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Introduction

Let X be a complex variety and let Db
holpDXq be the derived category of complexes

of DX -modules with bounded holonomic cohomology. It is known [Meb04, 6.2-4] that
for a regular complex p1q M P Db

holpDXq, the derived tensor product M bLOX
M is

regular. The goal of this note is to prove the following

Theorem 1. — Let M P Db
holpDXq and suppose that M bLOX

M is regular. Then
M is regular.

The technique used in this text is similar to that used in [Tey14], and proceed
by recursion on the dimension of X. The main tool is a sheaf-theoretic measure of
irregularity [Meb90].
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this manuscript. This work has been achieved with the support of Freie Univer-
sität/Hebrew University of Jerusalem joint post-doctoral program and ERC 226257
program.

0.1. For every morphism f : Y ÝÑ X with X and Y complex varieties, we denote
by f` : Db

holpDXq ÝÑ Db
holpDY q and f` : Db

holpDY q ÝÑ Db
holpDXq the inverse image

and direct image functors for D-modules. We define f : :“ f`rdimY ´ dimXs.

0.2. If Z is a closed analytic subspace of X, we denote by Irr˚ZpMq the irregularity
sheaf of M along Z [Meb90].

1. that is, a complex with regular cohomology modules.
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1. The proof

1.1. The 1-dimensional case. — We suppose that X is a neighbourhood of the
origin 0 P C and we prove the following

Proposition 1.1.1. — Let M P Db
holpDXq so that HkM is a smooth connexion

away from 0 for every k P N. If MbLOX
M is regular, then M is regular.

The complex
pMbLOX

Mqp˚0q »Mp˚0q bOX
Mp˚0q

is regular. Since we are in dimension one, the regularity of HkM is equivalent to the
regularity of HkMp˚0q. Thus, we can suppose that M is localized at 0. In particular,
the HkM are flat OX -modules, so the only possibly non zero terms in the Künneth
spectral sequence

(1.1.2) Epq
2 “

à

i`j“q

TorpOX
pHiM,HjMq ùñ Hp`qpMbOX

Mq

sit on the line p “ 0. Hence, (1.1.2) degenerates at page 2 and induces a canonical
identification

HkpMbOX
Mq »

à

i`j“k

pHiMbOX
HjMq

for every k. In particular, the module HiMbOX
HiM is regular for every i. Hence,

one can suppose that M is a germ of meromorphic connexions at 0. By looking
formally at 0, one can further suppose that M is a Cppxqq-differential module. In this
case, the regularity ofM is a direct consequence of the Levelt-Turrittin decomposition
theorem [Sv00].

1.2. Proof of theorem 1 in higher dimension. — We proceed by recursion on
the dimension of X and suppose that dimX ą 1. For every point x P X taken away
from a discrete set of points S Ă X, one can find a smooth hypersurface i : Z ÝÑ X
passing through x which is non characteristic for M. Since regularity is preserved by
inverse image, the complex

i`MbLOX
i`M

is regular. By recursion hypothesis, we deduce that i`M is regular. From [Tey14,
3.3.2], we obtain

Irr˚xpMq » Irr˚xpi
`Mq » 0

Since regularity can be punctually tested [Meb04, 6.2-6], we deduce thatM is regular
away from S. In what follows, one can thus suppose that X is a neighbourhood of
the origin 0 P Cn and that M is regular away from 0.

Let us suppose that 0 is contained in an irreducible component of SuppM of
dimension ą 1. Let Z be an hypersurface containing 0 and satisfying the conditions

(1) Z X SuppM has codimension 1 in SuppM.

(2) The modules HkM are smooth p2q away from Z.

2. That is, SupppHkMq is smooth away from Z and the characteristic variety of HkM away from
Z is the conormal bundle of SupppHkMq in X.
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(3) dim SuppRΓrZsM ă dim SuppM.

Such an hypersurface always exists by [Meb04, 6.1-4]. According to the fundamental
criterion for regularity [Meb04, 4.3-17], the complex Mp˚Zq is regular. From the
local cohomology triangle

RΓrZsM //M //Mp˚Zq
`1
//

we deduce that one is left to prove that RΓrZsM is regular. There is a canonical
isomorphism

(1.2.1) RΓrZsMbLOX
RΓrZsM » RΓrZspMbLOX

Mq

Since RΓrZs preserves regularity, the left hand side of (1.2.1) is regular. So one
is left to prove theorem 1 for RΓrZsM, with dim SuppRΓrZsM ă dim SuppM. By
iterating this procedure if necessary, one can suppose that the components of SuppM
containing 0 are curves. We note C :“ SuppM. At the cost of restricting the situation
to a small enough neighbourhood of 0, one can suppose that C is smooth away from
0. Let p : rC ÝÑ X be the composite of normalization map for C and the canonical
inclusion C ÝÑ X. By Kashiwara theorem [HTT00, 1.6.1], the canonical adjunction
[Meb89, 7.1]

(1.2.2) p`p
:M ÝÑM

is an isomorphism away from 0. So the cone of (1.2.2) is supported at 0. Hence, it is
regular. One is then left to show that p`p:M is regular. Since regularity is preserved
by proper direct image, we are left to prove that p:M is regular. There is a canonical
isomorphism

(1.2.3) p:MbLO
ĂC
p:M » p:pMbLOX

Mq

So the left hand side of (1.2.3) is regular and one can apply 1.1.1, which concludes
the proof of theorem 1.
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