NEARBY SLOPES AND BOUNDEDNESS FOR *l*-ADIC SHEAVES IN POSITIVE CHARACTERISTIC

by

Jean-Baptiste Teyssier

Abstract. — The goal of this paper is to motivate a boundedness conjecture for nearby slopes of ℓ -adic sheaves in positive characteristic, and to prove it for smooth curves. For a constructible ℓ -adic sheaf, we prove the finiteness of the set of nearby slopes associated to a given morphism.

Introduction

Let S be an excellent strictly henselian trait of equal characteristic p > 0. As usual, s denotes the closed point of S, k its residue field, $\eta = \operatorname{Spec} K$ the generic point of S, \overline{K} an algebraic closure of K and $\overline{\eta} = \operatorname{Spec} \overline{K}$. Let $f: X \longrightarrow S$ be a morphism of finite type, $\ell \neq p$ a prime number, \mathcal{F} an object of the derived category $D_c^b(X_\eta, \overline{\mathbb{Q}}_\ell)$ of ℓ -adic complexes with bounded and constructible cohomology.

Let $\psi_f^t : D_c^b(X_\eta, \overline{\mathbb{Q}}_\ell) \longrightarrow D_c^b(X_s, \overline{\mathbb{Q}}_\ell)$ be the moderate nearby cycle functor. We say that $r \in \mathbb{R}_{\geq 0}$ is a *nearby slope of* \mathcal{F} associated to f if one can find $N \in \operatorname{Sh}_c(\eta, \overline{\mathbb{Q}}_\ell)$ with slope r such that $\psi_f^t(\mathcal{F} \otimes f^*N) \neq 0$. We denote by $\operatorname{Sl}_f^{\operatorname{nb}}(\mathcal{F})$ the set of nearby slopes of \mathcal{F} associated to f. By projection formula, $\operatorname{Sl}_f^{\operatorname{nb}}(\mathcal{F})$ is also the set of slopes of the germs of $\psi_f \mathcal{F}$.

The main result of [**Tey15**] is a boundedness theorem for the set of nearby slopes of a complex holonomic \mathcal{D} -module. The goal of the present paper is to give some motivation for an analogue of this theorem for ℓ -adic sheaves in positive characteristic.

For complex holonomic \mathcal{D} -modules, regularity is preserved by push-forward. On the other hand, for a morphism $C' \longrightarrow C$ between smooth curves over k, a tame constructible sheaf on C' may acquire wild ramification by push-forward. If $0 \in C$ is a closed point, the failure of $C' \longrightarrow C$ to preserve tameness above 0 is accounted for by means of the ramification filtration on the absolute Galois group of the function field of the strict henselianization C_0^{sh} of C at 0. Moreover, the Swan conductor at 0 measures to which extent an ℓ -adic constructible sheaf on C fails to be tame at 0.

In higher dimension, both these measures of wild ramification (for a morphism and

for a sheaf) are missing in a form that would give a precise meaning to the following question raised in **[Tey14]**

Question 1. — Let $g: V_1 \longrightarrow V_2$ be a morphism between schemes of finite type over k, and $\mathcal{G} \in D^b_c(V_1, \overline{\mathbb{Q}}_{\ell})$. Can one bound the wild ramification of $Rg_*\mathcal{G}$ in terms of the wild ramification of \mathcal{G} and the wild ramification of $g_{|\operatorname{Supp} \mathcal{G}}$?

Note that in an earlier formulation, "wild ramification of $g_{|\operatorname{Supp} \mathcal{G}}$ " was replaced by "wild ramification of g", which cannot hold due to the following example that we owe to A. Beilinson: take $f : \mathbb{A}_S^1 \longrightarrow S$, $P \in S[t]$ and $i_P : \{P = 0\} \hookrightarrow \mathbb{A}_S^1$. Then $i_{P*}\overline{\mathbb{Q}}_{\ell}$ is tame but $f_*(i_{P*}\overline{\mathbb{Q}}_{\ell})$ has arbitrary big wild ramification as P runs through the set of Eisenstein polynomials.

If $f: X \longrightarrow S$ is proper, 2.2.1 shows that $\operatorname{Sl}_{f}^{\operatorname{nb}}(\mathcal{F})$ controls the slopes of $H^{i}(X_{\overline{\eta}}, \mathcal{F})$ for every *i*. It is thus tempting to take for "wild ramification of \mathcal{G} " the nearby slopes of \mathcal{G} . Let us note that one could instead use the characteristic cycle Char \mathcal{G} of \mathcal{G} as constructed by A. Beilinson [**Bei15**] and T. Saito [**Sai15a**][**Sai15b**]. In that case, the theory of \mathcal{D} -modules suggests a relation between Char \mathcal{G} and Char $Rg_*\mathcal{G}$ at least when g is proper.

Hence, Question 1 leads to the question of bounding nearby slopes of constructible ℓ -adic sheaves. This question has a negative answer since already the constant sheaf $\overline{\mathbb{Q}}_{\ell}$ has arbitrary big nearby slopes ⁽¹⁾. This is actually good news since for curves, these nearby slopes keep track of the aforementioned ramification filtration ⁽²⁾. Hence, one can use them in higher dimension to quantify the wild ramification of a morphism and in Question 1 take for "wild ramification of $g_{|\operatorname{Supp} \mathcal{G}}$ " the nearby slopes of $\overline{\mathbb{Q}}_{\ell}$ on Supp \mathcal{G} associated with $g_{|\operatorname{Supp} \mathcal{G}}$ (at least when V_2 is a curve).

To get a good boundedness statement, one has to correct the nearby slopes associated with a morphism by taking into account the maximal nearby slope of $\overline{\mathbb{Q}}_{\ell}$ associated with the same morphism. That such a maximal slope exists in general is a consequence of the following

Theorem 1. — Let $f: X \longrightarrow S$ be a morphism of finite type and $\mathcal{F} \in D^b_c(X_\eta, \overline{\mathbb{Q}}_\ell)$. The set $\mathrm{Sl}^{\mathrm{nb}}_f(\mathcal{F})$ is finite.

The proof of this theorem follows an argument due to Deligne [**Del77**, Th. finitude 3.7]. For a \mathcal{D} -module version, let us refer to [**Del07**]. Thus, $\operatorname{Max} \operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell})$ makes sense if $\operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell})$ is not empty. Otherwise, we set $\operatorname{Max} \operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell}) = +\infty$. Proposition 2.3.4 suggests and gives a positive answer to the following question for smooth curves

Question 2. — Let V/k be a scheme of finite type and $\mathcal{F} \in D^b_c(V, \overline{\mathbb{Q}}_{\ell})$. Is it true that the following set

(0.0.1) $\{r/(1 + \operatorname{Max}\operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell})), \text{ for } r \in \operatorname{Sl}_{f}^{\operatorname{nb}}(\mathcal{F}) \text{ and } f \in \mathcal{O}_{V}\}$

is bounded?

^{1.} as mentionned by T. Saito, it is however a consequence of [Sai93] that $\operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell}) = \{0\}$ for $f: X \longrightarrow S$ log-smooth.

^{2.} see 2.1.2 (3) for a precise statement.

Let us explain what $\operatorname{Sl}_{f}^{\operatorname{nb}}(\mathcal{F})$ means in this global setting. A function $f \in \Gamma(U, \mathcal{O}_{V})$ reads as $f: U \longrightarrow \mathbb{A}_{k}^{1}$. If S is the strict henselianization of \mathbb{A}_{k}^{1} at a geometric point over the origin, we set $\operatorname{Sl}_{f}^{\operatorname{nb}}(\mathcal{F}) := \operatorname{Sl}_{f_{S}}^{\operatorname{nb}}(\mathcal{F}_{U_{S}})$ where the subscripts are synonyms of pull-back. For smooth curves, the main point of the proof of boundedness is the concavity of Herbrand φ functions.

I thank Joseph Ayoub, Kay Rülling and Takeshi Saito for illuminating discussions. This work has been achieved with the support of Freie Universität/Hebrew University of Jerusalem joint post-doctoral program. I thank Hélène Esnault and Yakov Varshavsky for their support.

1. Notations

1.1. For a general reference on wild ramification in dimension 1, let us mention [Ser68]. Let η_t be the point of S corresponding to the tamely ramified closure K_t of K in \overline{K} and $P_K := \operatorname{Gal}(\overline{K}/K_t)$ the wild ramification group of K. We denote by $(G_K^r)_{r \in \mathbb{R}_{\geq 0}}$ the upper-numbering ramification filtration on G_K and define

$$G_K^{r+} := \overline{\bigcup_{r'>r} G_K^{r'}}$$

If L/K is a finite extension, we denote by S_L the normalization of S in L and v_L the valuation on L associated with the maximal ideal of S_L .

If moreover L/K is separable, we denote by $q: G_K \longrightarrow G_K/G_L$ the quotient morphism and define a decreasing separated $\mathbb{R}_{\geq 0}$ -filtration on the set G_K/G_L by $(G_K/G_L)^r := q(G_K^r)$. We also define $(G_K/G_L)^{r+} := q(G_K^{r+})$.

In case L/K is Galois, this filtration is the upper numbering ramification filtration on $\operatorname{Gal}(L/K)$. If L/K is non separable trivial, the *jumps* of L/K are the $r \in \mathbb{R}_{\geq 0}$ such that $(G_K/G_L)^{r+} \subsetneq (G_K/G_L)^r$. If L/K is trivial, we say by convention that 0 is the only jump of $\operatorname{Gal}(L/K)$.

1.2. For $M \in D_c^b(\eta, \overline{\mathbb{Q}}_{\ell})$, we denote by $\mathrm{Sl}(M) \subset \mathbb{R}_{\geq 0}$ the set of *slopes* of M as defined in **[Kat88**, Ch 1]. We view M in an equivalent way as a continuous representation of G_K .

1.3. Let $f: X \longrightarrow S$ be a morphism of finite type and $\mathcal{F} \in D^b_c(X_\eta, \overline{\mathbb{Q}}_\ell)$. Consider the following diagram with cartesian squares

$$\begin{array}{c} X_s \xrightarrow{i} X \xleftarrow{j} X_{\overline{\eta}} \\ \downarrow & f \downarrow & \downarrow \\ s \xrightarrow{k} S \xleftarrow{\eta} \end{array}$$

Following [DK73, XIII], we define the nearby cycles of \mathcal{F} as

$$\psi_f \mathcal{F} := i^* R \overline{j}_* \overline{j}^* \mathcal{F}$$

By [Del77, Th. finitude 3.2], the complex $\psi_f \mathcal{F}$ is an object of $D_c^b(X_s, \overline{\mathbb{Q}}_\ell)$ endowed with a continuous G_K -action. Define $X_t := X \times_S \eta_t$ and $j_t : X_t \longrightarrow X$ the projection. Following [Gro72, I.2], we define the *moderate nearby cycles of* \mathcal{F} as

$$\psi_f^t \mathcal{F} := i^* R j_{t*} j_t^* \mathcal{F}$$

It is a complex in $D_c^b(X_s, \overline{\mathbb{Q}}_\ell)$ endowed with a continuous G/P_K -action. Since P_K is a pro-p group, we have a canonical identification

$$\psi_f^t \mathcal{F} \simeq (\psi_f \mathcal{F})^{P_K}$$

Note that by proper base change [AGV73, XII], ψ_f^t and ψ_f are compatible with proper push-forward.

1.4. If X is a scheme, $x \in X$ and if \overline{x} is a geometric point of X lying over X, we denote by X_x^{sh} the strict henselization of X at x.

2. Nearby slopes in dimension one

2.1. We show here that nearby slopes associated with the identity morphism are the usual slopes as in **[Kat88**, Ch 1].

Lemma 2.1.1. — For every $M \in \text{Sh}_c(\eta, \overline{\mathbb{Q}}_{\ell})$, we have

$$\operatorname{Sl}_{\operatorname{id}}^{\operatorname{nb}}(M) = \operatorname{Sl}(M)$$

Proof. — We first remark that ψ_{id}^t is just the "invariant under P" functor. Suppose that $r \in Sl(M)$. Then M has a non zero quotient N purely of slope r. The dual N^{\vee} has pure slope r. Since N is non zero, the canonical map

$$N \otimes N^{\vee} \longrightarrow \overline{\mathbb{Q}}_{\ell}$$

is surjective. Since taking P-invariants is exact, we obtain that the maps in

$$(M\otimes N^{\vee})^P \longrightarrow (N\otimes N^{\vee})^P \longrightarrow \overline{\mathbb{Q}}_{\ell}$$

are surjective. Hence $(M \otimes N^{\vee})^P \neq 0$, so $r \in \text{Sl}_{id}^{nb}(M)$.

If r is not a slope of M, then for any N of slope r, the slopes of $M \otimes N$ are non zero. This is equivalent to $(M \otimes N)^P = 0$.

We deduce the following

Lemma 2.1.2. — Let $f : X \longrightarrow S$ be a finite morphism with X local and $\mathcal{F} \in Sh_c(X_\eta, \overline{\mathbb{Q}}_{\ell})$.

(1) $\operatorname{Sl}_{f}^{\operatorname{nb}}(\mathcal{F}) = \operatorname{Sl}(f_*\mathcal{F}).$

(2) Suppose that X is regular connected and let L/K be the extension of function fields induced by f. Suppose that L/K is separable. Then $\operatorname{Max} \operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell})$ is the highest jump in the ramification filtration on G_K/G_L .

(3) Suppose further in (2) that L/K is Galois and set $G := \operatorname{Gal}(L/K)$. Then $\operatorname{Sl}_f^{\operatorname{nb}}(\overline{\mathbb{Q}}_\ell)$ is the union of $\{0\}$ with the set of jumps in the ramification filtration on G.

Proof. — Point (1) comes from 2.1.1 and the compatibility of ψ_f^t with proper pushforward. From point (1) and $f_*\overline{\mathbb{Q}}_\ell \simeq \overline{\mathbb{Q}}_\ell[G_K/G_L]$, we deduce

$$\operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell}) = \operatorname{Sl}(\overline{\mathbb{Q}}_{\ell}[G_{K}/G_{L}])$$

If L/K is trivial, (2) is true by our definition of jumps in that case. If L/K is non trivial, $r_{\max} = \operatorname{Max} \operatorname{Sl}(\overline{\mathbb{Q}}_{\ell}[G_K/G_L])$ is characterized by the property that $G_K^{r_{\max}}$ acts non trivially on $\overline{\mathbb{Q}}_{\ell}[G_K/G_L]$ and $G_K^{r_{\max}+}$ acts trivially. On the other hand, the highest jump r_0 in the ramification filtration on G_K/G_L is such that $q(G_K^{r_0}) \neq \{G_L\}$ and $q(G_K^{r_0+}) = \{G_L\}$, that is $G_K^{r_0} \notin G_L$ and $G_K^{r_0+} \subset G_L$. The condition $G_K^{r_0} \notin G_L$ ensures that $G_K^{r_0}$ acts non trivially on $\overline{\mathbb{Q}}_{\ell}[G_K/G_L]$. If $h \in G_K^{r_0+}$, then for every $g \in G_K$

$$h \cdot (gG_L) = hgG_L = gg^{-1}hgG_L = gG_L$$

where the last equality comes from the fact that since $G_K^{r_0+}$ is a normal subgroup in G_K , we have $g^{-1}hg \in G_K^{r_0+} \subset G_L$. So (2) is proved.

Let S be the union of $\{0\}$ with the set of jumps in the ramification filtration of G. To prove (3), we have to prove $\operatorname{Sl}(\overline{\mathbb{Q}}_{\ell}[G]) = S$. If $r \in \mathbb{R}_{\geq 0}$ does not belong to S, we can find an open interval J containing r such that $G^{r'} = G^r$ for every $r' \in J$. In particular, the image of $G_K^{r'}$ by $G_K \longrightarrow \operatorname{GL}(\overline{\mathbb{Q}}_{\ell}[G])$ does not depend on r' for every $r' \in J$. So r is not a slope of $\overline{\mathbb{Q}}_{\ell}[G]$.

Reciprocally, $\overline{\mathbb{Q}}_{\ell}[G]$ contains a copy of the trivial representation, so $0 \in \mathrm{Sl}(\overline{\mathbb{Q}}_{\ell}[G])$. Let $r \in S \setminus \{0\}$. The projection morphism $G \longrightarrow G/G^{r+}$ induces a surjection of G_K -representations

$$\overline{\mathbb{Q}}_{\ell}[G] \longrightarrow \overline{\mathbb{Q}}_{\ell}[G/G^{r+}] \longrightarrow 0$$

So $\operatorname{Sl}(\overline{\mathbb{Q}}_{\ell}[G/G^{r+}]) \subset \operatorname{Sl}(\overline{\mathbb{Q}}_{\ell}[G])$. Note that G^{r+} acts trivially on $\overline{\mathbb{Q}}_{\ell}[G/G^{r+}]$. By definition $G^{r+} \subsetneq G^r$, so G^r acts non trivially on $\overline{\mathbb{Q}}_{\ell}[G/G^{r+}]$. So $r = \operatorname{Max} \operatorname{Sl}(\overline{\mathbb{Q}}_{\ell}[G/G^{r+}])$ and point (3) is proved.

2.2. Let us draw a consequence of 2.1.1. We suppose that $f: X \longrightarrow S$ is proper. Let $\mathcal{F} \in D^b_c(X_\eta, \overline{\mathbb{Q}}_\ell)$. The G_K -module associated to $R^k f_* \mathcal{F} \in D^b_c(\eta, \overline{\mathbb{Q}}_\ell)$ is $H^k(X_{\overline{\eta}}, \mathcal{F})$. From 2.1.1, we deduce

$$Sl(H^{k}(X_{\overline{\eta}}, \mathcal{F})) = Sl_{id}^{nb}(R^{k}f_{*}\mathcal{F})$$
$$\subset Sl_{id}^{nb}(Rf_{*}\mathcal{F})$$

where the inclusion comes from the fact that taking P_K -invariants is exact. For every $N \in \text{Sh}_c(\eta, \overline{\mathbb{Q}}_\ell)$, the projection formula and the compatibility of ψ_f^t with proper push-forward gives

$$\psi_{\mathrm{id}}^{t}(Rf_{*}\mathcal{F}\otimes N) \simeq \psi_{\mathrm{id}}^{t}(Rf_{*}(\mathcal{F}\otimes f^{*}N))$$
$$\simeq Rf_{*}\psi_{f}^{t}(\mathcal{F}\otimes f^{*}N)$$

Hence we have proved the following

Proposition 2.2.1. — Let $f: X \longrightarrow S$ be a proper morphism, and let $\mathcal{F} \in D_c^b(X_\eta, \overline{\mathbb{Q}}_\ell)$. For every $i \in \mathbb{Z}$, we have

$$\operatorname{Sl}(H^i(X_{\overline{\eta}},\mathcal{F})) \subset \operatorname{Sl}_f^{\operatorname{nb}}(\mathcal{F})$$

2.3. Boundedness. — We first need to see that the upper-numbering filtration is unchanged by purely inseparable base change. This is the following

Lemma 2.3.1. — Let K'/K be a purely inseparable extension of degree p^n . Let L/K be finite Galois extension, $L' := K' \otimes_K L$ the associated Galois extension of K'. Then, the isomorphism

$$\begin{array}{cccc} (2.3.2) & & \operatorname{Gal}(L/K) & \xrightarrow{\sim} & \operatorname{Gal}(L'/K') \\ (2.3.3) & & & & \operatorname{id} \otimes q \end{array}$$

is compatible with the upper-numbering filtration.

Proof. — Note that for every $g \in \text{Gal}(L/K)$, $\text{id} \otimes g \in \text{Gal}(L'/K')$ is determined by the property that its restriction to L is g.

Let π be a uniformizer of S and π_L a uniformizer of S_L . We have $K \simeq k((\pi))$ and $L \simeq k((\pi_L))$. Since k is perfect and since K'/K and L'/L are purely inseparable of degree p^n , we have $K' = k((\pi^{1/p^n}))$ and $L' = k((\pi_L^{1/p^n}))$. So π_L^{1/p^n} is a uniformizer of $S_{L'}$. For every $\sigma \in \operatorname{Gal}(L'/K')$ we have

$$(\sigma(\pi_L^{1/p^n}) - \pi_L^{1/p^n})^{p^n} = \sigma_{|L}(\pi_L) - \pi_L$$

 \mathbf{so}

$$v_{L'}(\sigma(\pi_L^{1/p^n}) - \pi_L^{1/p^n}) = \frac{1}{p^n} v_{L'}(\sigma_{|L}(\pi_L) - \pi_L)$$
$$= v_L(\sigma_{|L}(\pi_L) - \pi_L)$$

So (2.3.2) commutes with the lower-numbering filtration. Hence, (2.3.2) commutes with the upper-numbering filtration and lemma 2.3.1 is proved. \Box

Boundedness in case of smooth curves over k is a consequence of the following

Proposition 2.3.4. — Let S_0 be an henselian trait over k, let $\eta_0 = \operatorname{Spec} K_0$ be the generic point of S_0 and $M \in \operatorname{Sh}_c(\eta_0, \overline{\mathbb{Q}}_\ell)$. There exists a constant $C_M \ge 0$ depending only on M such that for every finite morphism $f: S_0 \longrightarrow S$, we have

(2.3.5)
$$\operatorname{Sl}_{f}^{\operatorname{nb}}(M) \subset [0, \operatorname{Max}(C_{M}, \operatorname{Max}\operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell}))]$$

In particular, the quantity

$$\operatorname{Max}\operatorname{Sl}_{f}^{\operatorname{nb}}(M)/(1 + \operatorname{Max}\operatorname{Sl}_{f}^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell}))$$

is bounded uniformely in f.

Proof. — By 2.1.2 (1), we have to bound $\operatorname{Sl}(f_*M)$ in terms of $\operatorname{Max}\operatorname{Sl}(f_*\overline{\mathbb{Q}}_{\ell})$. Using [Kat88, I 1.10], we can replace $\overline{\mathbb{Q}}_{\ell}$ by \mathbb{F}_{λ} , where $\lambda = \ell^n$. Hence, G_{K_0} acts on M via a finite quotient $H \subset \operatorname{GL}_{\mathbb{F}_{\lambda}}(M)$. Let L/K_0 be the corresponding finite Galois extension and $f_M : S_L \longrightarrow S_0$ the induced morphism. We have $H = \operatorname{Gal}(L/K_0)$. Let us denote by r_M the highest jump in the ramification filtration of H. Using Herbrand functions

[Ser68, IV 3], we will prove that the constant $C_M := \psi_{L/K_0}(r_M)$ does the job.

Using 2.3.1, we are left to treat the case where K_0/K is separable. The adjunction morphism

$$M \longrightarrow f_{M*} f_M^* M$$

is injective. Since $f_M^* M \simeq \mathbb{F}_{\lambda}^{\operatorname{rg} M}$, we obtain by applying f_* an injection

$$f_*M \longrightarrow \mathbb{F}_{\lambda}[\operatorname{Gal}(L/K)]^{\operatorname{rg}}$$

So we are left to bound the slopes of $\mathbb{F}_{\lambda}[\operatorname{Gal}(L/K)]$ viewed as a G_K -representation, that is by 2.1.2 (2) the highest jump in the upper-numbering ramification filtration of $\operatorname{Gal}(L/K)$. By 2.1.2 (2), $r_0 := \operatorname{Max}\operatorname{Sl}_f^{\operatorname{nb}}(\overline{\mathbb{Q}}_{\ell})$ is the highest jump in the ramification filtration of $\operatorname{Gal}(L/K)/H$. Choose $r > \operatorname{Max}(r_0, \varphi_{L/K}\psi_{L/K_0}(r_M))$. We have

$$Gal(L/K)^{r} = H \cap Gal(L/K)^{r}$$
$$= H \cap Gal(L/K)_{\psi_{L/K}(r)}$$
$$= H_{\psi_{L/K}(r)}$$
$$= H^{\varphi_{L/K_{0}}\psi_{L/K}(r)}$$
$$= \{1\}$$

The first equality comes from $r > r_0$. The third equality comes from the compatibility of the lower-numbering ramification filtration with subgroups. The last equality comes from the fact that $r > \varphi_{L/K} \psi_{L/K_0}(r_M)$ is equivalent to $\varphi_{L/K_0} \psi_{L/K}(r) > r_M$. Hence,

$$\operatorname{Sl}_{f}^{\operatorname{nd}}(M) \subset [0, \operatorname{Max}(r_{0}, \varphi_{L/K}\psi_{L/K_{0}}(r_{M}))]$$

Since $\varphi_{L/K} : [-1, +\infty[\longrightarrow \mathbb{R} \text{ is concave, satisfies } \varphi_{L/K}(0) = 0$ and is equal to the identity on [-1, 0], we have

$$\varphi_{L/K}\psi_{L/K_0}(r_M) \leq \psi_{L/K_0}(r_M)$$

and we obtain (2.3.5) by setting $C_M := \psi_{L/K_0}(r_M)$.

3. Proof of Theorem 1

3.1. Preliminary. — Let us consider the affine line $\mathbb{A}_S^1 \longrightarrow S$ over S. Let s' be the generic point of \mathbb{A}_s^1 and S' the strict henselianization of \mathbb{A}_S^1 at s'. We denote by \overline{S} the normalization of S in $\overline{\eta}$, by κ the function field of the strict henselianization of $\mathbb{A}_{\overline{S}}^1$ at s', and by $\overline{\kappa}$ an algebraic closure of κ . We have $\kappa \simeq K' \otimes_K \overline{K}$ and

$$(3.1.1) G_K \simeq \operatorname{Gal}(\kappa/K')$$

Let L/K be a finite Galois extension of K in \overline{K} . Set $L' := K' \otimes_K L$. At finite level, (3.1.1) reads

$$(3.1.2) \qquad \qquad \operatorname{Gal}(L/K) \xrightarrow{\sim} \operatorname{Gal}(L'/K')$$

$$(3.1.3) g \longrightarrow id \otimes g$$

Since a uniformizer in S_L is also a uniformizer in $S'_{L'}$, we deduce that (3.1.2) is compatible with the lower-numbering ramification filtration on $\operatorname{Gal}(L/K)$ and $\operatorname{Gal}(L'/K')$. Hence, (3.1.2) is compatible with the upper-numbering ramification filtration on $\operatorname{Gal}(L/K)$ and $\operatorname{Gal}(L'/K')$. We deduce that through (3.1.1), the canonical surjection $G_{K'} \longrightarrow G_K$ is compatible with the upper-numbering ramification filtration.

3.2. The proof. — We can suppose that \mathcal{F} is concentrated in degree 0. In case dim X = 0, there is nothing to prove. We first reduce the proof of Theorem 1 to the case where dim X = 1 by arguing by induction on dim X.

Since the problem is local on X, we can suppose that X is affine. We thus have a digram

Let \overline{X} be the closure of X in \mathbb{P}^n_S and let $j: X \hookrightarrow \overline{X}$ be the associated open immersion. Replacing (X, \mathcal{F}) by $(\overline{X}, j_! \mathcal{F})$, we can suppose X/S projective. Then Theorem 1 is a consequence of the following assertions

(A) There exists a finite set $E_A \subset \mathbb{R}_{\geq 0}$ such that for every $N \in \text{Sh}_c(\eta, \overline{\mathbb{Q}}_{\ell})$ with slope not in E_A , the support of $\psi_f^t(\mathcal{F} \otimes f^*N)$ is punctual.

(B) There exists a finite set $E_B \subset \mathbb{R}_{\geq 0}$ such that for every $N \in \text{Sh}_c(\eta, \overline{\mathbb{Q}}_\ell)$ with slope not in E_B , we have

$$R\Gamma(X_s, \psi_f^t(\mathcal{F} \otimes f^*N)) \simeq 0$$

Let us prove (A). This is a local statement on X, so we can suppose X to be a closed subset in \mathbb{A}^n_S and consider the factorisations

where p_i is the projection on the *i*-th factor of \mathbb{A}^n_S . Using the notations in 3.1, let X'/S' making the upper square of the following diagram

cartesian. Let us set $\mathcal{F}' := \lambda^* \mathcal{F}$ and $N' := h^* N$. From [Del77, Th. finitude 3.4], we have

(3.2.2)
$$\lambda^* \psi_f(\mathcal{F} \otimes f^*N) \simeq \psi_{hp'_i}(\mathcal{F}' \otimes p'^*_i N') \simeq \psi_{p'_i}(\mathcal{F}' \otimes p'^*_i N')^{G_\kappa}$$

where G_{κ} is a pro-*p* group sitting in an exact sequence

 $1 \longrightarrow G_{\kappa} \longrightarrow G_{K'} \longrightarrow G_K \longrightarrow 1$

In particular, G_{κ} is a subgroup of the wild-ramification group $P_{K'}$ of $G_{K'}$. So applying the $P_{K'}$ -invariants on (3.2.2) yields

(3.2.3)
$$\lambda^* \psi_f^t(\mathcal{F} \otimes f^*N) \simeq \psi_{p'_i}^t(\mathcal{F}' \otimes p'_i^*N')$$

If N has pure slope r, we know from 3.1 that N' has pure slope r as a sheaf on η' . Applying the recursion hypothesis gives a finite set $E_i \subset \mathbb{R}_{\geq 0}$ such that the right-hand side of (3.2.3) is 0 for N of slope not in E_i . The union of the E_i for $1 \leq i \leq n$ is the set E_A sought for in (A).

To prove (B), we observe that the compatibility of ψ_f^t with proper morphisms and the projection formula give

$$R\Gamma(X_s, \psi_f^t(\mathcal{F} \otimes f^*N)) \simeq \psi_{id}^t(Rf_*\mathcal{F} \otimes N)$$

By 2.1.1, the set $E_B := \operatorname{Sl}(Rf_*\mathcal{F})$ has the required properties.

We are thus left to prove Theorem 1 in the case where dim X = 1. At the cost of localizing, we can suppose that X is local and maps surjectively on S. Let x be the closed point of X. Note that k(x)/k(s) is of finite type but may not be finite. Choosing a transcendence basis of k(x)/k(s) yields a factorization $X \longrightarrow S' \longrightarrow S$ satisfying $\operatorname{trdeg}_{k(s')} k(x) = \operatorname{trdeg}_{k(s)} k(x) - 1$.

So we can further suppose that k(x)/k(s) is finite. Since k(s) is algebraically closed, we have k(x) = k(s). If \hat{S} denotes the completion of S at s, we deduce that $X \times_S \hat{S}$ is finite over \hat{S} . By faithfully flat descent [**Gro71**, VIII 5.7], we obtain that X/S is finite. We conclude the proof of Theorem 1 with 2.1.2 (1).

References

- [AGV73] M. Artin, A. Grothendieck, and J.-L Verdier, Théorie des Topos et Cohomologie Etale des Schémas, Lecture Notes in Mathematics, vol. 305, Springer-Verlag, 1973.
- [Bei15] A. Beilinson, Constructible sheaves are holonomic. Preprint, 2015.
- [Del77] P. Deligne, Cohomologie étale, vol. 569, Springer-Verlag, 1977.
- [Del07] _____, Lettre à Malgrange. 20 décembre 1983, Singularités irrégulières (Société Mathématique de France, ed.), Documents Mathématiques, vol. 5, 2007.
- [DK73] P. Deligne and N. Katz, Groupes de Monodromie en Géométrie Algébrique. SGA 7 II, Lecture Notes in Mathematics, vol. 340, Springer-Verlag, 1973.
- [Gro71] A. Grothendieck, Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, vol. 263, Springer-Verlag, 1971.
- [Gro72] _____, Groupes de Monodromie en Géométrie Algébrique. SGA 7 I, Lecture Notes in Mathematics, vol. 288, Springer-Verlag, 1972.
- [Kat88] N. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, The Annals of Mathematics Studies, vol. 116, 1988.
- [Sai93] T. Saito, ϵ -foctor of a tamely ramified sheaf on a variety, Inv. Math. **113** (1993).

J.-B. TEYSSIER

- [Sai15a] _____, Characteristic cycle and the Euler number of a constructible sheaf on a surface, Kodaira Centennial issue of the Journal of Mathematical Sciences. University of Tokyo (2015).
- [Sai15b] T. Saito, On the characteristic cycle of a constructible sheaf and the semi-continuity of the Swan conductor. Preprint, 2015.
- [Ser68] J.-P. Serre, Corps Locaux, Hermann, 1968.
- [Tey14] J.-B. Teyssier, Mail to H. Esnault, March 2014.
- [Tey15] _____, A boundedness theorem for nearby slopes of holonomic \mathcal{D} -modules. Preprint, 2015.
- J.-B. TEYSSIER, Freie Universität Berlin, Mathematisches Institut, Arnimallee 3, 14195 Berlin, Germany *E-mail* : teyssier@zedat.fu-berlin.de