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ABSTRACT. In this article, we prove a semi-continuity property for both conductor
divisors and logarithmic conductor divisors for étale sheaves on higher relative dimen-
sions in a geometric situation. It generalizes a semi-continuity result for conductors of
étale sheaves on relative curves to higher relative dimensions, and it can be considered
as a higher dimensional `-adic analogy of André’s result on the semi-continuity of
Poincaré-Katz ranks of meromorphic connections on smooth relative curves.
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1. Introduction

1.1. Let S be an excellent noetherian scheme, f : X → S a separated and smooth
morphism of relative dimension 1, D a closed subset of X which is finite and flat over
S, U the complement of D in X and j : U→ X the canonical injection. Let ` be a prime
number invertible in S andΛ a finite field of characteristic `. Let F be a locally constant
and constructible sheaf of Λ-modules on U of constant rank. For any point s ∈ S, we
denote by s̄→ S an algebraic geometric point above s and by Xs̄ and Ds̄ the fibers of
f : X→ S and f|D : D→ S at s̄, respectively. For each point x ∈ Ds̄, we define

(1.1.1) dtx(j!F|Xs̄) = swx(j!F|Xs̄) + rank(F),

where swx(j!F|Xs̄) denotes the classical Swan conductor of the sheaf j!F|Xs̄ at xwhich
is an integer number [17, 19.3]. The sum

(1.1.2)
∑
x∈Ds̄

dtx(j!F|Xs̄)

does not depend on the choice of s̄ above s. It defines a function ϕ : S → Z. The
following property of ϕ is due to Deligne and Laumon:
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Theorem 1.2 ([14, 2.1.1]). We take the notation and assumptions of 1.1. Then,

(1) The function ϕ : S→ Z is constructible and lower semi-continuous on S.

(2) If ϕ : S → Z is locally constant, then f : X → S is universally locally acyclic with
respect to j!F.

1.3. Let K be a complete discrete valuation field, OK its integer ring and F the residue
field of OK. We assume that the characteristic of F is p > 0. Let K be a separable closure
of K and we denote by GK the Galois group of K/K. Abbes and Saito defined two
decreasing filtrations GrK (r ∈ Q≥1) and GsK,log (s ∈ Q≥0) of GK, called the ramification
filtration and the logarithmic ramification filtration, respectively ([1, 2]). For any
r ∈ Q≥0, we have Gr+1K,log ⊆ Gr+1K ⊆ GrK,log. If the residue field F is perfect, then

Gs+1K = GsK,log, for any s ∈ Q≥0, and the logarithmic ramification filtration coincides
with the classical upper numbering filtration [1, 3.7].

1.4. Let ` be a prime number different from p and Λ a finite field of characteristic
`. LetM be a finitely generated Λ-module on which the wild inertia subgroup of GK
acts through a finite quotient. We have two decompositions ofM relative to the two
filtrations above

M =
⊕
r∈Q≥1

M(r) and M =
⊕
s∈Q≥0

M
(s)
log,

which are called the slope decomposition and the logarithmic slope decomposition ofM. We
have the following two invariants

(1.4.1) dtKM =
∑
r≥1

r · dimΛM
(r) and swKM =

∑
s≥0

r · dimΛM
(s)
log,

called the total dimension and the Swan conductor ofM, respectively. They generalize
the classical Swan conductor and the classical total dimension. In this article, we focus
on the following two invariants

cK(M) = max{r ∈ Q |M(r) 6= 0} and lcK(M) = max{s ∈ Q |M
(s)
log 6= 0},(1.4.2)

which are called the conductor and the logarithmic conductor ofM. By Abbes and Saito’s
ramification theory, we have

swK(M) ≤ dtK(M) ≤ swK(M) + dimΛM,
lcK(M) ≤ cK(M) ≤ lcK(M) + 1.

If the residue field F is perfect, we have

dtK(M) = swK(M) + dimΛM, and cK(M) = lcK(M) + 1,

and the swK(M) (resp. lcK(M)) is the classical Swan conductor (resp. the largest upper
numbering slope) ofM.
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1.5. Let κ be a field of characteristic p > 0. Let Y be a smooth κ-scheme, E a reduced
effective Cartier divisor on Y, {Ei}i∈I the set of irreducible components of E, W the
complement of E in Y and h : W → Y the canonical injection. We assume that
each Ei is generically smooth over Spec(κ). We choose an algebraic closure κ̄ of κ.
We denote by ξi the generic point of an irreducible component of Ei,κ̄ = Ei ×κ κ̄,
by ξ̄i a geometric point above ξi, by ηi the generic point of the strict localization
Yκ̄,(ξ̄i), by Ki the function field of Yκ̄,(ξ̄i) and by Ki a separable closure of Ki. Let Λ
be a finite field of characteristic ` (` 6= p) and G a locally constant and constructible
sheaf of Λ-modules on U. The restriction G|ηi corresponds to a finitely generated
Λ-module with a continuous Gal(Ki/Ki)-action. Since the Gal(κ̄/κ)-action on the set
of irreducible components of Ei,κ̄ is transitive, four ramification invariants dtKi(G|ηi),
swKi(G|ηi), cKi(G|ηi) and lcKi(G|ηi) do not depend on the choice of κ̄ nor on the choice
of the irreducible component of Ei,κ̄. We usually denote by dtEi(h!G) (resp. swEi(h!G),
cEi(h!G) and lcEi(h!G)) instead of dtKi(G|ηi) (resp. swKi(G|ηi), cKi(G|ηi) and lcKi(G|ηi))

We define the total dimension divisor of h!G on X by the Cartier divisor ([15, Definition
3.5])

(1.5.1) DTY(h!G) =
∑
i∈I

dtKi(G|ηi) · Ei.

We define the Swan divisor of h!G on X by the Cartier divisor

(1.5.2) SWY(h!G) =
∑
i∈I

swKi(G|ηi) · Ei.

We define the conductor divisor of h!G on X by the Cartier divisor with rational coeffi-
cients

(1.5.3) CY(h!G) =
∑
i∈I

cKi(G|ηi) · Ei.

We define the logarithmic conductor divisor of h!G on X by the Cartier divisor with
rational coefficients

(1.5.4) LCY(h!G) =
∑
i∈I

lcKi(G|ηi) · Ei.

1.6. Assume that f : X→ S has relative dimension ≥ 1, and D is a Cartier divisor on
X relative to S. For each algebraic geometric point s̄ of S, the ramification of (j!F)|Xs̄ at
the generic points of Ds̄ defines four divisors supported on Ds̄ (cf. subsection (1.5)).
The lower semi-continuity for both total dimensions divisors and Swan divisors has
been proved in a geometric situation ([9, Theorem 4.3], [10, Theorem 1.11]). They gen-
eralized Deligne and Laumon’s result (Theorem 1.2 (1)) to higher relative dimensions
in a geometric situation.

The D-modules theory shares similarities with the `-adic cohomology theory. Mo-
tivated by Deligne and Laumon’s result, Malgrange conjectured that irregularities
of meromorphic connections on complex relative curves is lower semi-continuous.
André proved this conjecture ([3, Corollaire 7.1.2]), as well as the lower semi-continuity
for Poincaré-Katz ranks of meromorphic connections in the same geometric setting
([3, Corollaire 6.1.3]). In [11, Theorem 7.2], a semi-continuity result was proved for
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conductors of étale sheaves on relative curves of positive characteristic, which can be
considered as an `-adic analogue of André’s semi-continuity result for Poincaré-Katz
ranks. This article is devoted to proving the semi-continuity of conductor divisors
and logarithmic conductor divisors for étale sheaves in a geometric situation, that
generalizes loc. cit. to higher relative dimensions.

1.7. Let k be a perfect field of characteristic p > 0, S an irreducible k-scheme of finite
type, f : X → S a separated and smooth k-morphism of finite type, D an effective
Cartier divisor of X relative to S ([6, IV, 21.15.2]), U the complement of D in X and
j : U → X the canonical injection. We assume that D is the sum of effective Cartier
divisors {Di}i∈I of X relative to S, where each Di is irreducible and each restriction
morphism f|Di : Di → S is smooth. For each s ∈ S, we denote by ρs : Xs → X the base
change of s→ S by f : X→ S. We denote by η the generic point of S.

Let F a locally constant and constructible sheaf of Λ-modules on U. We define the
generic conductor divisor of j!F on X and denote by GCf(j!F) the unique Cartier divisor
with rational coefficients of X supported on D such that ρ∗η(GCf(j!F)) = CXη(j!F|Xη).
We define the generic logarithmic conductor divisor of j!F on X and denote by GLCf(j!F)
the unique Cartier divisor with rational coefficients of X supported on D such that
ρ∗η(GLCf(j!F)) = LCXη(j!F|Xη). The main result of the article is the following:

Theorem 1.8. We take the notation and assumptions of 1.7. Then,
(i) there exists an open dense subset V of S such that, for any point s ∈ V , we have

ρ∗s(GCf(j!F)) = CXs((j!F)|Xs)

and, for any point t ∈ S− V , we have

ρ∗t (GCf(j!F)) ≥ CXt((j!F)|Xt).

(ii) there exists an open dense subsetW of S such that for any point s ∈W, we have

ρ∗s(GLCf(j!F) +D) = LCXs(j!F|Xs) + (Ds)red

and, for any point t ∈ S−W, we have

ρ∗t (GLCf(j!F) +D) ≥ LCXs((j!F)|Xt) + (Dt)red.

Remark 1.9. The proof of Theorem 1.8 follows similar strategies as [9, Theorem 4.3]
and [10, Theorem 1.11]. Theorem 1.8 and Corollary 5.8 are the crucial ingredients in
[8] to get estimates for the Betti numbers of perverse sheaves with bounded rank and
wild ramification in families rather than on a fixed variety.

Acknowledgement. Both authors would like to thank A. Abbes and Y. Cao for stim-
ulating discussions and valuable comments. H. H. is supported by the National
Natural Science Foundation of China (Grants No. 12471012) and the Natural Science
Foundation of Jiangsu Province (Grant No. BK20231539).

2. Notation

2.1. In this article, let k be a field of characteristic p > 0. We fix a prime number `
which is different from p, and a finite field Λ of characteristic `. All k-schemes are
assumed to be separated and of finite type over Spec(k) and all morphisms between
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k-schemes are assumed to be k-morphisms. All sheaves of Λ-modules on k-schemes
are assumed to be étale sheaves.

2.2. Let X be a Noetherian scheme and CDiv(X) the Z-modules of Cartier divisors on
X. A Cartier divisor with rational coefficients on X denotes an element in CDiv(X)⊗Z Q.
We say that E1 is bigger than E2 and we write E1 ≥ E2 for two element E1,E2 ∈
CDiv(X)⊗Z Q, if there exists an positive integer r such that r(E1 − E2) is an effective
Cartier divisor on X.

2.3. Let f : X→ S be a morphism of schemes, s a point of S, and s̄→ S a geometric
point above s. We denote by Xs (resp. Xs̄) the fiber X×S s (resp. X×S s̄). Assume that
f : X → S is flat and of finite presentation. Let D be a Cartier divisor on X relative
to S ([6, IV, 21.15.2]). Let π : S ′ → S be a morphism of k-schemes, X ′ = X×S S ′ and
π ′ : X ′ → X the base change of π : S ′ → S. We denote by π ′∗D the pull-back of D,
which is a Cartier divisor on X ′ relative to S ′ [6, IV, 21.15.9]. When S ′ is s or s̄, we
simply denote by Ds (resp. Ds̄) the Cartier divisor D×S s on Xs (resp. D×S s̄ on Xs̄).
An effective Cartier divisor E on X relative to S is identical to a closed immersion
i : E → X transversally regular relative to S and of codimension 1 ([6, IV,19.2.2 and
21.15.3.3]). The fiber Es (resp. Es̄) is an effective Cartier divisor on Xs (resp. Xs̄).

Let {Di}i∈I be a set of effective Cartier divisors ofX relative to S. A linear combination
Q =

∑
i∈I riDi with ri ∈ Q is called a Cartier divisor of X relative to S with rational

coefficients supported on D =
∑
i∈IDi. We denote by π ′∗Q the linear combination∑

i∈I ri(π
′∗Di), which is a Cartier divisor of X ′ relative to S ′ with rational coefficients.

When S ′ is s or s̄, the fiber Qs =
∑
i∈I riDi,s (resp. Qs =

∑
i∈I riDi,s) is an Cartier

divisor on Xs (resp. Xs) with rational coefficients.

2.4. Let x be a closed point of a k-scheme X. For any irreducible closed subscheme Z
of X containing x, we denote bymx(Z) the multiplicity of Z at x.

2.5. Let X be a smooth k-scheme. We denote by TX the tangent bundle of X and by
T∗X the cotangent bundle of X. By a closed conical subset of T∗X, we mean a reduced
closed subscheme of T∗X invariant under the canonical Gm-action on T∗X. For any
point x of X, we put TxX = TX×X x and T∗xX = T∗X×X x.

3. Preliminaries in geometry

Proposition 3.1 (cf. [6, I, Chapitre 0, 15.1.16]). Let A → B be a local homomorphism of
noetherian local rings, κ the residue field of A, b an element of the maximal ideal of B and
b̄ ∈ B×A κ the residue class of b. Then, the following conditions are equivalent:

(1) The quotient B/bB is flat over A and b is a non-zero divisor of B;

(2) B is flat over A and b̄ is a non-zero divisor of B⊗A κ.

It is deduced by the equivalence of (b) and (c) of [6, I, Chaptire 0, 15.1.16].

Proposition 3.2 ([6, IV, 18.12.1]). Let S and D be schemes, f : D→ S a separated morphism
locally of finite type, x a point of D and s = f(x). We assume that x is an isolated point of
f−1(s). Then, there exists an étale morphism S ′ → S, a point x ′ of D ′ = D×S S ′ above x
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and a Zariski open and closed neighborhood V ′ of x ′ in D ′ such that V ′ is finite over S ′ and
f ′−1(f ′(x ′))∩ V ′ = {x ′}, where f ′ : D ′ → S ′ denotes the base change of f : D→ S.

Proposition 3.3 ([9, Proposition 5.3]). Let κ be a field with infinitely many elements, X a
connected smooth κ-scheme of dimension n ≥ 2, D an effective Cartier divisor on X which
is smooth at a κ-rational point x ∈ D and S ⊆ T∗xX a closed conical subset of dimension 1.
Then, we can find a smooth κ-curve C and an immersion h : C→ X such that C intersects D
transversally at x and that ker(dh)∩ S = {0}, where dh : T∗xX→ T∗xC is the canonical map.

Proposition 3.4. Let S be an irreducible separated scheme over an algebraically closed field
κ of finite type and s ∈ S a closed point such that S is regular at s. Let Z ⊂ An

S be a closed
subscheme containing s×O, where O denotes the origin of An

κ (n ≥ 1). Then, there exist an
open dense subscheme V of S and an immersion σ : V →An

S such that s×O ∈ σ(V), V 6⊂ Z
and that the composition of σ : V →An

S and π : An
S → S is the canonical injection.

Proof. We denote by η the generic point of S. Let y be a non-zero element of the
maximal ideal mS,s of OS,s. For λ = (λ1, λ2, . . . , λn) ∈ κn, we define a homomorphism
of OS,s-algebras

gλ : OS,s[x1, . . . , xn]→ OS,s, xi 7→ λiy.(3.4.1)

We can find an open dense subset V of S such that, for any λ ∈ κn, the homomorphism
gλ gives rise to a κ-morphism hλ : V →An

S . The composition of each hλ : V →An
S and

π : An
S → S is the canonical injection V → S, and hλ(s) = s×O. The image hλ(η) ⊂

An
η of the generic point η ∈ V is the closed point xλ = (λ1y, . . . , λny) ∈ An

η (k(η)).
Note that κ is algebraically closed. Thus the set of closed points {xλ | λ ∈ κn} ⊂

An
η (k(η)) is dense in An

η . Since Z 6= An
S , the intersection Z

⋂
An
η is a closed subscheme

of An
η which does not contain the generic point of An

η . Hence, there exists λ ∈ κn such
that xλ 6∈ Z. The associated immersion hλ : V → An

S satisfies the conditions of the
proposition. �

Proposition 3.5 (cf. [6, III, 9.5.3]). Let S be an irreducible noetherian scheme, g : D→ S a
morphism of finite type, {Di}i∈I the set of irreducible components of D. We assume that, for
each i ∈ I, the restriction f|Di : Di → S is surjective. Then there exists an open dense subset
V ⊆ S such that, for every point v ∈ V and for any indices i, j ∈ I (i 6= j), the fibers Di,v and
Dj,v do not have common irreducible components.

Proposition 3.6 (cf. [6, III, 9.7.7]). Let S and D be integral k-schemes and f : D → S a
smooth k-morphism. Then there exists an irreducible k-schemeW and an étale map h :W → S
such that,

(1) Each connected component of D×SW is irreducible;

(2) Every connected component of D×SW has geometrically irreducible fibers overW.

4. Complements in ramification theory

Lemma 4.1. Let K be a complete discrete valuation field of characteristic p > 0, OK its integer
ring and F the residue field of OK. Let K be a separable closure of K and we denote by GK the
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Galois group of K/K. Let M be a non-zero finitely generated Λ-modules with a continuous
GK-action. Then, there exist integers 0 < r1, r2 ≤ rkΛM such that

cK(M) ∈ 1

r1
Z and lcK(M) ∈ 1

r2
Z.

Proof. Let M =
⊕
r≥1M

(r) (resp. M =
⊕
s≥0M

(s)
log) be the slope decomposition (resp.

logarithmic slope decomposition) of M . Each M(r) are finite generated Λ-modules
with continous GK-actions. By the Hasse-Arf theorem for Abbes-Saito’s ramification
filtrations ([18, Theorem 3.4.3]), [15, Proposition 3.10]), we obtain that

dtK(M(cK(M))) = cK(M) · rkΛ
(
M(cK(M))

)
,

swK(M
(lcK(M))) = lcK(M) · rkΛ

(
M

(lcK(M))
log

)
are integers. Put r1 = rkΛ

(
M(cK(M))

)
and r2 = rkΛ

(
M

(lcK(M))
log

)
. We have

cK(M) ∈ 1

r1
Z and lcK(M) ∈ 1

r2
Z.

�

Proposition 4.2 ([1, Proposition 3.15 (3)]). Let K be a complete discrete valuation field, OK
its integer ring and F the residue field of OK. We assume that the characteristic of F is p > 0.
Let K ′ be a finite separable extension of K contained in K of ramification index e. We denote by
GK ′ the Galois group of K over K ′ andGrK ′,log (r ∈ Q≥0) the logarithmic ramification filtration
of GK ′ . Then, for any r ∈ Q>0, we have GerK ′,log ⊆ G

r
K,log. If K ′ is tamely ramified over K, the

inclusion is an equality.

Lemma 4.3. LetX be a smooth k-scheme,D a reduced Cartier divisor ofX,U the complement of
D in X and j : U→ X the canonical injection. Let F be a locally constant and constructible étale
sheaf of Λ-modules on U. Let k ′ be an algebraic extension of k, and g : Xk ′ = X×k k ′ → X
the canonical projection. We have

(4.3.1) g∗(CX(j!F)) = CXk ′ (g
∗j!F) and g∗(LCX(j!F)) = LCXk ′ (g

∗j!F).

This lemma is a direct consequence from the definition of (logarithmic) conductor
divisors.

Lemma 4.4. We take the notation and assumptions in subsection 1.7.
(i) Let S ′ be an irreducible smooth k-scheme of finite type and π : S ′ → S a dominant and

generically finite k-morphism. We denote by f ′ : X ′ → S ′ (resp. by π ′ : X ′ → X) the
base change of f : X→ S (resp. π : S ′ → S). We have

(4.4.1) π ′∗(GCf(j!F)) = GCf ′(π
′∗j!F) and π ′∗(GLCf(j!F)) = GLCf ′(π

′∗j!F).

(ii) Let k be an algebraic closure of k, S an irreducible component of S⊗k k and π : S→ S

the composition of S → S⊗k k and S⊗k k → S. We denote by f : X → S (resp. by
π : X→ X) the base change of f : X→ S (resp. π : S→ S). We have

(4.4.2) π∗(GCf(j!F)) = GCf(π
∗j!F) and π∗(GLCf(j!F)) = GLCf(π

∗j!F).
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(iii) Let g : X ′ → X be an étale morphism such that X ′η = X ′ ×S η 6= ∅. Then, we have

(4.4.3) g∗(GCf(j!F)) = GCfg(j!F|X ′) and g∗(GLCf(j!F)) = GLCfg(j!F|X ′).

Lemma 4.4 (i) and (ii) follow from the definition of the (logarithmic) conductor
divisor and Lemma 4.3. Lemma 4.4(iii) follows from the fact that gη : X ′η → Xη is étale
and the (logarithmic) conductor divisor is an étale local invariant.

Proposition 4.5. We take the notation and assumptions in subsection 1.7. To prove Theorem
1.8, it is sufficient to consider the case where k is algebraically closed and S is a connected and
smooth k-scheme.

Proof. Let k ′ be an algebraic extension of k, let S ′ be an irreducible separable k ′-scheme
of finite type and let θ : S ′ → S be a k-morphism satisfying

(1) θ : S ′ → S is surjective, and, for any open dense subset V ′ ⊂ S ′, the image
θ(V ′) contains an open dense subset of S;

(2) For each i ∈ I, all connected components D ′i = Di ×S S ′ are smooth over S ′.
We denote by f ′ : X ′ → S ′ and θ ′ : X ′ → X the base changes of f : X→ S and θ : S ′ → S.
Let s ′ be a point of S ′ and s = θ(s ′) ∈ S. We denote by ρ ′s ′ : X

′
s ′ = X

′ ×S ′ s ′ → X ′ the
canonical injection and by ιs ′ : X ′s ′ → Xs the canonical projection.

Assume that Theorem 1.8(i) is valid for the morphism f ′ : X ′ → S ′ and the sheaf
θ ′∗j!F. Then, there exists an open dense subset V ′ ⊂ S ′ such that

• for any s ′ ∈ V ′, we have ρ ′∗s ′ (GCf ′(θ ′∗j!F)) = CX ′
s ′
(ρ ′∗s ′ θ

′∗j!F);

• for any s ′ ∈ S ′ − V ′, we have ρ ′∗s ′ (GCf ′(θ ′∗j!F)) ≥ CX ′
s ′
(ρ ′∗s ′ θ

′∗j!F).

Let V be an open dense subset of S contained in θ(V ′). Then, for any point s ∈ V and
for a point s ′ ∈ V ′ above s ∈ V such that k(s ′)/k(s) is algebraic, we have

ι∗s ′ρ
∗
s(GCf(j!F)) = ρ ′∗s ′ θ

′∗(GCf(j!F)) = ρ ′∗s ′ (GCf ′(θ
′∗j!F))(4.5.1)

= CX ′
s ′
(ρ ′∗s ′ θ

′∗j!F) = CX ′
s ′
(ι∗s ′ρ

∗
s j!F) = ι

∗
s ′(CXs(ρ

∗
s j!F)),

where the second equality follows from Lemma 4.4 and the fifth equality follows
from Lemma 4.3. Since Xs is a smooth k(s)-scheme and X ′s ′ = Xs ⊗k(s) k(s ′), the
equality (4.5.1) of two Cartier divisors with rational coefficients on X ′s ′ implies that
ρ∗s(GCf(j!F)) = ρ∗s(GCf(j!F)). Similarly, for any s ∈ S− V and for a point s ′ ∈ S ′
above s ∈ S− V such that k(s ′)/k(s) is algebraic, we have

ι∗s ′ρ
∗
s(GCf(j!F)) = ρ ′∗s ′ θ

′∗(GCf(j!F)) = ρ ′∗s ′ (GCf ′(θ
′∗j!F))(4.5.2)

≥ CX ′
s ′
(ρ ′∗s ′ θ

′∗j!F) = CX ′
s ′
(ι∗s ′ρ

∗
s j!F) = ι

∗
s ′(CXs(ρ

∗
s j!F)),

which implies ρ∗s(GCf(j!F)) ≥ ρ∗s(GCf(j!F)). Hence, Theorem 1.8(i) is valid for the
morphism f : X→ S and the sheaf j!F.

Let {Sα}1≤α≤m be an open affine cover of S. Note that, to prove Theorem 1.8(i), it is
sufficient to verify it for the morphisms fα : X×S Sα → Sα and the sheaves (j!F)|X×SSα
for each 1 ≤ α ≤ m. Hence, we firstly reduced to the case that S is an irreducible
and affine k-scheme of finite type. Using the argument in the previous parapraph, we
secondly replace S by Sred, and thirdly reduced to the case that S is an irreducible and
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smooth k-scheme by de Jong’s alteration [12, 4.1]. Let k be an algebraic closure of k, S ′
an irreducible component. Finally, we can replace S by S ′ and reduce Theorem 1.8(i)
to the case where S is connected and smooth over an algebraically closed field.

The argument above is also valid for the logarithmic version. �

4.6. Let X be a smooth k-scheme and C a closed conical subset in T∗X. Let f : Y → X
be a morphism of smooth k-schemes and y→ Y a geometric point above a point y of Y.
We say that f : Y → X is C-transversal at y if ker(dfy)

⋂
(C×X y) ⊆ {0} ⊆ T∗f(y)X, where

dfy : T∗f(y)X→ T∗yY is the canonical map. We say that f : Y → X is C-transversal if it is
C-transversal at every point of Y. If f : Y → X is C-transversal, we define f◦C to be the
scheme theoretic image of Y ×X C in T∗Y by the canonical map df : Y ×X T∗X→ T∗Y.
Notice that df : Y ×X C → f◦C is finite and that f◦C is also a closed conical subset of
T∗Y ([4, Lemma 1.2]). Let g : X → Z be a morphism of smooth k-schemes, x a point
of X, and x → X a geometric point above x. We say that g : X → Z is C-transversal
at x if dg−1x (C×X x) ⊆ {0} ⊂ T∗g(x)Z, where dgx : T∗g(x)Z→ T∗xX is the canonical map.
We say that g : X → Z is C-transversal if it is C-transversal at every point of X. Let
(g, f) : Z← Y → X be a pair of morphisms of smooth k-schemes. We say that (g, f) is
C-transversal if f : Y → X is C-transversal and g : Y → Z is f◦C-transversal.

4.7. Let X be a smooth k-scheme and K an object of Dbc (X,Λ). We say that K is
micro-supported on a closed conical subset C of T∗X if, for any C-transversal pair of
morphisms (g, f) : Z← Y → X of smooth k-schemes, the morphism g : Y → Z is locally
acyclic with respect to f∗K. If there exists a smallest closed conical subset of T∗X on
which K is micro-supported, we call it the singular support of K and denote it by SS(K).
We often endow SS(K) a reduced induced closed subscheme structure.

Theorem 4.8 ([4, Theorem 1.3]). Let X be a smooth k-scheme and K an object of Dbc (X,Λ).
The singular support SS(K) exists. Moreover, each irreducible component of SS(K) has
dimension dimk X if X is equidimensional.

4.9. In the following of this section, we assume that k is perfect.

Theorem 4.10 (cf. [15, 11]). Let X be a smooth k-scheme, D a reduced Cartier divisor of X,
U the complement of D in X and j : U→ X the canonical injection. Let F be a locally constant
and constructible étale sheaf of Λ-modules on U. Let f : Y → X be a morphism of smooth
k-schemes. We assume that f∗D = D×X Y is a Cartier divisor of Y.

(1) Then, we have ([11, Theorem 1.5])

f∗(CX(j!F)) ≥ CY(f∗j!F).

(2) Assume that Y is a smooth k-curve, that f : Y → X is an immersion such that D
is smooth at the closed point x = Y

⋂
D and that the ramification of F at x is non-

degenerate. If f : Y → X is SS(j!F)-transversal at x, then ([15, Proposition 3.8,
Corollary 3.9])

f∗(CX(j!F)) = CY(f∗j!F).

Theorem 4.11 ([11, Theorem 1.6]). Let X be a smooth k-scheme, D a divisor with simple
normal crossings of X, U the complement of D in X and j : U→ X the canonical injection. Let
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F be a locally constant and constructible étale sheaf of Λ-modules on U. Let f : Y → X be a
morphism of smooth k-schemes. We assume that f∗D = D×X Y is a Cartier divisor of Y.

(1) Then, we have

(4.11.1) f∗(LCX(j!F)) ≥ LCY(f∗j!F).

(2) We further assume that D is irreducible. Let I(X,D) be the set of triples (S,h : S→
X, x) where h : S → X is an immersion from a smooth k-curve S to X such that
x = S

⋂
D is a closed point of X. Then, we have

(4.11.2) lcD(j!F) = sup
I(X,D)

lcx(h∗j!F)
mx(h∗D)

.

5. Proof of the main theorem

5.1. In this section, we aim to proving Theorem 1.8. We adapt a strategy similar
to proofs of [9, Theorem 4.3] and [10, Theorem 1.11]. We take the notation and
assumptions of subsection 1.7. We further assume that k is algebraically closed and
S is a connected and smooth k-scheme from Proposition 5.2 to subsection 5.7, by
Proposition 4.5.

Proposition 5.2. For each closed point s ∈ S, we have

(5.2.1) ρ∗s(GCf(j!F)) ≥ CXs(j!F|Xs).

Proof. We fix a closed point s ∈ S. This is a local statement for the Zariski topology
of X. After shrinking X, we may assume that X is affine and irreducible, that (Ds)red
has a unique irreducible component and that, for each i ∈ I, Ds ⊆ Di. Notice that, for
each i ∈ I, we have (Di)s

∼−→ (Ds)red. We put n = dimk X− dimk S.
When n = 1, i.e., f : X→ S is a smooth relative curve, the inequality (5.2.1) is due

to [11, Theorem 7.2]. We consider the case where n ≥ 2 in the following. Let z ∈ Ds
be a closed point such that (Ds)red is smooth at z and that the ramification of (j!F)|Xs
along (Ds)red is non-degenerate at z. After replacing X by an open neighborhood of
z, we can find a smooth k-curve C and a closed immersion ι : C → Xs such that the
curve C intersects (Ds)red transversally at z and that the immersion ι : C → Xs is
SS(j!F|Xs)-transversal at z (Proposition 3.3). By Theorem 4.10(2), we have

(5.2.2) cz(j!F|C) = c(Ds)red
((j!F)|Xs).

Choose a regular system of parameters t̄1, · · · , t̄n of OXs,z, such that (t̄2, · · · , t̄n) is the
kernel of ι] : OXs,z → OC,z and that (t̄1) is the kernel of OXs,z → O(Ds)red,z. For each
2 ≤ r ≤ n, choose a lifting tr ∈ OX,z of t̄r ∈ OXs,z. We define an OS,s-homomorphism
gz : OS,s[T2, · · · , Tn]→ OX,z by

gz : OS,s[T2, · · · , Tn]→ OX,z, Tr 7→ tr.

After replacing X by a Zariski neighborhood of z, the map gz induces an S-morphism
g : X→An−1

S . It satisfies the following conditions after shrinking further X
(i) it is smooth and of relative dimension 1;
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(ii) the restriction g|D : D → An−1
S is quasi-finite and flat and, for each i ∈ I, the

restriction g|Di : Di →An−1
S is étale ([6, I, Chapitre 0, 15.1.16]);

(iii) the curve C is the pre-image g−1(s×O), where s×O denotes the product of
s ∈ S and the origin O ∈ An−1

k .

Notice that z is an isolated point of C
⋂
D. By [6, IV, 18.12.1], we have a connected

étale neighborhood γ :W →An−1
S of s×O ∈ An−1

S such that

(1) the pre-image w = γ−1(s×O) is a point;

(2) the fiber product DW = D×
An−1S

W is a disjoint union of two schemes EW
and HW such that the canonical maps EW → W is finite and flat, and z ′ =
g−1W (w)

⋂
EW is a single point which is the pre-image of z ∈ D in DW , where

gW : XW = X×
An−1S

W → W is the base change of g : X → An−1
S by γ : W →

An−1
S ;

(3) for each i ∈ I, the fiber productDW,i = Di×An−1S
W is a disjoint union of EW,i =

DW,i
⋂
EW and HW,i = DW,i

⋂
HW , such that EW,i →W is an isomorphism.

Put PW =
⋃
i 6=i ′(i,ι∈I) EW,i ∩ EW,i ′ . Since z ′ ∈ PW , PW ⊂ EW has codimension 1 and

EW →W is finite and flat, the image gW(PW) is a codimensional 1 closed subset ofW
containing w. Since γ :W →An−1

S is étale, the closure Z = γ(gW(PW)) contains s×O
and has codimension 1 in An−1

S . By Proposition 3.4, we have an open dense subscheme
V of S and a morphism σ : V →An−1

S such that the composition of σ : V →An−1
S and

π : An−1
S → S is the canonical injection, that S 6⊂ Z and that σ(s) = s×O. Since S

is irreducible, σ−1(Z) ⊂ V is a closed subset of Swhich does not contain the generic
point. Since s×O ∈ γ(W), the fiber product W ×

An−1S ,σ V is non-empty. Let T be
the connected component of W ×

An−1S ,σ V containing w. Let η be the generic point
of S and η̄ an algebraic geometric point above η that factors through T . We have the
following commutative diagram:

D

��

EWoo

��

�

Eoo

��

�

Eηoo

��

X

g

��

�

XWoo

gW
��

�

Yoo

h

��

�

Yηoo

��

An−1
S W

γ
oo T

γ ′
��

σ ′
oo ηoo

V

σ

bb

We put Ei,η = EW,i ×W η. Since EW,i → W is an isomorphism for each i ∈ I, and
η /∈ σ−1(Z), we obtain that each Ei,η is isomorphic to η and that Eη =

∐
i∈I Ei,η.
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Applying [11, Theorem 7.2] to the sheaf (j!F)|Y and the relative curve h : Y → T , we get

(5.2.3)
∑
i∈I

cEi,η((j!F)|Yη) ≥ cz((j!F)|C).

Applying Theorem 4.10 to the morphism r : Yη → Xη = X×S η and the sheaf (j!F)|Xη ,
we obtain that, for each i ∈ I,
(5.2.4) cDi,η((j!F)|Xη) ≥ cEi,η((j!F)|Yη).

Combining (5.2.2), (5.2.3), (5.2.4), we obtain that

(5.2.5)
∑
i∈I

cDi,η((j!F)|Xη) ≥ c(Ds)red
(j!F|Xs)

By the assumptions that each f|Di : Di → S is smooth and that Ds is irreducible, we
see that

∑
i∈I cDi,η((j!F)|Xη) is the coefficient of ρ∗s(GCf(j!F)) and c(Ds)red

(j!F|Xs) is the
coefficient of CXs((j!F)|Xs). Hence, we get the inequality (5.2.1). �

Remark 5.3. The proof of Proposition 5.2 is a mimic of [9, Proposition 8.2]. However,
the section σ : V →An−1

S is chosen to be the zero section of π : An−1
S → S in the proof

of loc. cit.. In proof of Proposition 5.2, we fix the flaw.

Proposition 5.4. There exists an open dense subset V ⊆ S such that, for any point t ∈ V , we
have

ρ∗t (GCf(j!F)) ≤ CXt((j!F)|Xt).

Proof. This is a Zariski local problem at the generic point of S. We may assume that,
for each point s ∈ S and any indices i, ι ∈ I (i 6= ι), the fibersDi,s andDι,s have distinct
irreducible components (Proposition 3.5). Hence the proposition can be reduced to
the case where D is irreducible. By proposition 3.6, there exists a connected smooth
k-scheme S ′ and an étale map γ : S ′ → S such that D ′ = D ×S S ′ is the disjoint
union of its irreducible components and that every irreducible component of D ′ has
geometrically irreducible fibers at each point of S ′. By Lemma 4.3, Lemma 4.4(i) and
the fact that γ : S ′ → S is an open mapping, we can reduce to the case where S is a
connected, affine and smooth k-scheme and Ds is geometrically irreducible for any
s ∈ S. We are left to show that there exists an open neighborhood V ⊂ S of η such that,
for any t ∈ V , we have

(5.4.1) cDη((j!F)|Xη) ≤ cDt((j!F)|Xt).

Let T be a connected and smooth k-scheme and β : T → S a flat and generically
finite morphism. Notice that, to verify the proposition, it is enough to verify it after
base-changing by β : T → S.

We put n = dimk X− dimk S. When n = 1, the proposition is due to [11, Theorem
7.2]. We consider the case where n ≥ 2 in the following. Let η̄ → S be an algebraic
geometric point above η, z̄ ∈ Dη̄ a closed point such that Dη̄ is smooth at z̄ and that
the ramification of F|Uη̄ along Dη̄ is non-degenerate at z̄. Since S can be replaced by a
flat and generically finite cover T as above, we may assume that z can be descended
to a k(η)-rational point z ∈ Dη. Since the function field k(η) of S has infinitely many
elements, after shrinking X, we can find a smooth k(η)-curveC and a closed immersion
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ι : C → Xη such that the curve C intersects Dη transversally at z and that the base
change ιη : Cη → Xη of ι : C → Xη is SS(j!F|Xη)-transversal at z (proposition 3.3). By
Theorem 4.10(2), we have

(5.4.2) cDη((j!F)|Xη) = cz((j!F)|Cη).

Choose a regular system of parameters t1, · · · , tn of OXη,z such that (t2, · · · , tn) is
the kernel of OXη,z → OC,z and that (t1) is the kernel of OX,z → OD,z. We define a
k(η)-morphism gη : k(η)[T2, · · · Tn]→ OXη,z by

gη : k(η)[T2, · · · Tn]→ OX,z, Ti 7→ ti.

After shrinking X by a Zariski neighborhood of z again, the map gη induces an S-
morphism g : X→An−1

S which satisfies the following conditions
(i) it is smooth and of relative dimension 1;

(ii) the restriction g|D : D→An−1
S is étale;

(iii) the curve C is the pre-image g−1(η×O), where η×O denotes the fiber product
of η ∈ S and the origin O ∈ An−1

k .

Let σ : S → An−1
S be the zero-section of the canonical projection π : An−1

S → S. We
denote by h : Y → S the base change of g : X → An−1

S by σ : S → An−1
S and we put

E = Y ×XD. Since h|E : E → S is étale, there exists a connected étale neighborhood
γ : S ′ → S of the geometric point η̄→ S such that E ′ = E×S S ′ is a disjoint union of E ′1
and E ′2 where E ′1 is isomorphic to S ′ and E ′1 contains the pre-image of z ∈ Eη. We have
the following commutative diagram

(5.4.3) D

��

�

E

��

oo E ′1

��

oo

X

g
��

�

Y

h
��

oo

�

Y ′

h ′
��

oo

An−1
S S

σ
oo S ′

γ
oo

For any geometric point t̄ ′ → S ′, we put Y ′
t̄ ′ = Y ′ ×S ′ t̄ ′, put E ′

1,t̄ ′ = E ′1 ×S ′ t̄ ′, put
Xt̄ ′ = X×S t̄ ′ and put Dt̄ ′ = D×S t̄ ′. Notice that h ′ : Y ′ → S ′ is a smooth relative
curve and that h ′|E ′1 : E ′1 → S ′ is isomorphic. By [11, Theorem 7.2], we can find an

open dense subset V ′ of S ′ such that, for any algebraic geometric point t ′ → V ′, we
have

(5.4.4) cz((j!F)|Cη) = cE ′
1,t̄ ′

((j!F)|Y ′
t̄ ′
).

Applying Theorem 4.10(1) to the immersion Y ′
t
′ → X

t
′ and the sheaf (j!F)|X

t ′
for any

algebraic geometric point t ′ → V ′, we obtain

(5.4.5) cE ′
1,t̄ ′

((j!F)|Y ′
t̄ ′
) ≤ (CD

t ′
((j!F)|X

t ′
), Y ′t̄ ′)E ′

1,t̄ ′
= cD

t ′
((j!F)|X

t ′
) = cDt((j!F)|Xt)
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where t ∈ S denotes the image of t ′ → S ′ in S, and we putXt = X×S t andDt = D×S t.
Combining (5.4.2), (5.4.4) and (5.4.5), we obtain

(5.4.6) cDη((j!F)|Xη) ≤ cDt((j!F)|Xt)

for any point t in the open dense subset V = γ(V ′) of S. We finish the proof of the
proposition. �

Proposition 5.5. For each closed point s ∈ S, we have

(5.5.1) ρ∗s(GLCf(j!F) +D) ≥ LCXs((j!F)|Xs) + (Ds)red.

Proof. We fix a closed point s ∈ S. This is a local statement for the Zariski topology of
X. After shrinking X, we may assume that X is affine and irreducible, that (Ds)red 6= ∅
is irreducible and that Ds ⊆ Di for each i ∈ I. Notice that, for each i ∈ I, we have
(Di)s

∼−→ (Ds)red.
We put n = dimk X− dimk S. When n = 1, i.e., f : X→ S is a smooth relative curve,

the inequality (5.5.1) is due to [11, Theorem 7.2]. We focus on the case where n ≥ 2.
After replacing X by an open and affine neighborhood of the generic point of Xs, we
may assume that an element g1 of Γ(X,OX) definesD1. Let β be an integer co-prime to
p,

X ′ = Spec(OX[T ]/(Tβ − g1))
a tame cover of X of degree β ramified along D1, π ′ : X ′ → X the canonical projection,
f ′ : X ′ → S the composition of π ′ : X ′ → X and f : X → S. For any s ∈ S, we denote
by ρ ′s : X ′s → X ′ the canonical injection, h ′s : X ′s → Xs the base change of h ′ : X ′ → X
by ρs : Xs → X. Notice that f ′ : X ′ → S is a smooth morphism. We denote by D ′ the
Cartier divisor (D×X X ′)red on X ′, by D ′1 the smooth divisor (T) = (D1 ×X X ′)red on
X ′ and by D ′i the Cartier divisor Di ×X X ′ for i ∈ I\{1}. We have D ′ =

∑
i∈ID

′
i and

β · (D ′1)s = (D ′i)s for i ∈ I\{1}.
Applying [10, Proposition 6.3] to the sheaf ρ ′∗s h ′∗j!F on X ′s ramified along the divisor

(D ′1)s, we can find a closed point z ′ of (D ′1)s with the image z in (D1)s, an immersion
ι : C→ X ′s from a smooth k-curve C satisfying

(i) the curve C and the smooth divisor (D ′1)s meet transversally at z ′ in X ′s;

(ii) the immersion ι : C→ X ′s is SS(ρ ′∗s h ′∗j!F)-transversal at z ′;

(iii) the composition of ι : C→ X ′s and h ′s : X ′s → Xs is also an immersion.
Applying Theorem 4.10 to ι : C→ X ′s and the sheaf ρ ′∗s h ′∗j!F, we get

(5.5.2) cz ′((j!F)|C) = c(D ′1)s(ρ
′∗
s h
′∗j!F).

Applying Propstion 4.2, we get

(5.5.3) lc(D ′1)s(ρ
′∗
s h
′∗j!F) = β · lc(D1)s(ρ

∗
s j!F).

Combining (5.5.2) and (5.5.3), we have

(5.5.4) cz ′((j!F)|C) = c(D ′1)s(ρ
′∗
s h
′∗j!F) ≥ lc(D ′1)s(ρ

′∗
s h
′∗j!F) = β · lc(D1)s(ρ

∗
s j!F).

Choose a regular system of parameters t̄1, · · · , t̄n of OX ′s,z ′ , such that (t̄2, · · · , t̄n) is
the kernel of ι] : OX ′s,z ′ → OC,z ′ and that (t̄1) is the kernel of OX ′s,z ′ → O(D ′1)s,z ′ . For each
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2 ≤ r ≤ n, choose a lifting tr ∈ OX ′,z ′ of t̄r ∈ OX ′s,z ′ . We define an OS,s-homomorphism
ψz ′ : OS,s[T2, · · · , Tn]→ OX ′,z ′ by

ψz : OS,s[T2, · · · , Tn]→ OX ′,z ′ , Tr 7→ tr.

After replacingX ′ by a Zariski neighborhood of z ′, the mapψz ′ induces an S-morphism
ψ : X ′ →An−1

S . It satisfies the following conditions after shrinking further X ′

(i) it is smooth and of relative dimension 1;

(ii) the restriction g|D : D → An−1
S is quasi-finite and flat and, for each i ∈ I\{1},

the restriction ψ|D ′i : D
′
i → An−1

S is quasi-finite and γ|D ′1 : D
′
1 → An−1

S is étale
([6, I, Chapitre 0, 15.1.16]);

(iii) the curve C is the pre-image ψ−1(s×O), where s×O denotes the product of
s ∈ S and the origin O ∈ An−1

k .

Notice that z is an isolated point of C
⋂
D ′ ⊂ X ′. By [6, IV, 18.12.1], we have a

connected étale neighborhood γ :W →An−1
S of s×O ∈ An−1

S such that

(1) the pre-image w = γ−1(s×O) is a point;

(2) the fiber product D ′W = D ′ ×
An−1S

W is a disjoint union of two schemes E ′W
and H ′W such that the canonical maps E ′W → W is finite and flat, and x ′ =
ψ−1
W (w)

⋂
EW is a single point which is the pre-image of z ′ ∈ D ′ in D ′W , where

ψW : X ′W = X ′ ×
An−1S

W → W is the base change of ψ : X ′ → An−1
S by

γ :W →An−1
S ;

(3) for each i ∈ I\{1}, the fiber product D ′W,i = D
′
i ×An−1S

W is a disjoint union of
E ′W,i = D

′
W,i

⋂
E ′W and H ′W,i = D

′
W,i

⋂
H ′W such that E ′W,i →W is finite and flat

overW, and the fiber productD ′W,1 = D
′
1×An−1S

W is a disjoint union of E ′W,1 =

D ′W,1
⋂
E ′W and H ′W,1 = D

′
W,1

⋂
H ′W such that E ′W,1 →W is an isomorphism.

Put P ′W =
⋃
i 6=i ′(i,i ′∈I) E

′
W,i ∩ E ′W,i ′ . Since x ′ ∈ P ′W , P ′W ⊂ E ′W has codimension 1 and

E ′W →W is finite and flat, the image ψW(P ′W) is a codimensional 1 closed subset ofW
containingw. Since γ :W →An−1

S is étale, the closure Z = γ(ψW(P ′W)) contains s×O
and has codimension 1 in An−1

S . By Proposition 3.4, we have an open dense subscheme
V of S and a morphism σ : V →An−1

S such that the composition of σ : V →An−1
S and

π : An−1
S → S is the canonical injection, that S 6⊂ Z and that σ(s) = s×O. Since S

is irreducible, σ−1(Z) ⊂ V is a closed subset of Swhich does not contain the generic
point. Since s×O ∈ γ(W), the fiber product W ×

An−1S ,σ V is non-empty. Let T be
the connected component of W ×

An−1S ,σ V containing w. Let η be the generic point
of S and η̄ an algebraic geometric point above η that factors through T . We have the
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following commutative diagram:

D

��

D ′

��

oo E ′W
oo

��

�

E ′oo

��

�

E ′η
oo

��

X

f

��

X ′
h ′

oo

ψ

��

�

X ′W
oo

ψW
��

�

Y ′oo

ψT

��

�

Y ′η
oo

��

S An−1
S

π
oo W

γ
oo T

γ ′
~~

σ ′
oo ηoo

V

σ

bb

We put (E ′i)η = E ′W,i ×W η and put (H ′i)η = H ′W,i ×W η. Since η /∈ σ−1(Z), We have
E ′η =

∐
i∈I(E

′
i)η. Since E ′W,i →W is finite and flat, we have

lengthη((E
′
i)η) = lengthk(E

′
W,i ×W w) = mz ′(γ

∗((D ′i)s)) = β,(5.5.5)

for any i ∈ I\{1}. Since E ′W,1 → W is an isomorphism, we have (E ′1)η
∼= η. Applying

[11, Theorem 7.2] to the relative curve ψ : Y ′ → T , and the sheaf (j!F)|Y ′ , we get

(5.5.6)
∑
i∈I

∑
y∈(E ′i)η

cy((j!F)|Y ′η) ≥ cz ′((j!F)|C).

We put Xη = X×S η, putDη = D×S η, put (Di)η = Di×S η for i ∈ I, put X ′η = X
′×S η,

put D ′η = D ′ ×S η and put (D ′i)η = D ′i ×S η for i ∈ I. Notice that (E ′i)η
∐

(H ′i)η =

(D ′i)η ×X ′η Y
′
η for i ∈ I. Applying Theorem 4.10 to the closed immersion Y ′η → X ′η and

the sheaf (j!F)|X ′η ramified along the divisor (D ′1)η, we have

c(D ′1)η((j!F)|X ′η) ≥ c(E ′1)η((j!F)|Y ′η).(5.5.7)

Applying Theorem 4.10 to the quasi-finite morphism Y ′η → Xη and the sheaf (j!F)|Xη
along the divisor (Di)η (i ∈ I\{1}), we have

(5.5.8) β · c(Di)η((j!F)|Xη) ≥
∑

y∈(E ′i)η

cy((j!F)|Y ′η).

By (5.5.6), (5.5.7) and (5.5.8), we have

(5.5.9) c(D ′1)η((j!F)|X ′η) +β
∑
i∈I\{1}

c(Di)η((j!F)|Xη) ≥ cz ′((j!F)|C).

By (5.5.4) and (5.5.9), we have

(5.5.10) c(D ′1)η((j!F)|X ′η) +β
∑
i∈I\{1}

c(Di)η((j!F)|Xη) ≥ β · lc(D1)s(ρ
∗
s j!F).

Since π ′ : X ′ → X is tamely ramified along the divisor Di with degree β, we obtain
that

(5.5.11) β · lc(D1)η((j!F)|Xη) + 1 = lc(D ′1)η((j!F)|X ′η) + 1 ≥ c(D ′1)η((j!F)|X ′η).
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By subsection 1.4, we have

(5.5.12) lc(Di)η((j!F)|Xη) + 1 ≥ c(Di)η((j!F)|Xη), for i ∈ I\{1}.

By (5.5.10), (5.5.11) and (5.5.12), we have

(5.5.13) β
∑
i∈I

lc(Di)η((j!F)|Xη) +β · (]I− 1) + 1 ≥ β · lc(D1)s(ρ
∗
s j!F).

Divide both sides of (5.5.13) by β and pass β→ +∞, we obtain

(5.5.14)
∑
i∈I

(lc(Di)η((j!F)|Xη) + 1) ≥ lc(D1)s(ρ
∗
s j!F) + 1,

which implies (5.5.1). �

Proposition 5.6. There exists an open dense subset V of S, such that for each point s ∈ V , we
have

(5.6.1) ρ∗s(GLCf(j!F) +D) = LCXs((j!F)|Xs) + (Ds)red.

Proof. By Proposition 3.5, we can find an open dense subsetW ⊆ S such that, for any
s ∈ W and any different indices i, ι ∈ I, the fibers (Di)s and (Dι)s do not have same
irreducible components. Hence, we may assume that D is irreducible. Therefore, to
prove the proposition, it is sufficient to prove the existence of an open dense subset V
of S such that, for any point s ∈ V , we have

(5.6.2) (lcDη(ρ
∗
ηj!F)) ·Ds = LCXs(ρ

∗
s j!F).

Notice that Ds my not be irreducible in general. By proposition 3.6, there exists a
connected smooth k-scheme S ′ and an étale map γ : S ′ → S such that D ′ = D×S S ′ is
the disjoint union of its irreducible components and that every irreducible component
of D ′ has geometrically irreducible fibers at each point of S ′. By Lemma 4.3, Lemma
4.4(i) and the fact that γ : S ′ → S is an open mapping, we can reduce to the case where
S is a connected, affine and smooth k-scheme and Ds is geometrically irreducible for
any s ∈ S. We may further replace X by an affine neighborhood of the generic point of
D, Thus, we may assume that X and S are connected, affine and smooth and moreover
D is defined by an element g of Γ(X,OX) with geometrically irreducible fibers. Let β
be a positive integer co-prime to pwith β ≥ (rkΛF)2 + 1. Let

X ′ = Spec(OX[T ]/(Tβ − g))

be a tame cover of X ramified alongD of degree β, h ′ : X ′ → X the canonical projection,
f ′ : X ′ → S the composition of h ′ : X ′ → X and f : X → S and S ′ the smooth divisor
on X defined by (T) = (X×S S ′)red. For any s ∈ S, we denote by ρ ′s : X ′s → X ′ the
canonical injection, h ′s : X ′s → Xs the base change of h ′ : X ′ → X by ρs : Xs → X. Notice
that f ′ : X ′ → S and f ′|D ′ : D ′ → S are smooth and that h ′∗s (Ds) = β ·D ′s. Applying
Theorem 1.8(i) to the morphism f ′ : X ′ → S and the sheaf h ′∗j!F, we can find an open
dense subset V of S such that, for any s ∈ V , we have

(5.6.3) cD ′η(ρ
′∗
η h
′∗j!F) ·D ′s = CX ′s(h

′∗
s ρ
∗
s j!F).
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In the following, let s be a point of V . By subsection 1.4 and Proposition 4.2, we have

(β · lcDη(ρ∗ηj!F) + 1) ·D ′s = (lcD ′η(ρ
′∗
η h
′∗j!F) + 1) ·D ′s ≥ cD ′η(ρ

′∗
η h
′∗j!F) ·D ′s(5.6.4)

≥ lcD ′η(ρ
′∗
η h
′∗j!F) ·D ′s = (β · lcDη(ρ∗ηj!F)) ·D ′s,

and

h ′∗s (LCXs(ρ
∗
s j!F)) +D

′
s = LCX ′s(h

′∗
s ρ
∗
s j!F) +D

′
s ≥ CX ′s(h

′∗
s ρ
∗
s j!F)(5.6.5)

≥ LCX ′s(h
′∗
s ρ
∗
s j!F) = h

′∗
s (LCXs(ρ

∗
s j!F)).

By (5.6.3), (5.6.4) and (5.6.5), we have

(β · lcDη(ρ∗ηj!F) + 1) ·D ′s ≥ h ′∗s (LCXs(ρ
∗
s j!F)) ≥ (β · lcDη(ρ∗ηj!F) − 1) ·D ′s.(5.6.6)

It is equivalent to

(5.6.7)
(

lcDη(ρ
∗
ηj!F) +

1

β

)
·Ds ≥ LCXs(ρ

∗
s j!F) ≥

(
lcDη(ρ

∗
ηj!F) −

1

β

)
·Ds.

Let lc1 be a coefficient of LCXs(ρ
∗
s j!F). By (5.6.7), we have

(5.6.8) |lc1 − lcDη(ρ
∗
ηj!F)| ≤

1

β
≤ 1

(rkΛF)2 + 1

By Proposition 4.1, we can find a positive integer 0 < r ≤ (rkΛF)2 such that

(5.6.9) lc1 − lcDη(ρ
∗
ηj!F) ∈

1

r
Z.

Combining (5.6.8) and (5.6.9), we obtain that, for any s ∈ V , the equality (5.6.2) holds
which finishes the proof of the proposition. �

5.7. Proof of Theorem 1.8.
For a non-closed point t of S, we denote by T the smooth part of {t}, which is an

open dense subset of {t}. We have the following commutative diagram

(5.7.1) X

f
��

�

XT

fT
��

ρT
oo Xsιs

oo

ρs

vv

S Too

where s ∈ T is a point and ιs : Xs → XT the base change of the inclusion s→ T .

We firstly prove Theorem 1.8(i). It is divided into the following four steps:
Step 1. Combining Proposition 5.2 and Proposition 5.4, we can find an open dense

subset V ⊆ S such that

(5.7.2) ρ∗s(GCf(j!F)) = CXs(j!F|Xs).

for each closed point s ∈ V .
Step 2. Let V be the open dense subset of S in Step 1. For a non-closed point t ∈ V ,

we denote by T the smooth part of {t}. We take the notation of (5.7.1). Note that T ∩ V
is an open dense subset of T . By Step 1, for every closed point s ∈ T ∩ V , we have

(5.7.3) ι∗s(ρ
∗
T (GCf(j!F))) = ρ∗s(GCf(j!F)) = CXs((j!F)|Xs).
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Applying Step 1 to fT : XT → T and (j!F)|XT , we can find an open dense subset
W ⊂ T ∩ V such that, for every closed point s ∈W, we have

(5.7.4) ι∗s(GCfT ((j!F)|XT )) = CXs((j!F)|Xs).

By (5.7.3) and (5.7.4)), we have

ι∗s(ρ
∗
T (GCf(j!F))) = ι∗s(GCfT ((j!F)|XT )),

for any closed point s ∈ W. Since both W and T are k-schemes and W is dense in T ,
we obtain that ρ∗T (GCf(j!F)) = GCfT (j!F|XT ). Applying ι∗t to both sides of the equation,
we get

ρ∗t (GCf(j!F)) = CXt((j!F)|Xt).
Combining with Step 1, we prove that

ρ∗t (GCf(j!F)) = CXt((j!F)|Xt),

for any t ∈ V .
Step 3. Let V be the open dense subset of S in Step 1. Let t ∈ S− V be a point. If t is

closed, we have (Proposition 5.2)

(5.7.5) ρ∗t (GCf(j!F)) ≥ CXt(j!F|Xt).

When t is not closed, we denote by T the smooth part of {t} and we take the notation of
(5.7.1). Applying Step 1 to fT : XT → T and (j!F)|XT , there exists an open dense subset
W ⊆ T such that, for any closed point s ∈W, we have

(5.7.6) ι∗s(GCfT ((j!F)|XT )) = CXs((j!F)|Xs).

By Proposition 5.2, for any closed point s ∈W, we have

(5.7.7) ι∗s(ρ
∗
T (GCf(j!F))) = ρ∗s(GCf(j!F)) ≥ CXs((j!F)|Xs).

By (5.7.6), (5.7.7), we get

ι∗s(ρ
∗
T (GCf(j!F))) ≥ ι∗s(GCfT (j!F|XT )),

for any closed point s ∈W. Hence, we have

(5.7.8) ρ∗T (GCf(j!F)) ≥ GCfT (j!F|XT )

Applying ι∗t to both sides of (5.7.7), we obtain

ρ∗t (GDTf(j!F)) ≥ DTXt(j!F|Xt).

In summary, for any t ∈ S− V , we have

ρ∗t (GDTf(j!F)) ≥ DTXt(j!F|Xt).

Step 4. We obtain Theorem 1.8(i) by the combination of Step 2 and Step 3.

Secondly, we prove Theorem 1.8(ii). It consists of the following three steps:
Step I. By Proposition 5.6, we can find an open dense subsetW ⊆ S such that

(5.7.9) ρ∗s(GLCf(j!F)) = LCXs(j!F|Xs).

for each point s ∈W.
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Step II. LetW be the open dense subset of S in Step I. Let t ∈ S−W be a point. If t
is closed, we have (Proposition 5.5)

(5.7.10) ρ∗t (GLCf(j!F) +D) ≥ LCXt((j!F)|Xt) + (Dt)red.

When t is not closed, we denote by T the smooth part of {t} and we take the notation
of (5.7.1). We put DT = D×S T . Applying Step 1 to fT : XT → T and (j!F)|XT , there
exists an open dense subset V ⊆ T such that, for any closed point s ∈ V , we have

(5.7.11) ι∗s(GLCfT ((j!F)|XT ) + (DT )red) = LCXs((j!F)|Xs) + (Ds)red.

By Proposition 5.5, for any closed point s ∈ V , we have

(5.7.12) ι∗s(ρ
∗
T (GLCf(j!F) +D)) = ρ∗s(GLCf(j!F) +D) ≥ LCXs((j!F)|Xs) + (Ds)red.

By (5.7.11), (5.7.12), we get

ι∗s(ρ
∗
T (GLCf(j!F) +D)) ≥ ι∗s(GCfT (j!F|XT ) + (DT )red),

for any closed point s ∈ V . Hence, we have

(5.7.13) ρ∗T (GLCf(j!F) +D) ≥ GLCfT (j!F|XT ) + (DT )red

Applying ι∗t to both sides of (5.7.13), we obtain

ρ∗t (GLCf(j!F) +D) = ι∗t (ρ
∗
T (GLCf(j!F) +D))

≥ ι∗t (GLCfT (j!F|XT ) + (DT )red)

= LCXt(j!F|Xt) + ι
∗
t ((DT )red) = LCXt(j!F|Xt) + (Dt)red.

In summary, for any t ∈ S−W, we have

ρ∗t (GLCf(j!F) +D) ≥ LCXt(j!F|Xt) + (Dt)red.

Step III. We obtain Theorem 1.8(ii) by the combination of Step I and Step II. �

Corollary 5.8. Assume that S is integral and that the fiber Dt is geometrically integral for
each t ∈ S. Then, for any point t ∈ S, we have

cD(j!F) ≥ cDη((j!F)|Xη) ≥ cDt((j!F)|Xt) and lcD(j!F) ≥ lcDη((j!F)|Xη) ≥ lcDt((j!F)|Xt).

In the corollary, the invariants cD(j!F) and lcD(j!F) are well defined since X and D
are smooth in a Zariski neighborhood of the generic point of D.

Proof. By Theorem 1.8, there exists an open dense subset V of S such that, for any point
s ∈ V , we have

(5.8.1) cDη((j!F)|Xη) = cDs((j!F)|Xs) and lcDη((j!F)|Xη) = lcDs((j!F)|Xs),

and that, for any point t ∈ S, we have

(5.8.2) cDη((j!F)|Xη) ≥ cDt((j!F)|Xt) and lcDη((j!F)|Xη) ≥ lcDt((j!F)|Xt).

Let V0 be the smooth locus of V , which is open dense in V . Applying Theorem 4.10
and Theorem 4.11 to the closed immersion ρv : Xv → X and the sheaf j!F for a closed
point v ∈ V0, we have

(5.8.3) cD(j!F) ≥ cDv((j!F)|Xv) and lcD(j!F) ≥ lcDv((j!F)|Xv).

Combining (5.8.1), (5.8.2) and (5.8.3), we obtain the corollary. �
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