ), f(a′))

MapA(a, a′) MapB(f(a), f(a′))ω

is a pullback. Thus, when γ = idx, we see that the full faithfulness of f implies the full faithfulness
of fx.
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We now prove (2). Consider the following commutative diagram

Fun/X(X,A) Fun(X,A) Fun(X,X)

Fun/X(X,B) Fun(X,B) Fun(X,X) ,

whose rows are fibers sequences at idX ∈ Fun(X,X). Since fully faithful functors are stable
under pullbacks, it suffices to prove that the middle vertical functor is fully faithful. This follows
immediately from the assumption and from [20, Proposition 5.1] (see also Lemma 5.2 in loc.
cit.). �

Corollary 21.1.2. Let C• : I → PrL be a filtered diagram. Let

C := colim
i∈I

Ci

be its colimit computed in PrL and denote ιi : Ci → C for the canonical maps. If all the transition
maps in C• are fully faithful, the same goes for each ιi.

Proof. Fix an index i ∈ I. Up to replacing I by Ii/, we can suppose without loss of generality
that i is the initial object of I. Thus, we obtain a transformation Ci → C•, where Ci is seen as a
constant diagram. Passing to the cocartesian unstraightenings, we obtain a morphism

f : Ci × I → UnI(C•)

of cocartesian fibrations over I. Our assumption implies that this functor is fully faithful fiberwise,
and therefore Proposition 21.1.1 guarantees that f is itself fully faithful. Notice now that Ci × I
and UnI(C•) are also cartesian fibrations over I and that

Ci ' lim
j∈Iop

Ci ' Funcart
/I (I,Ci × I) and C ' lim

j∈Iop
Cj ' Funcart

/I (I,UnI(C•)) .

Moreover, under these equivalences, φ induces the functor ιi : Ci → C. We claim that φ preserves
cartesian edges. Assuming this statement, we see that f induces the following commutative
diagram:

Ci Fun(I,Ci)

C Fun/I(I,UnI(C•)) ,

ιi ΣI(f)

whose horizontal arrows are fully faithful. Since ΣI(f) is fully faithful by Proposition 21.1.1, we
conclude that ιi is fully faithful as well.

We are left to prove the claim. Let j → ` be a morphism in I and let fj,` : Cj → C` be the
induced functor. It fits in the following commutative triangle

Ci

Cj C` ,

fj f`

fj,`

where fj and f` are the functors induced by i→ j and i→ `, respectively. Write gj , g` and gj,`
for their right adjoints. Unraveling the definitions, we have to check that the Beck-Chevalley
transformation

fj → gj,` ◦ f`
is an equivalence. However, f` ' fj,` ◦ fj , and the unit idCj → gj,` ◦ fj,` is an equivalence because
fj,` is fully faithful by assumption. Thus, the conclusion follows. �
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21.2. Inducing left adjointability from the base. The following lemma provides a general
mechanism to deduce left adjointability involving cocartesian fibrations from the case of trivial
fibrations. It plays an important role in the proof of the spreading out Theorem 11.4.1 for Stokes
analytic stratified spaces.

Lemma 21.2.1. Consider the commutative cube

D C

B A

T Z

Y X

j

p

i

whose vertical faces are pull-back diagrams. Assume that the vertical arrows are cocartesian
fibrations. Let a ∈ C and set x := p(a) ∈ Z. Assume that the functor

T ×Z Z/x → Y×X X/i(x)

is cofinal. Then, the functor
D×C C/a → B×A A/j(a)

is cofinal.

Proof. Since the vertical faces of the above cube are pull-back, the following square

D×C C/a B×A A/j(a)

T ×Z Z/x Y×X X/i(x)

is a pull-back. From [31, 2.4.3.2], its vertical arrows are cocartesian fibrations. Since cocartesian
fibrations are smooth [31, 4.1.2.15] and since the pull-back along a smooth map preserves cofinality
[31, 4.1.2.10], Lemma 21.2.1 thus follows. �
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