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Abstract. — The goal of this paper is to motivate a boundedness conjecture for
nearby slopes of `-adic sheaves in positive characteristic, and to prove it for smooth
curves. For a constructible `-adic sheaf, we prove the finiteness of the set of nearby
slopes associated to a given morphism.

Introduction

Let S be an excellent strictly henselian trait of equal characteristic p ą 0. As usual,
s denotes the closed point of S, k its residue field, η “ SpecK the generic point of
S, K an algebraic closure of K and η “ SpecK. Let f : X ÝÑ S be a morphism of
finite type, ` ‰ p a prime number, F an object of the derived category Db

cpXη,Q`q of
`-adic complexes with bounded and constructible cohomology.

Let ψtf : Db
cpXη,Q`q ÝÑ Db

cpXs,Q`q be the moderate nearby cycle functor. We
say that r P Rě0 is a nearby slope of F associated to f if one can find N P Shcpη,Q`q

with slope r such that ψtf pF b f˚Nq ‰ 0. We denote by Slnbf pFq the set of nearby
slopes of F associated to f . By projection formula, Slnbf pFq is also the set of slopes
of the germs of ψfF .

The main result of [Tey15] is a boundedness theorem for the set of nearby slopes
of a complex holonomic D-module. The goal of the present paper is to give some
motivation for an analogue of this theorem for `-adic sheaves in positive characteristic.

For complex holonomic D-modules, regularity is preserved by push-forward. On
the other hand, for a morphism C 1 ÝÑ C between smooth curves over k, a tame
constructible sheaf on C 1 may acquire wild ramification by push-forward. If 0 P C is
a closed point, the failure of C 1 ÝÑ C to preserve tameness above 0 is accounted for
by means of the ramification filtration on the absolute Galois group of the function
field of the strict henselianization Csh

0 of C at 0. Moreover, the Swan conductor at 0
measures to which extent an `-adic constructible sheaf on C fails to be tame at 0.

In higher dimension, both these measures of wild ramification (for a morphism and
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for a sheaf) are missing in a form that would give a precise meaning to the following
question raised in [Tey14]

Question 1. — Let g : V1 ÝÑ V2 be a morphism between schemes of finite type over
k, and G P Db

cpV1,Q`q. Can one bound the wild ramification of Rg˚G in terms of the
wild ramification of G and the wild ramification of g| SuppG?

Note that in an earlier formulation, "wild ramification of g| SuppG" was replaced by
"wild ramification of g", which cannot hold due to the following example that we owe
to A. Beilinson: take f : A1

S ÝÑ S, P P Srts and iP : tP “ 0u ãÑ A1
S . Then iP˚Q` is

tame but f˚piP˚Q`q has arbitrary big wild ramification as P runs through the set of
Eisenstein polynomials.

If f : X ÝÑ S is proper, 2.2.1 shows that Slnbf pFq controls the slopes of HipXη,Fq
for every i. It is thus tempting to take for "wild ramification of G" the nearby slopes
of G. Let us note that one could instead use the characteristic cycle CharG of G as
constructed by A. Beilinson [Bei15] and T. Saito [Sai15a][Sai15b]. In that case,
the theory of D-modules suggests a relation between CharG and CharRg˚G at least
when g is proper.

Hence, Question 1 leads to the question of bounding nearby slopes of constructible
`-adic sheaves. This question has a negative answer since already the constant sheaf
Q` has arbitrary big nearby slopes p1q. This is actually good news since for curves,
these nearby slopes keep track of the aforementioned ramification filtration p2q. Hence,
one can use them in higher dimension to quantify the wild ramification of a morphism
and in Question 1 take for "wild ramification of g| SuppG" the nearby slopes of Q` on
SuppG associated with g| SuppG (at least when V2 is a curve).

To get a good boundedness statement, one has to correct the nearby slopes as-
sociated with a morphism by taking into account the maximal nearby slope of Q`
associated with the same morphism. That such a maximal slope exists in general is
a consequence of the following

Theorem 1. — Let f : X ÝÑ S be a morphism of finite type and F P Db
cpXη,Q`q.

The set Slnbf pFq is finite.

The proof of this theorem follows an argument due to Deligne [Del77, Th. finitude
3.7]. For a D-module version, let us refer to [Del07]. Thus, Max Slnbf pQ`q makes sense
if Slnbf pQ`q is not empty. Otherwise, we set Max Slnbf pQ`q “ `8. Proposition 2.3.4
suggests and gives a positive answer to the following question for smooth curves

Question 2. — Let V {k be a scheme of finite type and F P Db
cpV,Q`q. Is it true

that the following set

(0.0.1) tr{p1`Max Slnbf pQ`qq, for r P Slnbf pFq and f P OV u

is bounded?

1. as mentionned by T. Saito, it is however a consequence of [Sai93] that Slnbf pQ`q “ t0u for
f : X ÝÑ S log-smooth.

2. see 2.1.2 (3) for a precise statement.
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Let us explain what Slnbf pFq means in this global setting. A function f P ΓpU,OV q

reads as f : U ÝÑ A1
k. If S is the strict henselianization of A1

k at a geometric point
over the origin, we set Slnbf pFq :“ SlnbfS pFUS q where the subscripts are synonyms of
pull-back. For smooth curves, the main point of the proof of boundedness is the
concavity of Herbrand ϕ functions.

I thank Joseph Ayoub, Kay Rülling and Takeshi Saito for illuminating discussions.
This work has been achieved with the support of Freie Universität/Hebrew Univer-
sity of Jerusalem joint post-doctoral program. I thank Hélène Esnault and Yakov
Varshavsky for their support.

1. Notations

1.1. For a general reference on wild ramification in dimension 1, let us mention
[Ser68]. Let ηt be the point of S corresponding to the tamely ramified closure Kt

of K in K and PK :“ GalpK{Ktq the wild ramification group of K. We denote by
pGrKqrPRě0

the upper-numbering ramification filtration on GK and define

Gr`K :“
ď

r1ąr
Gr

1

K

If L{K is a finite extension, we denote by SL the normalization of S in L and vL the
valuation on L associated with the maximal ideal of SL.

If moreover L{K is separable, we denote by q : GK ÝÑ GK{GL the quotient
morphism and define a decreasing separated Rě0-filtration on the set GK{GL by
pGK{GLq

r :“ qpGrKq. We also define pGK{GLqr` :“ qpGr`K q.
In case L{K is Galois, this filtration is the upper numbering ramification filtration

on GalpL{Kq. If L{K is non separable trivial, the jumps of L{K are the r P Rě0 such
that pGK{GLqr` Ĺ pGK{GLqr. If L{K is trivial, we say by convention that 0 is the
only jump of GalpL{Kq.

1.2. ForM P Db
cpη,Q`q, we denote by SlpMq Ă Rě0 the set of slopes ofM as defined

in [Kat88, Ch 1]. We view M in an equivalent way as a continuous representation of
GK .

1.3. Let f : X ÝÑ S be a morphism of finite type and F P Db
cpXη,Q`q. Consider

the following diagram with cartesian squares

Xs
i //

��

X

f

��

Xη
j

oo

��

s // S ηoo

Following [DK73, XIII], we define the nearby cycles of F as

ψfF :“ i˚Rj˚j
˚F
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By [Del77, Th. finitude 3.2], the complex ψfF is an object of Db
cpXs,Q`q endowed

with a continuous GK-action. Define Xt :“ XˆS ηt and jt : Xt ÝÑ X the projection.
Following [Gro72, I.2], we define the moderate nearby cycles of F as

ψtfF :“ i˚Rjt˚j
˚
t F

It is a complex in Db
cpXs,Q`q endowed with a continuous G{PK-action. Since PK is

a pro-p group, we have a canonical identification

ψtfF » pψfFqPK

Note that by proper base change [AGV73, XII], ψtf and ψf are compatible with
proper push-forward.

1.4. If X is a scheme, x P X and if x is a geometric point of X lying over X, we
denote by Xsh

x the strict henselization of X at x.

2. Nearby slopes in dimension one

2.1. We show here that nearby slopes associated with the identity morphism are the
usual slopes as in [Kat88, Ch 1].

Lemma 2.1.1. — For every M P Shcpη,Q`q, we have

Slnbid pMq “ SlpMq

Proof. — We first remark that ψtid is just the "invariant under P" functor. Suppose
that r P SlpMq. Then M has a non zero quotient N purely of slope r. The dual N_
has pure slope r. Since N is non zero, the canonical map

N bN_ // Q`

is surjective. Since taking P -invariants is exact, we obtain that the maps in

pM bN_qP // pN bN_qP // Q`

are surjective. Hence pM bN_qP ‰ 0, so r P Slnbid pMq.
If r is not a slope of M , then for any N of slope r, the slopes of M b N are non

zero. This is equivalent to pM bNqP “ 0.

We deduce the following

Lemma 2.1.2. — Let f : X ÝÑ S be a finite morphism with X local and F P

ShcpXη,Q`q.

(1) Slnbf pFq “ Slpf˚Fq.
(2) Suppose that X is regular connected and let L{K be the extension of function fields
induced by f . Suppose that L{K is separable. Then Max Slnbf pQ`q is the highest jump
in the ramification filtration on GK{GL.

(3) Suppose further in (2) that L{K is Galois and set G :“ GalpL{Kq. Then Slnbf pQ`q
is the union of t0u with the set of jumps in the ramification filtration on G.
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Proof. — Point (1) comes from 2.1.1 and the compatibility of ψtf with proper push-
forward. From point (1) and f˚Q` » Q`rGK{GLs, we deduce

Slnbf pQ`q “ SlpQ`rGK{GLsq

If L{K is trivial, (2) is true by our definition of jumps in that case. If L{K is
non trivial, rmax “ Max SlpQ`rGK{GLsq is characterized by the property that Grmax

K

acts non trivially on Q`rGK{GLs and G
rmax`
K acts trivially. On the other hand, the

highest jump r0 in the ramification filtration on GK{GL is such that qpGr0K q ‰ tGLu
and qpGr0`K q “ tGLu, that is Gr0K Ć GL and Gr0`K Ă GL. The condition Gr0K Ć GL
ensures that Gr0K acts non trivially on Q`rGK{GLs. If h P G

r0`
K , then for every g P GK

h ¨ pgGLq “ hgGL “ gg´1hgGL “ gGL

where the last equality comes from the fact that since Gr0`K is a normal subgroup in
GK , we have g´1hg P Gr0`K Ă GL. So (2) is proved.

Let S be the union of t0u with the set of jumps in the ramification filtration of
G. To prove (3), we have to prove SlpQ`rGsq “ S. If r P Rě0 does not belong to S,
we can find an open interval J containing r such that Gr

1

“ Gr for every r1 P J . In
particular, the image of Gr

1

K by GK ÝÑ GLpQ`rGsq does not depend on r1 for every
r1 P J . So r is not a slope of Q`rGs.

Reciprocally, Q`rGs contains a copy of the trivial representation, so 0 P SlpQ`rGsq.
Let r P Szt0u. The projection morphism G ÝÑ G{Gr` induces a surjection of GK-
representations

Q`rGs // Q`rG{G
r`s // 0

So SlpQ`rG{G
r`sq Ă SlpQ`rGsq. Note that Gr` acts trivially on Q`rG{Gr`s. By defi-

nition Gr` Ĺ Gr, so Gr acts non trivially on Q`rG{Gr`s. So r “ Max SlpQ`rG{G
r`sq

and point (3) is proved.

2.2. Let us draw a consequence of 2.1.1. We suppose that f : X ÝÑ S is proper. Let
F P Db

cpXη,Q`q. The GK-module associated to Rkf˚F P Db
cpη,Q`q is HkpXη,Fq.

From 2.1.1, we deduce

SlpHkpXη,Fqq “ Slnbid pR
kf˚Fq

Ă Slnbid pRf˚Fq

where the inclusion comes from the fact that taking PK-invariants is exact. For
every N P Shcpη,Q`q, the projection formula and the compatibility of ψtf with proper
push-forward gives

ψtidpRf˚F bNq » ψtidpRf˚pF b f˚Nqq
» Rf˚ψ

t
f pF b f˚Nq

Hence we have proved the following
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Proposition 2.2.1. — Let f : X ÝÑ S be a proper morphism, and let F P Db
cpXη,Q`q.

For every i P Z, we have
SlpHipXη,Fqq Ă Slnbf pFq

2.3. Boundedness. — We first need to see that the upper-numbering filtration is
unchanged by purely inseparable base change. This is the following

Lemma 2.3.1. — Let K 1{K be a purely inseparable extension of degree pn. Let L{K
be finite Galois extension, L1 :“ K 1bKL the associated Galois extension of K 1. Then,
the isomorphism

GalpL{Kq
„
ÝÑ GalpL1{K 1q(2.3.2)

g ÝÑ idbg(2.3.3)

is compatible with the upper-numbering filtration.

Proof. — Note that for every g P GalpL{Kq, idbg P GalpL1{K 1q is determined by the
property that its restriction to L is g.

Let π be a uniformizer of S and πL a uniformizer of SL. We have K » kppπqq and
L » kppπLqq. Since k is perfect and since K 1{K and L1{L are purely inseparable of
degree pn, we have K 1 “ kppπ1{pnqq and L1 “ kppπ

1{pn

L qq. So π1{pn

L is a uniformizer of
SL1 . For every σ P GalpL1{K 1q we have

pσpπ
1{pn

L q ´ π
1{pn

L qp
n

“ σ|LpπLq ´ πL

so

vL1pσpπ
1{pn

L q ´ π
1{pn

L q “
1

pn
vL1pσ|LpπLq ´ πLq

“ vLpσ|LpπLq ´ πLq

So (2.3.2) commutes with the lower-numbering filtration. Hence, (2.3.2) commutes
with the upper-numbering filtration and lemma 2.3.1 is proved.

Boundedness in case of smooth curves over k is a consequence of the following

Proposition 2.3.4. — Let S0 be an henselian trait over k, let η0 “ SpecK0 be the
generic point of S0 and M P Shcpη0,Q`q. There exists a constant CM ě 0 depending
only on M such that for every finite morphism f : S0 ÝÑ S, we have

(2.3.5) Slnbf pMq Ă r0,MaxpCM ,Max Slnbf pQ`qqs

In particular, the quantity

Max Slnbf pMq{p1`Max Slnbf pQ`qq

is bounded uniformely in f .

Proof. — By 2.1.2 (1), we have to bound Slpf˚Mq in terms of Max Slpf˚Q`q. Using
[Kat88, I 1.10], we can replace Q` by Fλ, where λ “ `n. Hence, GK0

acts on M via a
finite quotient H Ă GLFλpMq. Let L{K0 be the corresponding finite Galois extension
and fM : SL ÝÑ S0 the induced morphism. We have H “ GalpL{K0q. Let us denote
by rM the highest jump in the ramification filtration of H. Using Herbrand functions
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[Ser68, IV 3], we will prove that the constant CM :“ ψL{K0
prM q does the job.

Using 2.3.1, we are left to treat the case where K0{K is separable. The adjunction
morphism

M ÝÑ fM˚f
˚
MM

is injective. Since f˚MM » F
rgM
λ , we obtain by applying f˚ an injection

f˚M ÝÑ FλrGalpL{KqsrgM

So we are left to bound the slopes of FλrGalpL{Kqs viewed as a GK-representation,
that is by 2.1.2 (2) the highest jump in the upper-numbering ramification filtration of
GalpL{Kq. By 2.1.2 (2), r0 :“ Max Slnbf pQ`q is the highest jump in the ramification
filtration of GalpL{Kq{H. Choose r ą Maxpr0, ϕL{KψL{K0

prM qq. We have

GalpL{Kqr “ H XGalpL{Kqr

“ H XGalpL{KqψL{Kprq

“ HψL{Kprq

“ HϕL{K0
ψL{Kprq

“ t1u

The first equality comes from r ą r0. The third equality comes from the compatibility
of the lower-numbering ramification filtration with subgroups. The last equality comes
from the fact that r ą ϕL{KψL{K0

prM q is equivalent to ϕL{K0
ψL{Kprq ą rM . Hence,

Slnbf pMq Ă r0,Maxpr0, ϕL{KψL{K0
prM qqs

Since ϕL{K : r´1,`8rÝÑ R is concave, satisfies ϕL{Kp0q “ 0 and is equal to the
identity on r´1, 0s, we have

ϕL{KψL{K0
prM q ď ψL{K0

prM q

and we obtain (2.3.5) by setting CM :“ ψL{K0
prM q.

3. Proof of Theorem 1

3.1. Preliminary. — Let us consider the affine line A1
S ÝÑ S over S. Let s1 be

the generic point of A1
s and S1 the strict henselianization of A1

S at s1. We denote by
S the normalization of S in η, by κ the function field of the strict henselianization of
A1
S
at s1, and by κ an algebraic closure of κ. We have κ » K 1 bK K and

(3.1.1) GK » Galpκ{K 1q

Let L{K be a finite Galois extension of K in K. Set L1 :“ K 1 bK L. At finite level,
(3.1.1) reads

GalpL{Kq
„
ÝÑ GalpL1{K 1q(3.1.2)

g ÝÑ idbg(3.1.3)

Since a uniformizer in SL is also a uniformizer in S1L1 , we deduce that (3.1.2) is com-
patible with the lower-numbering ramification filtration on GalpL{Kq and GalpL1{K 1q.
Hence, (3.1.2) is compatible with the upper-numbering ramification filtration on
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GalpL{Kq and GalpL1{K 1q. We deduce that through (3.1.1), the canonical surjec-
tion GK1 ÝÑ GK is compatible with the upper-numbering ramification filtration.

3.2. The proof. — We can suppose that F is concentrated in degree 0. In case
dimX “ 0, there is nothing to prove. We first reduce the proof of Theorem 1 to the
case where dimX “ 1 by arguing by induction on dimX.

Since the problem is local on X, we can suppose that X is affine. We thus have a
digram

(3.2.1) X //

  

AnS
� � //

��

PnS

}}
S

Let X be the closure of X in PnS and let j : X ãÑ X be the associated open immersion.
Replacing pX,Fq by pX, j!Fq, we can suppose X{S projective. Then Theorem 1 is a
consequence of the following assertions

pAq There exists a finite set EA Ă Rě0 such that for every N P Shcpη,Q`q with slope
not in EA, the support of ψtf pF b f˚Nq is punctual.

pBq There exists a finite set EB Ă Rě0 such that for every N P Shcpη,Q`q with slope
not in EB , we have

RΓpXs, ψ
t
f pF b f˚Nqq » 0

Let us prove pAq. This is a local statement on X, so we can suppose X to be a closed
subset in AnS and consider the factorisations

X
pi //

f
  

A1
S

��

S

where pi is the projection on the i-th factor of AnS . Using the notations in 3.1, let
X 1{S1 making the upper square of the following diagram

X 1
λ //

p1
i

��

X

pi

��

S1 //

h
!!

A1
S

��

S

cartesian. Let us set F 1 :“ λ˚F and N 1 :“ h˚N . From [Del77, Th. finitude 3.4], we
have

(3.2.2) λ˚ψf pF b f˚Nq » ψhp1
i
pF 1 b p1˚i N 1q » ψp1

i
pF 1 b p1˚i N 1qGκ
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where Gκ is a pro-p group sitting in an exact sequence

1 // Gκ // GK1 // GK // 1

In particular, Gκ is a subgroup of the wild-ramification group PK1 of GK1 . So applying
the PK1 -invariants on (3.2.2) yields

(3.2.3) λ˚ψtf pF b f˚Nq » ψtp1
i
pF 1 b p1˚i N 1q

If N has pure slope r, we know from 3.1 that N 1 has pure slope r as a sheaf on η1.
Applying the recursion hypothesis gives a finite set Ei Ă Rě0 such that the right-hand
side of (3.2.3) is 0 for N of slope not in Ei. The union of the Ei for 1 ď i ď n is the
set EA sought for in pAq.

To prove pBq, we observe that the compatibility of ψtf with proper morphisms and
the projection formula give

RΓpXs, ψ
t
f pF b f˚Nqq » ψtidpRf˚F bNq

By 2.1.1, the set EB :“ SlpRf˚Fq has the required properties.
We are thus left to prove Theorem 1 in the case where dimX “ 1. At the cost

of localizing, we can suppose that X is local and maps surjectively on S. Let x be
the closed point of X. Note that kpxq{kpsq is of finite type but may not be finite.
Choosing a transcendence basis of kpxq{kpsq yields a factorization X ÝÑ S1 ÝÑ S
satisfying trdegkps1q kpxq “ trdegkpsq kpxq ´ 1.

So we can further suppose that kpxq{kpsq is finite. Since kpsq is algebraically closed,
we have kpxq “ kpsq. If pS denotes the completion of S at s, we deduce that X ˆS pS

is finite over pS. By faithfully flat descent [Gro71, VIII 5.7], we obtain that X{S is
finite. We conclude the proof of Theorem 1 with 2.1.2 (1).
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