
DAY’S CONVOLUTION FOR PRO-∞-CATEGORIES

MAURO PORTA AND JEAN-BAPTISTE TEYSSIER

Abstract. We generalize the known construction of Day convolution to the case where the
source monoidal (∞-)category is fibered over some pro-∞-category.

Contents

1. Introduction 1
2. Reminders on tensor product of ∞-categories 3
3. The relative setup 4
4. Day’s convolution product 12
5. Pro-categories arising from stratified spaces 19
Appendix A. Relative symmetric monoidal structures 20
Appendix B. A lemma on relative adjunctions 24
References 25

1. Introduction

Let A be a (∞-)category and let (E ,⊗E) be a symmetric monoidal (∞-)category. The category
of functors Fun(A, E) inherits from E a tensor product, simply defined by

(F ⊗G)(a) := F (a)⊗E G(a) .

On the other hand, when A is on its own equipped with a (symmetric) monoidal structure (A,⊗A)
and E has enough colimits, one can equip Fun(A, E) with a second monoidal structure ⊗Day,
known as the Day convolution, given by the concrete formula

(1.1) (F ⊗Day G)(a) := colim
a1⊗Aa2→a

F (a1)⊗E G(a2) .

This formula can be seen as a categorification of the usual convolution product for group
rings. For instance, if G is a finite (commutative) group then ModC[G] has two (symmetric)
monoidal structures: the one given by tensor product relative to C[G] and the one induced by
the Hopf algebra structure of C[G]. Under the identification ModC[G] ' Fun(G,ModC), the
latter corresponds exactly to Day’s convolution. In the ∞-categorical setting some extra care is
required to take care of all the necessary homotopy coherences needed to define a (symmetric)
monoidal structure. This has been done by Glasman in [3], and later on was further generalized
by Lurie in [6, §2.2.6].

We came across Day convolution while working on the companion paper [?] on the derived
moduli stacks of higher dimensional Stokes structures. The basic geometric setup in there can be
described as follows: start with a pair (X,D) where X is a complex manifold and D is a simple
normal crossing divisor, and a set of irregular values I (that is, meromorphic functions with poles
along D, up to a certain equivalence relation). Out of this, one defines a stratification by Stokes
lines PI on the infinitesimal homotopy type Π∞(X̂rD) of X along D, and a cocartesian fibration
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in posets AI → ΠΣ
∞(X̂rD,PI) over the exit path∞-category associated to the stratification PI .1

Stokes data with coefficients in some presentable ∞-category ModA are then defined as a certain
subcategory of Fun(AI ,ModA). On the other side of the Riemann-Hilbert correspondence, these
objects are identified with flat vector bundles with irregular connections and specified formal
type around D. Forgetting the formal type, flat vector bundles can be tensored together, so it is
natural to ask whether a tensor structure can be intrinsically defined on the Stokes side. This is
not an entirely trivial matter, as already observed in [7, Remark 1.11], and yet it is an important
step needed to obtain a satisfactory characterization of the cotangent complex of the moduli
stack of higher dimensional Stokes data.

The tensor product of Stokes data should be seen as a particular instance of Day convolution:
at the moral level, the fibers of the fibration AI → ΠΣ

∞(X̂ rD,PI) have a monoidal structure
induced by the sum of irregular values. There are two technical obstructions to make this idea
precise:

(1) the monoidal structure is only defined relatively to some base;

(2) in order to be able to sum irregular values, we cannot just fix a set I, but we have to
consider them all at once.

Unfortunately, working with all irregular values at once it not an option, because in this case
the stratification by Stokes lines would cover the entire space. So we have to resort “filtering”
irregular values or, in more categorical terms, consider them as an ind-object. At the level of
stratified spaces, this amounts to consider a pro-object of exit paths ∞-categories.

This leads to the main result of this paper. Let X = “lim”i∈I Xi ∈ Pro(Cat∞) be a pro-∞-
category. Define

CoCartX := colim
i∈I

CoCartXi .

Its objects can informally be identified with equivalence classes of pairs (i,A) where i ∈ I, A → Xi
is a cocartesian fibration, and two such pairs (i,A) and (j,B) are equivalent if there exists an
index k mapping to i and j together with an equivalence

Xk ×Xi A ' Xk 'Xj B .
Besides, CoCartX has a natural symmetric monoidal (cartesian) structure, so it makes sense
to consider algebra objects A⊗ ∈ CAlg(CoCart×X). Fix A⊗ and assume that the underlying
cocartesian fibration is defined over Xi. We can therefore form the ∞-category

(1.2) colim
j→i

Fun(Xj ×Xi A, E) ,

The main result of this paper is then:

Theorem 1.3 (see Corollary 4.17). The ∞-category (1.2) has a symmetric monoidal ∞-category,
generalizing the classical Day convolution product.

One of the main difficulties comes from the fact that the canonical morphism

colim
i∈I

CAlg(CoCartXi) −→ CAlg(CoCartX)

is not an equivalence. In other words, we cannot simply use the classical Day convolution to
assert that every term in (1.2) has a symmetric monoidal structure. Rather, one has to mimic the
construction of Day’s convolution in this more elaborated setting. It turns out that neither the
approach of Glasman [3] nor the operadic norm method of Lurie [6, §2.2.6] lend to an immediate

1Here, we are ignoring the technical issue of non-conicality of PI , which is irrelevant to the current paper. We
refer to the introduction of [?] for more on this situation.
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generalization. We therefore take a different perspective, that can already be found in [6, Remark
4.8.1.13]: given E ∈ CAlg(PrL), the functor

Fun!(−, E) : Cat×∞ −→ PrL,⊗

(whose functoriality is given by left Kan extensions) has a natural lax symmetric monoidal
structure. In particular, it lifts to a functor

Fun!(−, E) : CAlg(Cat×∞) −→ CAlg(PrL,⊗) ,

providing a different realization of Day convolution, which is well suited to tackle the above
theorem.

Objects in Pro(Cat∞) can be rather mysterious. For this reason, we offer a second generaliza-
tion of Day convolution, replacing Pro(Cat∞) by Cond(Cat∞).

2. Reminders on tensor product of ∞-categories

Definition 2.1. Fix a collection of small simplicial sets K.
(1) We say that an ∞-category A is K-cocomplete if it admits K-indexed colimits for every

K ∈ K.

(2) We say that a functor f : A → B between K-cocomplete ∞-categories is K-cocontinuous
if it commutes with K-indexed colimits for every K ∈ K.

Following [6, Definition 4.8.1.1], we let Cat∞(K) denote the (non full) subcategory of Cat∞
spanned by K-cocomplete ∞-categories and K-cocontinuous functors between them.

Notation 2.2.
(1) Given A,B ∈ Cat∞(K), we let FunK(A,B) be the full subcategory of Fun(A,B) spanned

by K-cocontinuous functors.

(2) Given an ∞-category A ∈ Cat∞, we let PK(A) be the K-completion of A, introduced
in [5, Proposition 5.3.6.2]. The universal property proved in loc. cit. shows that PK
provides a left adjoint to the natural functor Cat∞(K)→ Cat∞.

(3) More generally, let K′ ⊆ K be two collections of simplicial sets. Then the relative
completion functor PKK′ : Cat∞(K′)→ Cat∞(K) of [5, Proposition 5.3.6.2] provides a left
adjoint to the natural forgetful functor Cat∞(K)→ Cat∞(K′).

Remark 2.3. Since Cat∞(K) is not a full subcategory of Cat∞, we cannot deduce just from
the existence of the K-completion functor that Cat∞(K) is presentable. This is nevertheless true,
as it is shown in [6, Lemma 4.8.4.2].

Example 2.4.
(1) Taking K = K> the collection of all small simplicial sets, Cat∞(K) becomes the ∞-

category of cocomplete ∞-categories. The K-completion functor in this case simply
coincides with the presheaf functor PSh(C) := Fun(Cop,S). Notice that the covariant
functoriality in C is given by left Kan extensions.

(2) Taking K to be the single simplicial set Idem, Cat∞(K) becomes the ∞-category of
idempotent-complete ∞-categories. The K-completion functor becomes the idempotent
completion, also known as Karoubi completion.

(3) Taking K be the collection of all small κ-filtered simplicial sets, the K-completion functor
becomes Indκ, the ind-object construction of cardinal κ. When κ = ω, this gives back
the usual ind-construction.
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(4) Fix a regular cardinal κ and let K be the collection of all κ-small simplicial sets, plus
Idem. Then Cat∞(K) is equivalent to PrL,κ, and in this case the K-completion functor
becomes the functor sending C to Indκ(A)κ, the full subcategory of Indκ(A) spanned by
κ-compact objects. See [5, Proposition 5.5.7.8].

Definition 2.5. Let A, B and C be three K-cocomplete ∞-categories. We say that a functor

F : A× B −→ C

is K-bicocontinuous if it is K-cocontinuous in both variables: for every X ∈ A and for every
Y ∈ B, the induced functors

F (X,−) : B −→ C and F (−, Y ) : A −→ C

are K-cocontinuous. We write FunK×K(A×B, C) for the full subcategory of Fun(A×B, C) spanned
by K-bicocontinuous functors.

Fix two K-cocomplete ∞-categories A and B. Consider the functor

FunK×K(A× B,−) : Cat∞(K) −→ Cat∞ .

It is a simple exercise to check that this functor is accessible and commutes with arbitrary limits.
Since Cat∞(K) is presentable, it follows that this functor is representable. In other words, we
deduce the existence of an object A⊗K B ∈ Cat∞(K) equipped with a K-bicocontinuous functor

A× B −→ A⊗K B

which is universal in the sense that for every E ∈ Cat∞(K) the induced functor

FunK(A⊗K B, C) −→ FunK×K(A× B, C)

is an equivalence. This construction is natural in both A and B, and therefore we obtain a
K-tensor product

−⊗K − : Cat∞(K)×Cat∞(K) −→ Cat∞(K) .

It is furthermore shown in [6, Lemma 4.8.4.2] that this functor commutes with colimits in both
variables. On the other hand, [6, Proposition 4.8.1.3] shows that the construction of the K-tensor
product can be promoted to a symmetric monoidal structure on Cat∞(K).

3. The relative setup

3.1. K-cocomplete cocartesian fibrations. Consider the cartesian fibration

t : Cat[1]
∞ := Fun(∆1,Cat∞) −→ Cat∞ .

sending a functor A → X to its target ∞-category. We need to suitably twist Cat[1]
∞ by passing

to the dual cocartesian fibration, in the following sense:

Definition 3.1. Let p : A → X be a cartesian fibration and let ΦA : X op → Cat∞ be its cartesian
straightening. The dual cocartesian fibration p? : A? → X op is the cocartesian fibration classified
by ΦA.

Recollection 3.2. In the setting of the above definition, recall from [1] that objects of A?
coincide with the objects of A, while 1-morphisms a→ b in A? are given by spans

a c bu v

where u is p-cocartesian and p(v) is equivalent to the identity of p(b).
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We let
B : Cat[1]?

∞ −→ Catop
∞

be the cocartesian fibration dual to t. Specializing Recollection 3.2 to this setting, we see that
objects of Cat[1]?

∞ are functors A → X , and morphisms f = (f, u, v) from B → Y to A → X are
commutative diagrams in Cat∞ of the form

(3.3)
B BX A

Y X

vu

f

where the square is a pullback. With respect to this description, B sends A → X to its target
(or base) X , and a diagram as above defines a B-cocartesian morphism if and only if v is an
equivalence.

We define CoCart to be the (non-full) subcategory of Cat[1]?
∞ whose objects are cocartesian

fibrations, and whose 1-morphisms are commutative diagrams as above where v is required to
preserve cocartesian edges. In this way, CoCart becomes a cocartesian fibration over Catop

∞ such
that CoCart→ Cat[1]?

∞ preserves cocartesian edges. Notice that the fiber at X ∈ Catop
∞ simply

coincide with the ∞-category CoCartX .

Definition 3.4. Let K be a collection of small simplicial sets.
(1) A cocartesian fibration p : A → X is said to be K-cocomplete if its straightening

ΦA : X −→ Cat∞
factors through Cat∞(K).

(2) Let f = (f, u, v) be a morphism in CoCart as in (3.3). We say that f is K-cocontinuous
if for every x ∈ X the induced functor vx : Bf(x) → Ax commutes with K-colimits.

We letCoCart(K) be the (non-full) subcategory ofCoCart spanned by K-cocomplete cocartesian
fibrations and K-cocontinuous functors between them. In this way, CoCart(K) becomes a
cocartesian fibration over Catop

∞ such that CoCart(K)→ CoCart preserves cocartesian edges.

Remark 3.5. A cocartesian fibration p : A → X is K-cocomplete if and only if it admits K-
colimits relative to X , in the sense of [5, Definition 4.3.1.1]. See Proposition 4.3.1.10 in loc.
cit.

For a fixed ∞-category X , we let CoCart(K)/X be the fiber of CoCart(K)→ Catop
∞ at X .

Notice that by definition, we have a canonical equivalence

CoCart(K)/X ' Fun(X ,Cat∞(K))

induced by the straightening / unstraightening equivalence for cocartesian fibrations over X .

3.2. Relative completions. Let K′ ⊆ K be two collections of simplicial sets. There is an
obvious forgetful functor

(3.6) UKK′ : CoCart(K) −→ CoCart(K′)
which forgets K-cocompleteness to K′-cocompleteness. Besides, UKK′ preserves cocartesian edges
over Catop

∞ . We are going to see that UKK′ has a left adjoint PKK′ relative to Catop
∞ ([6, Definition

7.3.2.2]). We first construct PKK′ over each object of Catop
∞ . To this end, for every X ∈ Cat∞,

denote by
UKK′(−/X ) : CoCart(K)/X −→ CoCart(K′)/X

the restriction of UKK′ over X .
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Definition 3.7. Let K′ ⊆ K. We define a functor

PKK′(−/X ) : CoCart(K′)/X −→ CoCart(K)/X

as the composition

CoCart(K′)/X ' Fun(X ,Cat∞(K′)) Fun(X ,Cat∞(K)) ' CoCart(K)/X
PKK′◦−

For an object p : A → X of CoCart(K′)/X , we denote by PKK′(A/X ) its image.

One checks that PKK′(−/X ) is left adjoint to UKK′(−/X ). The following lemma is obvious:

Lemma 3.8. Let K′ ⊆ K. Let f : Y → X be a morphism in Cat∞. Let p : A → X be a
K′-cocomplete cocartesian fibration. Then the commutative diagram

CoCart(K)/X CoCart(K′)/X

CoCart(K)/Y CoCart(K′)/Y

UKK′ (−/X )

Y×X− Y×X−
UKK′ (−/Y)

is horizontally left adjointable. In other words, the canonical Beck-Chevalley transformation

PKK′(Y ×X A/Y) −→ Y ×X PKK′(A/X )

is an equivalence.

Corollary 3.9. The functor UKK′ admits a left adjoint

(3.10) PKK′ : CoCart(K′) −→ CoCart(K)

relative to Catop
∞ . In particular, the fiber of PKK′ at X ∈ Cat

op
∞ is equivalent to PKK′(−/X ).

Proof. It suffices to apply Proposition B.1 to UKK′ . Condition (1) is automatically satisfied, while
condition (2) is ensured by Lemma 3.8, so the conclusion follows. �

Following [6, §4.8.1], we let P denote the collection of all sets of small simplicial sets, ordered
by inclusion. We now assemble the ∞-categories CoCart(K),K ∈ P. Define CoCart to be the
(non full) subcategory of CoCart× P defined by the following two conditions:

(1) objects of CoCart are pairs (p,K), where p ∈ CoCart(K);

(2) if K′ ⊂ K, a morphism from (q,K′) to (p,K) is a K′-cocontinuous morphism in CoCart.
Put otherwise,

MapCoCart(q, p) ' MapCoCart(K′)(q,UKK′(p))

In particular, the fiber of CoCart→ P over K coincides with CoCart(K).

Proposition 3.11. The projection

π : CoCart −→ Catop
∞ × P

is a cocartesian fibration. Additionally, the further projection

π′ : CoCart −→ P

is a cartesian fibration as well.
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Proof. We first prove that π′ : CoCart→ P is both a cartesian and a cocartesian fibration. Let
K′ ⊆ K be a morphism in P. Let p : A → X be an object in CoCart(K). Then, the morphism
UKK′(p)→ p in CoCart corresponding to the identity of UKK′(p) in CoCart(K′) is readily checked
to be cartesian over K′ ⊆ K. Hence, π′ is a cartesian fibration. To check that it is a cocartesian
fibration as well, [5, Proposition 5.2.2.5] ensures that it is enough to check that for every K′ ⊆ K,
the functor UKK′ : CoCart(K) −→ CoCart(K′) admits a left adjoint. Since this is guaranteed by
Corollary 3.9, we conclude that π′ is also a cocartesian fibration.

We now prove that π : CoCart→ Catop
∞ × P is a cocartesian fibration. Write

π2 : Catop
∞ × P −→ P

for the natural projection, so that π′ = π2 ◦ π. Observe that for every p : A → X in CoCart(K),
the π′-cocartesian morphism f : p→ PKK′(p) is sent to the morphism (idX ,K′ ⊆ K) in Catop

∞ × P.
Since this is obviously π2-cocartesian, [5, Proposition 2.4.1.3-(3)] guarantees that f is π-cocartesian
as well. Notice that every morphism (Y,K′)→ (X ,K) inCatop

∞×P can be written as the composite
of a morphism

(Y,K′) −→ (X ,K′)
whose P-component is the identity, and a morphism

(X ,K′) −→ (X ,K) ,

whose Catop
∞-component is the identity. We just proved that morphisms of the second kind admit

π-cocartesian lifts. Since π-cocartesian morphisms are stable under composition, we are reduced
to check that morphisms of the first kind admit π-cocartesian lifts as well.

To prove this last statement, it is enough to argue that for every K′-cocomplete cocartesian
fibration p : B → Y and for every functor X → Y (seen as a morphism from Y to X in Catop

∞),
the natural functor u : BX ← B (seen as a morphism from (B → Y,K′) to (BX → X ,K′) in
CoCart) is π-cocartesian. Unraveling the definitions, we see that u, seen as a morphism in
CoCart× P, is cocartesian with respect to the natural projection CoCart× P → Catop

∞ × P.
Since CoCart→ CoCart×P is faithful, [5, Proposition 2.4.4.3] shows that it is enough to verify
that a morphism

(BX → X ,K′) −→ (C → Z,K)

in CoCart× P belongs to CoCart if and only if the morphism induced by composition with u

(B → Y,K′) −→ (C → Z,K)

belongs to CoCart. Unraveling the definitions, this follows from the very definition of morphisms
in CoCart and the identification

B ×Y Z ' (B ×Y X )×X Z .

The conclusion follows. �

The goal of what follows is to endow CoCart with a structure of Catop
∞×P-family of symmetric

monoidal ∞-categories in the sense of Definition A.1. See Proposition 3.13.

3.3. Relative cartesian product. Let p : A → C be a cocartesian fibration. Let ΦA : C → Cat∞
be its unstraightening. Assume that for every c ∈ C, the ∞-category Ac has all finite products
and that for every γ : c→ d, the induced functor Ac → Ad commutes with finite products. Let
CatCart

∞ ⊂ Cat∞ denotes the subcategory spanned by ∞-categories having all finite products
and those functors commuting with finite products. Then, the functor ΦA : C → Cat∞ factors
uniquely through CatCart

∞ into a functor

ΦCart
A : C → CatCart

∞
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Let SMCat×∞ ⊂ SMCat∞ be the full subcategory spanned by cartesian symmetric monoidal
categories. Then, [6, Corollary 2.4.1.9] ensures that the forgetful functor θ : SMCat×∞ → CatCart

∞
is an equivalence of ∞-categories. Applying Proposition A.7 to the composition

θ−1 ◦ ΦCart
A : C → SMCat∞

thus yields a C-family of symmetric monoidal ∞-categories

p⊗ : A⊗ → Fin∗ × C
in the sense of Definition A.1. Concretely, objects of A⊗ are (S, c, (ai)i∈S) where S is a finite set,
where c ∈ C and where ai ∈ Cc for every i ∈ S. Morphisms from (T, d, (bj)j∈T ) to (S, c, (ai)i∈S)
in A⊗ is the data (α, γ, (fi)i∈S) where α : T → S is a map, where γ : d→ c is a morphism in C
and where

fi :
∏

α(j)=i

bj −→ ai

is a morphism of A above γ for every i ∈ S.

3.4. Relative tensor product. We now endow CoCart with a structure of Catop
∞ × P-family

of symmetric monoidal ∞-categories in the sense of Definition A.1. This can be viewed as a
relative construction of Lurie’s tensor product of ∞-categories [6, §4.8.1], Lurie’s construction
being the case where the base category X is the point. We thus follow Lurie’s exposition. The
fiber of

B : CoCart −→ Catop
∞

at an ∞-category X coincides with the ∞-category CoCartX of cocartesian fibrations over X .
Observe that [5, Proposition 2.4.4.3] guarantees that CoCartX has finite products, and for every
morphism Y → X the base change

Y ×X − : CoCartX −→ CoCartY
preserves finite products. From Section 3.3, we deduce that CoCart yields a Catop

∞-family of
symmetric monoidal ∞-categories

CoCart⊗ −→ Fin∗ ×Catop
∞

in the sense of Definition A.1. Informally, Section 3.3 describes CoCart⊗ as follows:
(1) objects are (S,X , {pi : Ai → X}i∈S), where S is a finite set, where X ∈ Cat∞ and where

pi : Ai → X are cocartesian fibrations for every i ∈ S ;

(2) a morphism from (T,Y, {qj : Bj → Y}j∈T ) to (S,X , {pi : Ai → X}i∈S) in CoCart⊗ is
the data (α, f, (fi)i∈S) where α : T → S is a map, where f : X → Y is a functor and where

fi :
∏

α(j)=i

qj −→ pi

is a morphism of CoCart above f for every i ∈ S, that is fi = (f, ui, vi) as in (3.3) with

(3.12) vi :
∏

α(j)=i

f∗(Bj)→ Ai

morphism in CoCartX .
Following [6, §4.8.1], let P be the collection of all sets of small simplicial sets, ordered by

inclusion. Define CoCart⊗ to be the subcategory of CoCart⊗ × P defined by the following
conditions:

(1) an object (S,X , (pi)i∈S ,K) of CoCart⊗ × P belongs to CoCart⊗ if and only if pi ∈
CoCart(K)/X for every i ∈ S.
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(2) if K′ ⊆ K, a morphism (α, f, (fi)i∈S) : (T,Y, (qj)j∈T ,K′)→ (S,X , (pi)i∈S ,K) belongs to
CoCart⊗ if and only if (3.12) is K′-cocontinuous in each variable for every j ∈ S.

Using Proposition 3.11 instead of [5, 5.3.6.2], the same proof of [6, 4.8.1.3] yields:

Proposition 3.13. The functor

CoCart⊗ −→ Fin∗ ×Catop
∞ × P

is a cocartesian fibration.

In particular, the above cocartesian fibration endows CoCart with a structure of Catop
∞ × P-

family of symmetric monoidal ∞-categories. For K ∈ P, we denote by CoCart(K)⊗ its fibre over
K. Observe that the fibre of the cocartesian fibration

(3.14) CoCart(K)⊗ → Fin∗ ×Catop
∞

above 〈1〉 is CoCart(K). We deduce :

Corollary 3.15. The cocartesian fibration CoCart(K)⊗ → Fin∗ ×Catop
∞ endows CoCart(K)

with a structure of Catop
∞-family of symmetric monoidal ∞-categories. Furthermore, if K′ ⊆ K,

the functor
PKK′ : CoCart(K′) −→ CoCart(K)

is symmetric monoidal relative to Catop
∞ .

For X ∈ Cat∞ and K ∈ P, we denote by CoCart(K)⊗/X the fibre of (3.14) over (X ,K). Observe
that the fibre of the cocartesian fibration CoCart(K)⊗/X → Fin∗ above 〈1〉 is CoCart(K)/X . We
deduce :

Corollary 3.16. The cocartesian fibration CoCart(K)⊗/X → Fin∗ endows CoCart(K)/X with a
structure of symmetric monoidal ∞-categories. Furthermore, if K′ ⊆ K, for f : X → Y a functor
between ∞-categories, the functor

X ×Y PKK′(−/Y) : CoCart(K′)/Y −→ CoCart(K)/X

is symmetric monoidal.

To complete this discussion, we let K> be the set of all small simplicial sets. We define PrFibL

to be the full subcategory of CoCart(K>) spanned by presentable fibrations. It is immediate
that the induced functor

B : PrFibL −→ Catop
∞

exhibits PrFibL as a cocartesian fibration over Catop
∞ . Moreover, [6, Proposition 4.8.1.15] imme-

diately implies that PrFibL is closed under the symmetric monoidal structure of CoCart(K>)

relative to Catop
∞ . Thus, it follows that PrFibL can be promoted to a Catop

∞-family of symmetric
monoidal ∞-categories, that we will denote PrFibL,⊗.

Remark 3.17. Fix an ∞-category X ∈ Catop
∞ . Then PrFibL

X coincides with the ∞-category
of presentable fibrations over X . Via straightening / unstraightening, this is equivalent to
Fun(X ,PrL). Under this identification, the symmetric monoidal structure PrFibL,⊗

X supplied
by the above constructions canonically coincide with the objectwise monoidal structure of
Fun(X ,PrL,⊗).

Notice that the functor

PSh := PK>∅ : CoCart −→ CoCart(K>)

factors through PrFibL. Thus, as a consequence of the above corollary, we obtain:
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Corollary 3.18. The functor PSh: CoCart → PrFibL can be promoted to a symmetric
monoidal functor

PSh⊗ : CoCart⊗ −→ PrFibL,⊗

relative to Catop
∞ .

Variant 3.19. Given a cocartesian fibration A → X classifying a functor ΦA : X → Cat∞, write
op(A/X ) for the cocartesian fibration over X classifying the functor Φop

A : X → Cat∞. The
assignment sending A → X to the cocartesian fibration op(A/X )→ X defines a global functor

Op: CoCart −→ CoCart ,

which acquires a natural symmetric monoidal structure Op⊗ relative to Catop
∞ . Write

CoPSh⊗ := PSh⊗ ◦Op⊗ : CoCart⊗ −→ PrFibL,⊗

for the induced symmetric monoidal functor relative to Catop
∞ . We also write CoPSh := PSh ◦Op

for the underlying functor CoCart→ PrFibL. Unraveling the definitions, we see that it takes a
cocartesian fibration A → X classifying the functor ΦA to the cocartesian fibration classifying
the functor

Fun!(ΦA(−),S) : X −→ PrL .

Variant 3.20. Let E be a (not necessarily cocartesian) section of the cocartesian fibration
B : PrFibL → Catop

∞ . Using the relative symmetric monoidal structure of B, given by PrFibL,⊗,
we obtain a functor

E⊗− : PrFibL −→ PrFibL

over Catop
∞ . Informally speaking, this sends a presentable fibration A → X to the presentable

fibration A ⊗X E(X ), where ⊗X is the underlying tensor product of the symmetric monoidal
structure on PrFibL,⊗

X ' Fun(X ,PrL)⊗, where the last symmetric monoidal structure is the one
induced by PrL,⊗. We define

expE := E⊗ CoPSh: CoCart −→ PrFibL ,

and we refer to expE as the exponential functor with coefficients in E.

Remark 3.21.
(1) If E is a cocartesian section of B, then E⊗− and expE preserve B-cocartesian edges. On

the other hand, since ∗ is an initial object of Catop
∞ , we have

Funccrt
/Catop∞ (Catop

∞ ,PrFib
L) ' PrL ,

so cocartesian sections of B are identified with presentable ∞-categories. For E ∈ PrL,
we will simply write expE , leaving it implicit that E is identified with a section of B.

(2) Fix E ∈ PrL. Unraveling the definitions, we see that expE takes a cocartesian fibration
A → X with straightening ΦA : X → Cat∞ to the presentable fibration expE(A/X )→ X
classifying the functor

Fun!(ΦA(−), E) ' Fun!(ΦA(−),S)⊗ E : X −→ PrL .

Variant 3.22. Since the cocartesian fibration B : PrFibL → Catop
∞ has a relative symmetric

monoidal structure, we can consider the induced cocartesian fibration

CAlg(PrFibL,⊗/Catop
∞) −→ Catop

∞ ,

for whose construction we refer to §A.2. Notice that since ∗ is an initial object in Catop
∞ , we have

Funccrt
/Catop∞ (Catop

∞ ,CAlg(PrFibL,⊗/Catop
∞)) ' CAlg(PrL) .
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Thus, given a presentably symmetric monoidal ∞-category E⊗ ∈ CAlg(PrL), we interpret it as a
cocartesian section of CAlg(PrFibL,⊗/Catop

∞) and consider induced the Catop
∞-lax symmetric

monoidal functor
E⊗− : PrFibL,⊗ −→ PrFibL,⊗

obtained in (A.10). Thus, the functor

exp⊗E := E⊗ CoPSh(−)⊗ : CoCart⊗ −→ PrFibL,⊗

has a naturally induced lax symmetric monoidal structure relative to Catop
∞ . In other words,

when E has a symmetric monoidal structure E⊗, the exponential functor expE inherits a lax
symmetric monoidal structure exp⊗E .

3.5. Sections. Notice that since Catop
∞ has ∗ as initial object, there is a canonical functor

Triv⊗ : PrL,⊗ ×Catop
∞ −→ PrFibL,⊗

which is easily seen to be symmetric monoidal relatively to Catop
∞ in the sense of Definition A.3.

Concretely, if X ∈ Catop
∞ is a fixed ∞-category, the fiber

Triv⊗X : PrL,⊗ −→ PrFibL,⊗
X

is the symmetric monoidal functor sending a presentable ∞-category E to the trivial presentable
fibration E × X → X . Under the straightening / unstraightening equivalence

PrFibL
X ' Fun(X ,PrL)

we see that the functor TrivX underlying Triv⊗X sends E to the associated constant functor. In
particular, TrivX has a right adjoint

Σccrt
X : PrFibL

X −→ PrL ,

that sends a presentable fibration A → X to the presentable ∞-category of cocartesian sections

Σccrt
X (A) ' Funccrt

/X (X ,A) .

Thus, as immediate consequence of Corollary A.5, we obtain:

Corollary 3.23. The functor Triv⊗ has a right adjoint

Σccrt,⊗ : PrFibL,⊗ −→ PrL,⊗ ×Catop
∞

relative to Catop
∞ . Furthermore, Σccrt,⊗ is lax symmetric monoidal relative to Catop

∞ .

Variant 3.24. Starting with the cocartesian fibration B : Cat[1]?
∞ → Catop

∞ and repeating the
above reasoning, we find a symmetric monoidal functor

Triv⊗ : Cat×∞ ×Catop
∞ −→ Cat[1]?,×

∞

relative to Catop
∞ . Here we consider Cat[1]?

∞ equipped with the relative cartesian symmetric
monoidal structure (that can for instance be obtained via Proposition A.7 and [6, §2.4.1]). We
also obtain a right adjoint

Σ⊗ : Cat[1]?,×
∞ −→ Cat×∞ ×Catop

∞ .

Unraveling the definitions, we see that this functor sends a functor A → X to the ∞-category of
sections

Σ(A → X ) ' Fun/X (X ,A) ,

with the obvious functoriality with respect to morphisms of the form (3.3).
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Warning 3.25. The functors Σccrt,⊗ and Σ⊗ do not preserve cocartesian edges. In other words,
given a pullback square

B BX

Y X

u

f

seen as a morphism from B → Y to BX → X in Cat[1]?
∞ , the induced map

Fun/Y(Y,B) −→ Fun/X (X ,BX )

is not necessarily an equivalence.

Remark 3.26. The functor Σccrt,⊗ induces a well defined functor

Σccrt : CAlg(PrFibL,⊗/Catop
∞) −→ CAlg(PrL,⊗ ×Catop

∞/Cat
op
∞) ' CAlg(PrL,⊗)×Catop

∞ .

Composing with the projection, we obtain a canonical functor

CAlg(PrFibL,⊗/Catop
∞) −→ CAlg(PrL,⊗) .

We will commit a slight abuse of notation and still denote by Σccrt this last functor.

4. Day’s convolution product

We now exploit the general constructions of the previous section to define a relative version
of Day’s convolution product. We begin with an explicit computation of the sections of the
exponential construction of Variant 3.22, which allows to obtain the most basic version of the
relative Day’s convolution. After explaining in which sense this generalizes the usual construction,
we turn to the more exotic case where the base is a pro-∞-category.

4.1. Sections of the exponential construction. Before getting to Day’s convolution product
and its generalizations, we still need one last preliminary discussion. Fix an∞-category X and let
E ∈ CAlg(PrL) be a presentably symmetric monoidal ∞-category. In Variant 3.22, we obtained
a functor

expE,X : CoCartX −→ PrFibL
X .

Concretely, this takes a cocartesian fibration A → X to the presentable (cocartesian) fibration
expE,X (A)→ X classifying the functor

Fun!(ΦA(−), E) : X −→ PrL ,

where ΦA denotes the straightening of A. On the other hand, we also observed the existence of a
functor

ΣX : PrFibL
X −→ (Cat∞)/X −→ Cat∞

taking a presentable (cocartesian) fibration over X to its ∞-category of sections. We now have:

Proposition 4.1. There is a canonical equivalence

Fun(A, E) ' ΣX (expE,X (A)) ' Fun/X (X , expE,X (A)) .

Proof. Using the equivalence PrL ' (PrR)op, we see that the presentable fibration expE,X (A)→
X is at the same time a cocartesian and a cartesian fibration. Seen as a cartesian fibration, it
classifies the functor

Fun(ΦA(−), E) : X op −→ PrR .
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We use this second description to compute the sections of expE,X (A). Invoking [2, Proposition
7.1], we find the following chain of natural equivalences:

Fun/X (X , expE,X (A)) ' lim
Tw(X )op

Fun(X−/,Fun(ΦA(−), E))

' lim
Tw(X )op

Fun(ΦA(−)×X−/×, E)

' Fun
(

colim
Tw(X )

ΦA(−)×X−/, E
)

' Fun(A, E) .

Here Tw(X ) denotes the ∞-category of twisting arrows of X (see [6, §5.2.1]), and the last
equivalence is consequence of [2, Theorem 7.4]. This proves the first half of the statement. �

Notation 4.2. We write Funccrt(A, E) the full subcategory of Fun(A, E) spanned by those functors
that are sent to cocartesian sections of expE,X (A) under the equivalence of Proposition 4.1, and
we refer to functors in Funccrt(A, E) as cocartesian functors.

Remark 4.3. Cocartesian functors play a prominent role in the companion paper [?], where
they are thoroughly studied and characterized (see §8 in loc. cit.). They should not be confused
with functors F : A → E that take cocartesian edges in A to equivalences in E . See Warning 8.2.5
in loc. cit.

4.2. Recovering the classical construction. Fix an∞-category X and a presentably symmet-
ric monoidal∞-category E ∈ CAlg(PrL). The constructions of Variant 3.22 and of Corollary 3.23
show that the functors

expE,X : CoCartX −→ PrFibL
X and ΣX : PrFibL

X −→ PrL

admit natural lax symmetric monoidal enhancements

exp⊗E,X : CoCart×X −→ PrFibL,⊗
X and Σ⊗X : PrFibL

X −→ PrL,⊗ .

Therefore, starting with an object

A⊗ ∈ CAlg(CoCart×X ) ,

we canonically obtain an presentably symmetric monoidal ∞-category

Σ⊗X (exp⊗E,X (A⊗)) ∈ CAlg(PrL,⊗) ,

whose underlying presentable ∞-category is given by

ΣX (expE,X (A)) ' Fun/X (X , expE,X (A)) ,

which Proposition 4.1 allows to further identify with Fun(A, E). Besides, replacing Σ⊗X with
Σccrt,⊗
X , we deduce that the full subcategory Funccrt(A, E) introduced in Notation 4.2 inherits a

symmetric monoidal structure in such a way that the functor

Funccrt(A, E) ↪−→ Fun(A, E)

is symmetric monoidal. Summarizing this discussion, we find:

Corollary 4.4. Let A⊗ ∈ CAlg(CoCart×X ). Then both Fun(A, E) and Funccrt(A, E) have
canonical symmetric monoidal structures. Furthermore, Funccrt(A, E) is closed under tensor
product in Fun(A, E).
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This recovers [4, §4.2.C]. Furthermore, when X = ∗, this recovers the usual construction of
Day’s convolution product. Indeed, in this case the functor ΣX is an equivalence, while exp⊗E,X is
the lax symmetric monoidal functor

Fun!(−, E) : Cat∞ −→ PrL ,

(whose lax symmetric monoidal structure can be directly deduced from [6, Proposition 4.8.1.10]).
In particular, when A⊗ is a symmetric monoidal ∞-category, Fun(A, E) inherits a canonical
symmetric monoidal structure, which is given by the classical Day’s convolution product, as
already observed in [6, Remark 4.8.1.13]. Let us make the connection more explicit:

Remark 4.5. For every ∞-category C, write yC : C −→ PSh(C) for the Yoneda embedding.
(1) Let A and B two ∞-categories. The functor

A× B −→ PSh(A)× PSh(B) −→ PSh(A)⊗ PSh(B)

induces a cocontinuous functor

PSh(A× B) −→ PSh(A)⊗ PSh(B) ,

which is the equivalence supplied by the symmetric monoidal structure on PSh(−) (as it
follows from the proof of [6, Proposition 4.8.1.3] – see also [5, Proposition 5.3.6.11]). On
the other hand, for a pair (c, d) ∈ A× B one has a canonical equivalence

yA×B(c, d) ' yA(c)× yB(d) .

Under the above equivalence, the presheaf yA×B(c, d) is sent to the elementary tensor
yA(c)⊗ yB(d). It follows that under the above equivalence, an elementary tensor F ⊗G ∈
PSh(A)⊗ PSh(B) is sent to the presheaf informally defined by

(c, d) 7→ F (c)× F (d) .

(2) Let A⊗ be a symmetric monoidal ∞-category, and let ⊗ : A×A → A be the underlying
tensor product of A. Unraveling the definitions, we see that the underlying tensor product
on PSh(A) can explicitly be computed as follows:

©? : Fun(Aop,S)⊗ Fun(Aop,S) ' Fun(Aop ×Aop,S)
⊗!−→ Fun(Aop,S) ,

where ⊗! denotes the left Kan extension along ⊗ and where the equivalence is the one
discussed in point (1) of this remark. It follows that the tensor product of two presheaves
F and G can be explicitly computed by the formula

F ©? G(X) ' colim
X→X1⊗X2

F (X1)×G(X2) .

In other words, it coincides with Day’s convolution product.

4.3. Extension to pro-∞-categories. We now generalize Corollary 4.4 to the case where the
base X is a pro-∞-category. We refer to Section 5 for a discussion of a common example arising
from stratified topological spaces.

Fix a presentably symmetric monoidal ∞-category E ∈ CAlg(PrL,⊗), and consider it as a
cocartesian section of

CAlg(PrFibL,⊗/Catop
∞) −→ Catop

∞ .

Consider the following commutative diagram:

CoCart⊗ PrFibL,⊗ PrL,⊗ ×Catop
∞

Fin∗ ×Catop
∞ .

exp⊗E Triv⊗
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The vertical arrows are Catop
∞-families of symmetric monoidal ∞-categories in the sense of

Definition A.1. In particular, they are cocartesian fibrations. The functor Triv⊗ is symmetric
monoidal relative to Catop

∞ , while exp⊗E is a Catop
∞-lax symmetric monoidal functor. Via the

straightening equivalence of Proposition A.7, we see that CoCart⊗, PrFibL,⊗ and PrL,⊗×Catop
∞

classify functors
A,B,C: Catop

∞ −→ SMCatlax
∞

with values in the ∞-category of symmetric monoidal ∞-categories and lax monoidal functors
between them. Concretely, A is the functor sending X ∈ Catop

∞ to the symmetric monoidal
∞-category CoCart⊗X , while B sends X to PrFibL,⊗

X and C is the constant functor associated
to PrL,⊗. Using Proposition A.7 again, we see that the functors exp⊗E and Triv⊗ give rise to
natural transformations

αE : A −→ B and τ : C −→ B .

Consider now the canonical embedding

Catop
∞ ↪−→ Pro(Cat∞)op .

We extend the functors A, B and C by left Kan extension along this embedding. This yields three
functors

Ã, B̃, C̃ : Pro(Cat∞)op −→ SMCatlax
∞ ,

and two natural transformations

α̃E : Ã −→ B̃ and τ̃ : C̃ −→ B̃ .

Notice that the functor C̃ is once again the constant functor associated to PrL,⊗. Thus, applying
once more Proposition A.7, we obtain a commutative diagram

(4.6)
proCoCart⊗ proPrFibL,⊗ PrL,⊗ × Pro(Cat∞)op

Fin∗ × Pro(Cat∞)op .

proexp⊗E proTriv⊗

Remark 4.7. Fix X ∈ Pro(Cat∞) and choose a presentation

X ' “lim”
i∈I
Xi .

Unraveling the definitions, we find canonical equivalences

proCoCart⊗X ' colim
i∈Iop

CoCart⊗Xi and proPrFibL,⊗
X ' colim

i∈Iop
PrFibL,⊗

Xi ,

where both colimits are computed in Cat∞. Objects in proCoCartX can be represented as pairs
(i,A), where i ∈ I and A → Xi is a cocartesian fibration. Notice that morphisms from (i,A) to
(j,B) are given by a common refinement k → i and k → j together with a morphism

A×Xi Xk −→ B ×Xj Xk
of cocartesian fibrations over Xk. In particular, two objects (i,A) and (j,B) are equivalent if they
become equivalent after base change to a (suitably large) common refinement of both i and j.
For this reason, we denote objects in proCoCartX by [(i,A)], and we obtain the formula

(4.8) MapproCoCartX

(
[(i,A)], [(j,B)]

)
' colim
h∈(I/k)op

MapCoCartXh
(A×Xi Xh,B ×Xj Xh) ,

where k is any common refinement of i and j in I. Similar conventions apply to proPrFibL
X.
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Example 4.9. Keep the notation of Remark 4.7 and let E ∈ PrL be a presentable ∞-category.
Then proTrivX(E) ' [(i,TrivXi(E))] = [(i, E × Xi)]. Notice that for every j → i in I, one has

[(i, E × Xi)] ' [(j, E × Xj)] .

Remark 4.10. The tensor structure in both proCoCartX and proPrFibL
X is informally defined

as
[(i,A)]⊗X [(j,B)] :=

[(
k, (A×Xi Xk)⊗Xk (B ×Xj Xk)

)]
,

where k is any object equipped with maps k → i and k → j (with the convention that in the case
of proCoCartX we write ⊗Xk for the usual fiber product over Xk).

Warning 4.11. The tensor structure is similarly defined; in particular to tensor two objects
(i,A) and (j,B), one first finds a common index k mapping to both i and j, pulls back both A and
B to Xk, and finally tensors the results inside CoCartXk . In particular, we obtain a canonical
map

colim
i∈Iop

CAlg(CoCart⊗Xi) −→ CAlg(proCoCart/X) ,

which is not an equivalence.

Observe now that, by construction, the functor proTriv⊗ is symmetric monoidal relative to
Pro(Cat∞)op. In order to mimic the construction of Day’s convolution in the classical setting, we
would like to know that proTriv⊗ admits a (lax monoidal) right adjoint relative to Pro(Cat∞)op.
Invoking Corollary A.5, all we need to check is to verify that for a fixed X ∈ Pro(Cat∞)op, the
functor

proTrivX : PrL −→ proPrFibL
X

has a right adjoint. Unfortunately, this turns out to be false. On the other hand, we have:

Lemma 4.12. The functor proTrivX commutes with finite colimits. In particular, it admits an
ind-right adjoint.

Proof. Let J → PrL be a finite diagram, written j 7→ Ej . Set
E := colim

j∈J
Ej .

Fix a presentation X ' “lim”i∈I Xi and let (i,A) ∈ proPrFibL
X. By Remark 4.7, we find:

MapproPrFibL
X

(proTrivX(E), (i,A)) ' colim
k∈(I/i)op

MapPrFibL
Xi

(E × Xj ,A×Xi Xj)

' colim
k∈(I/i)op

lim
j∈J

MapPrFibL
Xi

(Ei ×Xj ,A×Xi Xj)

' lim
j∈J

colim
k∈(I/i)op

MapPrFibL
Xi

(Ei ×Xj ,A×Xi Xj)

' lim
j∈J

MapproPrFibL
X

(proTrivX(Ei), (i,A)) ,

whence the conclusion. �

Let us denote
Σccrt

X : Ind(proPrFibL
X) −→ Ind(PrL)

the ind-right adjoint to proTrivX supplied by the above lemma. We have:

Lemma 4.13. Fix a presentation X ' “lim”i∈I Xi for X. For an object (i,A) ∈ proPrFibL
X '

colimk∈Iop PrFibL
Xk there is a canonical equivalence

Σccrt
X (i,A) ' “colim”

k∈(I/i)op
Funccrt

/Xk(Xk,A×Xi Xk)

in Ind(PrL).
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Proof. Fix E ∈ PrL. By Remark 4.7 we find:

MapInd(PrL)

(
E , “colim”

k∈(I/i)op
Funccrt

/Xk(Xk,A×Xi Xk)
)
' colim
k∈(I/i)op

MapPrL

(
E ,Funccrt

/Xk(Xk,A×Xi Xk)
)

' colim
k∈(I/i)op

MapCoCartXk

(
TrivXk(E),A×Xi Xk

)
' MapproCoCartX

(
proTrivX(E), (i,A)

)
,

so the conclusion follows from the Yoneda lemma. �

This suggests to further upgrade (4.6) as follows. Consider the induced diagrams

Ind(Ã), Ind(B̃), Ind(C̃) : Pro(Cat∞)op −→ SMCatlax
∞ ,

obtained composing the functors Ã, B̃ and C̃ with the symmetric monoidal functor Ind. Applying
once more Proposition A.7, we obtain an analogue of (4.6) which we denote as follows:
(4.14)

indproCoCart⊗ indproPrFibL,⊗ Ind(PrL)⊗ × Pro(Cat∞)op

Fin∗ × Pro(Cat∞)op .

indproexp⊗E indproTriv⊗

Remark 4.15.
(1) An object A ∈ indproCoCartX can be represented as an ind-system

“colim”
j∈J

[(ij ,Aj)] ,

where ij ∈ I is an index and Aj → Xij is a cocartesian fibration. Notice that for j → `
in J , the transition morphism

[(ij ,Aj)] −→ [(i`,A`)]

is understood as in Remark 4.7-(1).

(2) Fix two objects A,B in either indproCoCartX or indproPrFibL with presentations

A ' “colim”
j∈J

[(ij ,Aj)] and B ' “colim”
`∈L

[(i`,B`)] .

Their tensor product can be explicitly represented as

A⊗X B ' “colim”
(j,`)∈J×L

[(ij ,Ai)]⊗X [(i`,B`)]

where the tensor product on the right hand side is understood as in Remark 4.7-(2).
Notice however that when B = A, we can also write

A⊗X A ' “colim”
j∈J

[(ij ,Aj)]⊗X [(ij ,Aj)] ' “colim”
j∈J

[(ij ,Aj ⊗Xij Aj)] .

Indeed, since J is filtered, the diagonal J → J × J is cofinal, and therefore the two
presentations for A⊗X A agree.

Combining Lemma 4.12 and Corollary A.5, we deduce that indproTriv⊗ has a lax symmetric
monoidal right adjoint Σccrt,⊗

indpro.

Variant 4.16. Working with Cat[1]?
∞ instead of PrFibL, one obtain similar results, where the

functor Σccrt,⊗
indpro is replaced by its non-cocartesian variant Σ⊗indpro.
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It follows that the composites Σ⊗indpro◦indproexp⊗E and Σccrt,⊗
indpro◦indproexp⊗E induce well defined

functors

CAlg(indproCoCart⊗/Pro(Cat∞)op) −→ Ind(PrL,⊗) .

Summing up the discussion so far, we obtain the main result of this paper:

Corollary 4.17. Let X ∈ Pro(Cat∞). Let A⊗ ∈ CAlg(indproCoCart⊗X). Fix compatible
presentations

X ' “lim”
i∈I
Xi and A ' “colim”

j∈J
[(ij ,Aj)] .

Then for every presentably symmetric monoidal ∞-category E⊗ ∈ CAlg(PrL,⊗), the ind-objects

“colim”
j∈J

“colim”
k∈(I/ij )op

Fun(Aj ×Xij Xk, E)

and

“colim”
j∈J

“colim”
k∈(I/ij )op

Funccrt(Aj ×Xij Xk, E)

can be canonically lifted to objects in CAlg(Ind(PrL)⊗), and the natural morphism

“colim”
j∈J

“colim”
k∈(I/ij )op

Funccrt(Aj ×Xij Xk, E) −→ “colim”
j∈J

“colim”
k∈(I/ij )op

Fun(Aj ×Xij Xk, E)

can be canonically lifted to a morphism in CAlg(Ind(PrL)⊗). In particular, both

(4.18) Fun(A, E) := colim
j∈J

colim
k∈(I/ij )op

Fun(Aj ×Xij Xk, E) ∈ PrL

and

Funccrt(A, E) := colim
j∈J

colim
k∈(I/ij )op

Funccrt(Aj ×Xij Xk, E) ∈ PrL

have a presentably symmetric monoidal structure, and the natural inclusion

Funccrt(A, E) ↪−→ Fun(A, E)

is symmetric monoidal. Furthermore these constructions are functorial in the pair (X,A⊗) seen
as an object of CAlg(indproCoCart⊗/Pro(Cat∞)op).

Remark 4.19. Assume that X admits a presentation

X ' “lim”
i∈I
Xi

where all the transition maps Xi → Xj are localizations, and in particular they are limit-final (see
e.g. [?, Lemma 1.6] or [?, Proposition 7.1.10]). In particular, if A → Xi is a cocartesian fibration,
then [5, Proposition 3.3.3.1] and [?, Corollary 8.2.4] show that the induced functor

Funccrt(A, E) −→ Funccrt(A×Xi Xj , E)

is an equivalence. In particular, under this assumption, the statement of Corollary 4.17 simplifies
to say that

colim
j∈J

Funccrt(Aj , E)

has an induced symmetric monoidal structure.
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5. Pro-categories arising from stratified spaces

To construct symmetric monoidal∞-categories via Corollary 4.17 one needs as a starting input
an object A⊗ ∈ CAlg(indproCoCartX). At first glance this ∞-category looks so complicated
that it is legitimate to wonder whether Corollary 4.17 can actually be of any practical use. The
goal of this section is to show that in the situation where the pro-∞-category X arises from the
study of stratified topological spaces, this ∞-category simplifies quite a bit, making the task of
constructing explicit objects inside much more manageable. The key ingredient is the exodromy
equivalence proven in [?, Theorem 5.4.1].

Let X be a locally weakly contractible topological space. Recall that a stratification on
X is the given of a poset P and a continuous map X → P , where P is equipped with the
Alexandroff topology, where opens are exactly the closed upwards subsets [?, Recollection 2.1.1].
Stratifications assemble into a category Strat(X). We let Stratex(X) be the full subcategory
consisting of exodromic stratifications, in the sense of [?, Definition 1.5.6], see also Example
1.5.8-(1) in loc. cit. Let

P : I −→ Stratex(X)

be a cofiltered diagram, and write Pi := P(i). We set

Π∞(X,P) := “lim”
i∈I

Π∞(X,Pi) ∈ Pro(Cat∞) .

We also introduce the following:

Definition 5.1. We say that a hypersheaf F ∈ Shhyp(X;Cat∞) is P-hyperconstructible if it is
Pi-hyperconstructible for some i ∈ I. We let Conshyp

P (X;Cat∞) denote the full subcategory of
Shhyp(X;Cat∞) spanned by P-hyperconstructible sheaves.

Remark 5.2. In other words, we have

Conshyp
P (X;Cat∞) ' colim

i∈Iop
Conshyp

Pi
(X;Cat∞),

as all the transition functors are fully faithful and compatible with the natural inclusion in
Shhyp(X;Cat∞).

As a consequence of the exodromy equivalence [?], we find:

Lemma 5.3. There is a symmetric monoidal equivalence

proCoCart⊗Π∞(X,P) ' Conshyp
P (X;Cat∞)× .

In particular there is a symmetric monoidal and fully faithful embedding

proCoCart⊗Π∞(X,P) ↪−→ Shhyp(X;Cat∞)×

Proof. Using Remark 4.7, we can compute

proCoCart⊗Π∞(X,P) ' colim
i∈Iop

CoCart⊗Π∞(X,Pi)
.

On the other hand, combining the straightening and the exodromy equivalence ([?, Theorem
5.4.1]), we obtain the following chain of symmetric monoidal equivalences:

CoCart⊗Π∞(X,Pi)
' Fun(Π∞(X,Pi),Cat∞)× ' Conshyp

Pi
(X;Cat∞)× ,

so the conclusion follows from Remark 5.2. �
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Corollary 5.4. There is a symmetric monoidal equivalence

indproCoCart⊗Π∞(X,P) ' Ind(Conshyp
P (X;Cat∞))× .

In particular, there is an induced symmetric monoidal and fully faithful embedding

indproCoCart⊗Π∞(X,P) ↪−→ Ind(Shhyp(X;Cat∞)) .

Corollary 5.5. There is a fully faithful embedding

CAlg
(
indproCoCart⊗Π∞(X,P)

)
↪−→ CAlg

(
Ind(Shhyp(X;Cat∞))×

)
,

and the essential image consists of those A⊗ ∈ CAlg(Ind(Shhyp(X;Cat∞))×) whose underlying
ind-object A ∈ Ind(Shhyp(X;Cat∞)) admits a presentation

A ' “colim”
j∈J

Aj ,

where each Aj is a P-hyperconstructible hypersheaf with values in Cat∞.

Appendix A. Relative symmetric monoidal structures

In [6, §2.3.2] Lurie introduced the notion of family of ∞-operads (see more precisely Definition
2.3.2.10 in loc. cit.). In this note, we will need the milder notion of family of symmetric monoidal
∞-categories.

A.1. Several equivalent definitions. Fix an ∞-category C. Write CoCartC for the (non full)
subcategory of (Cat∞)/C spanned by cocartesian fibrations, and whose morphisms are morphisms
over C preserving cocartesian arrows. Using [5, Proposition 2.4.4.3], we see that CoCartC has
finite products, so it is inherits a (cartesian) symmetric monoidal structure. Via the cocartesian
straightening / unstraightening equivalence

Stco
C : CoCartC � Fun(C,Cat∞) : Unco

C ,

this symmetric monoidal structure corresponds to the objectwise monoidal structure on Fun(C,Cat∞).
In particular, the above equivalence lifts to an equivalence

CAlg(CoCartC) ' Fun(C,CAlg(Cat∞)) .

These ∞-categories can be realized in a yet different way, which sometimes is more convenient:

Definition A.1. Let C be an ∞-category. A C-family of symmetric monoidal ∞-categories
consists of a cocartesian fibration

p : D⊗ −→ Fin∗ × C
such that for every c ∈ C the induced cocartesian fibration

pc : D⊗c −→ Fin∗ × {c}
is a symmetric monoidal ∞-category.

Let C be an ∞-category and let D⊗ be a C-family of symmetric monoidal ∞-categories.
Unraveling the definitions, we see that D⊗ is in particular a C-family of ∞-operads in the sense
of [6, Definition 2.3.2.10]. In particular, Proposition 2.3.2.11 in loc. cit. allows to see D⊗ as a
generalized ∞-operad.

Notation A.2. Let C be an ∞-category and let D⊗ be a C-family of symmetric monoidal
∞-categories. We will write D → C for the fiber of D⊗ → Fin∗ × C at {〈1〉} × C. Similarly, if
f⊗ : D⊗ → E⊗ is a functor over Fin∗ × C, we write f : D → E for the fiber at {〈1〉} × C.

Definition A.3. Let C be an ∞-category and let D⊗ and E⊗ be two C-families of symmetric
monoidal ∞-categories. We say that a functor f⊗ : D⊗ → E⊗ over Fin∗ × C is:
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(1) lax symmetric monoidal if it is a morphism of generalized ∞-operads in the sense of [6,
Definition 2.3.2.2] (that is, it preserves inert morphisms);

(2) C-lax symmetric monoidal if it is lax symmetric monoidal and the underlying functor
f : D → E is morphism in CoCartC (that is, it preserves cocartesian edges);

(3) C-symmetric monoidal functor if it is preserves cocartesian morphisms.
We write (SMCat∞)lax

/C for the full subcategory of (Cat∞)/Fin∗×C spanned by C-families of
symmetric monoidal ∞-categories and C-lax symmetric monoidal functors between them. We
write (SMCat∞)/C for the (non full) subcategory of (SMCat∞)lax

/C having the same objects and
whose morphisms are C-symmetric monoidal functors.

Lemma A.4. Let C be an ∞-category and let D⊗ and E⊗ be two C-families of symmetric
monoidal ∞-categories. A functor f⊗ : D⊗ → E⊗ over Fin∗×C is lax symmetric monoidal if and
only if for every c ∈ C, the induced functor f⊗c : D⊗c → E⊗c is a map of ∞-operads in the sense of
[6, Definition 2.1.2.7].

Proof. Let p : D⊗ → Fin∗ × C be the structural map and let π : Fin∗ × C → Fin∗ be the natural
projection. Set q := π ◦ p for the composite. By definition a morphism f : d→ d′ in D⊗ is inert if
and only if q(f) is inert and f is q-cocartesian. Homotopy uniqueness of cocartesian lifts implies
that p(f) is a π-cocartesian morphism in Fin∗ × C, and therefore that the projection to C is an
equivalence. At this point, the conclusion follows simply unraveling the definitions. �

Corollary A.5. Let C be an ∞-category and let D⊗ and E⊗ be C-families of symmetric monoidal
∞-categories. Let f⊗ : D⊗ → E⊗ be a symmetric monoidal functor relative to C. Assume that
for every c ∈ C, the functor fc : Dc → Ec has a right adjoint. Then f⊗ has a right adjoint g⊗
relative to Fin∗ × C, and additionally g⊗ is lax symmetric monoidal relative to C.

Proof. Fix an object c ∈ C and an element 〈n〉 ∈ Fin∗. The morphisms {ρni : 〈n〉 → 〈1〉}i=1,2,...,n

induce canonical identifications

D〈n〉,c ' D×nc and E〈n〉,c ' E×nc .

With respect to these identifications, f〈n〉,c is identified with f×nc . In particular, it follows that
every fiber f〈n〉,c has a right adjoint. Therefore, [6, Proposition 7.3.2.6] guarantees that f⊗ has a
right adjoint g⊗ relative to Fin∗ × C. At this point, the conclusion follows combining Proposition
7.3.2.5 and 7.3.2.7 in loc. cit. with the criterion provided by Lemma A.4. �

Lemma A.6. Let C be an ∞-category and let f⊗ : D⊗ → E⊗ be a C-lax symmetric monoidal
functor between C-families of symmetric monoidal∞-categories. Write p : D⊗ → C and q : E⊗ → C
be the two structural morphisms. Then f⊗ takes p-cocartesian morphisms to q-cocartesian ones.

Proof. Consider the commutative triangle

D⊗ Fin∗ × C

C

p′

p π

By assumption p′ is a cocartesian fibration. It follows that p′ takes p-cocartesian edges to
π-cocartesian ones. Let α : d → d′ be a p-cocartesian morphism in D⊗. Its image under p′ is
of the form (id〈n〉, β) : (〈n〉, c) → (〈n〉, c′). Thus, [5, Proposition 2.4.1.3] guarantees that α is
p′-cocartesian. For i = 1, 2, . . . , n choose inert morphisms

ri : d −→ di and r′i : d
′ −→ d′i .
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Notice that the image of p′(di) is of the form (〈1〉, c), and p′(d′i) is of the form (〈1〉, c′). Applying
once again [5, Proposition 2.4.1.3], we see that these morphisms are also p′-cocartesian. Thus, we
find p′-cocartesian morphisms

αi : di −→ d′i
making the diagram

d d′

di d′i

α

ri r′i

αi

commutative in D⊗. Applying f⊗, we find a commutative diagram

f⊗(d) f⊗(d′)

f⊗(di) f⊗(d′i) .

f⊗(α)

f⊗(ri) f⊗(r′i)

f⊗(αi)

By assumption, the vertical morphisms are again inert, and every f⊗(αi) is q-cocartesian. At
this point, the conclusion follows from the fact that since E⊗ is a C-family of symmetric monoidal
∞-categories, cocartesian lifts of inert morphisms determine an equivalence

E⊗〈n〉 −→ E ×C E ×C · · · ×C E .

�

Write SMCatlax
∞ for the full subcategory of Op∞ spanned by symmetric monoidal∞-categories.

Then we have:

Proposition A.7. Let C be an ∞-category. The cocartesian straightening / unstraightening
equivalence over C lifts to equivalences

(SMCat∞)lax
/C ' Fun(C,SMCatlax

∞ ) and (SMCat∞)/C ' CAlg(CoCartC) .

Proof. Write π : Fin∗ × C → C for the canonical projection. Then there is an obvious forgetful
functor

(SMCat∞)lax
/C −→ ((Cat∞)/C)/π ,

and Lemma A.6 shows that it canonically factors through (CoCartC)/π. Write Fin∗ for the
constant functor C → Cat∞ associated to Fin∗. The straightening / unstraightening equivalence
provides us with an equivalence

(CoCartC)/πC ' Fun(C,Cat∞)/Fin∗

Write Fun(C,Cat∞)lsm
/Fin∗

for the (non full) subcategory having:

• as objects natural transformations Φ→ Fin∗ such that for every c ∈ C the induced functor
Φ(c)→ Fin∗ is a symmetric monoidal ∞-category in the sense of [6, Definition 2.0.0.7];

• as 1-morphisms transformations Φ→ Ψ over Fin∗ such that for every c ∈ C the functor
Φ(c)→ Ψ(c) is a morphism of ∞-operads (that is, it preserves inert morphisms).

Then the above equivalence restricts by definition to an equivalence

(SMCat∞)lax
/C ' Fun(C,Cat∞)lsm

/Fin∗

Next notice that there is a canonical equivalence

Fun(C,Cat∞)/Fin∗
' Fun(C, (Cat∞)/Fin∗) .
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Reviewing Op∞ as a (non full) subcategory of (Cat∞)/Fin∗ , we see that the above equivalence
restricts to

Fun(C,Cat∞)lsm
/Fin∗

' Fun(C,SMCatlax
∞ ) .

This proves the fist half of the statement. For the second half, consider the (non full) subcategory
Fun(C,Cat∞)sm

/Fin∗
of Fun(C,Cat∞)lsm

/Fin∗
having the same objects and whose morphisms are

natural transformations Φ→ Ψ over Fin∗ such that for every c ∈ C the functor Φ(c)→ Ψ(c) is a
symmetric monoidal functor. Then a direct check shows that the above equivalences restrict to

(SMCat∞)/C ' Fun(C,Cat∞)sm
/Fin∗

' Fun(C,SMCat∞) .

The conclusion follows. �

A.2. Relative algebras and modules. Let C be an ∞-category and let D⊗ be a C-family of
symmetric monoidal ∞-categories. Reviewing D⊗ as a generalized ∞-operad, we can form the
∞-category

CAlg(D⊗) := AlgComm⊗(D⊗) ,

where the right hand side is defined as in [6, Definition 2.3.2.2]. Proposition 2.3.2.9-(1) in loc. cit.
shows that Fin∗ × C is also a generalized ∞-operad. In particular, we obtain a canonical map

p : CAlg(D⊗) −→ CAlg(Fin∗ × C) ,
and the proof of Proposition 2.3.2.9-(3) in loc. cit. shows that

CAlg(Fin∗ × C) ' C .
We have:

Lemma A.8. The functor p : CAlg(D⊗)→ C is a cocartesian fibration, and the fiber at c ∈ C is
canonically equivalent to CAlg(D⊗c ).

Proof. To begin with, observe that the square

Fun/Fin∗(Fin∗,D⊗) Fun(Fin∗,D⊗)

Fun/Fin∗(Fin∗,Fin∗ × C) Fun(Fin∗,Fin∗ × C) .

p

is a pullback of simplicial sets. Besides, since D⊗ → Fin∗ × C is a cocartesian fibration, it is in
particular a categorical fibration. Therefore, the right vertical map is a categorical fibration as
well, so this square is a homotopy fiber product. Notice that there is an equivalence

C ' Fun/Fin∗(Fin∗,Fin∗ × C) ,
under which an object c corresponds to the associated constant section sc : Fin∗ → Fin∗×C. This
allows to identify the fiber of p at c with

{sc} ×Fun(Fin∗,Fin∗×C) Fun(Fin∗,D⊗) ' Fun(Fin∗,D⊗c ) .

Unraveling the definitions, we therefore find a canonical equivalence

CAlg(D⊗)c ' CAlg(D⊗c ) .

Let f : c→ c′ be a morphism in C. There is an induced symmetric monoidal functor F : D⊗c → D⊗c′ ,
which induces a well defined functor

F : CAlg(D⊗c ) −→ CAlg(D⊗c′ ) .
If d ∈ CAlg(D⊗)c ' CAlg(D⊗c ), then there is a canonically induced morphism d→ F (d) inside
CAlg(D⊗), and a straightforward verification reveals that this is a p-cocartesian lift of f . �
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Remark A.9. Let ΦD⊗ : C → CAlg(Cat∞) be the straightening of D⊗ supplied by Proposi-
tion A.7. Then the above lemma identifies CAlg(D⊗) with the straightening of the induced
functor C → Cat∞ informally given by c 7→ CAlg(D⊗c ). For this reason, we will often write
CAlg(D⊗/C) instead of CAlg(D⊗).

Thanks to [6, Proposition 2.3.2.11], we know that the map D⊗ → Fin∗ × C is a fibration of
generalized ∞-operads. Combining Remark 2.3.2.4-(2) and Proposition 2.3.2.9-(1) in loc. cit.,
we see that the map Fin∗ × C → Fin∗ is also a fibration of generalized ∞-operads. Therefore,
the composite map D⊗ → Fin∗ is also a fibration of generalized ∞-operads. We can thus apply
[6, Definition 3.3.3.8] (with O⊗ = Comm⊗ = Fin∗) to obtain a canonical map of generalized
∞-operads

Mod(D⊗)⊗ −→ CAlg(D⊗/C)× Fin∗ .

Assume that under the equivalence of Proposition A.7, the functor ΦD⊗ : C → CAlg(Cat∞) factors
through CAlg(Cat∞(∆op)). Here Cat∞(∆op) is the ∞-category of ∞-categories admitting
geometric realizations of simplicial objects, and whose morphisms are functors that commute with
geometric realizations. Then [6, Theorem 4.5.3.1] guarantees that the above map is a cocartesian
fibration. Moreover, [6, Theorem 4.5.2.1-(1)] implies that Mod(D⊗)⊗ is a CAlg(D⊗/C)-family of
symmetric monoidal ∞-categories.

Any cocartesian section R : C → CAlg(D⊗/C) allows to define the ∞-category ModR(D⊗/C)
as the fiber product

ModR(D⊗/C)⊗ Mod(D⊗/C)⊗

C × Fin∗ CAlg(D⊗/C)× Fin∗ .
R

By construction, ModR(D⊗/C) is again a cocartesian fibration over C, and inspection reveals that
it classifies the functor sending c ∈ C to ModR(c)(D⊗c ). Finally, given two sections R,R′ : C →
CAlg(D⊗/C) and a natural transformation α : R′ → R between them, we naturally obtain a lax
symmetric monoidal adjunction relative to C:

α∗,⊗ : ModR′(D⊗/C)⊗ � ModR(D⊗/C)⊗ : α⊗∗ .

In particular, taking R′ to be the tensor unit section and α : R′ → R the canonical map, we
obtain a lax symmetric monoidal functor relative to C:
(A.10) R⊗− := α∗ ◦ α∗ : D⊗ −→ D⊗ .
Notice that the underlying functors

α∗ : ModR′(D⊗/C) −→ModR(D⊗/C) and α∗ : ModR(D⊗/C) −→ModR′(D⊗/C)
preserve cocartesian edges. Thus, it follows that both functors in the adjunction (A.10) are C-lax
symmetric monoidal functors.

Appendix B. A lemma on relative adjunctions

Consider a commutative triangle

A B

X
p

g

q

in Cat∞. We refer to [6, Definition 7.3.2.2] for the definition of relative adjunction. The goal of
this appendix is to record the following mild variation of Proposition 7.3.2.6 in loc. cit.:
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Proposition B.1. Assume that:
(1) both p and q are are cocartesian fibrations, and g takes p-cocartesian morphisms to

q-cocartesian ones;

(2) for every morphism γ : x→ y in X , the square

Ax Bx

Ay By

gx

gy

is horizontally left adjointable.
Then g admits a left adjoint f : B → A relative to X .

Proof. Condition (2) applied to the identity idx : x→ x guarantees that gx : Ax → Bx has a left
adjoint. Let us denote it by fx. We start by showing that g : A → B has a left adjoint. For this,
it is enough to show that for every b ∈ B there exists an object a ∈ A together with a morphism
α : b→ g(a) such that for every a′ ∈ A the induced map

θα : MapA(a, a′) −→ MapB(g(a), g(a′))
α∗−→ MapB(b, g(a′))

is an equivalence. Set x := q(x) and let a := fx(b). This is an object in Ax, which we review
as an object in A. By construction, the unit of the adjunction fx a gx provides a canonical
transformation α : b→ gx(fx(b)) = g(a) in Bx, which we review as a morphism in B lying over
idx. Fix an element a′ ∈ A, and set y := p(a′). Consider the following commutative triangle:

MapA(a, a′) MapB(b, g(a′))

MapX (x, y) .

θα

Since the functors p and q are inner fibrations, [5, 2.4.4.1] ensures that the vertical maps of the
above diagram are Kan fibrations. Thus, to check that θα is an equivalence, it is enough to
check that for every morphism γ : x→ y, the map θα induces an equivalence above γ. Choose
a q-cocartesian lift b→ b of γ. From assumption (2), γ admits a p-cocartesian lift of the form
a→ fy(b). Therefore, applying [5, Proposition 2.4.4.2], we can identify the fiber of θα above γ
with the morphism

MapAy (fy(b), a′) −→ MapBy (b, a′)

induced by the unit of the adjunction fy a gy. As it is an equivalence by construction, the
conclusion follows. To complete the proof, it is enough to observe that by construction for every
x ∈ X and every b ∈ Bx, the unit b → g(f(b)) is a morphism in Bx, and hence lies over the
identity of x. In other words, the adjunction f a g is an adjunction relative to X . �
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